1
|
Tong X, Yagan M, Hu R, Nevills S, Doss TD, Stein RW, Balamurugan AN, Gu G. Metabolic Stress Levels Influence the Ability of Myelin Transcription Factors to Regulate β-Cell Identity and Survival. Diabetes 2024; 73:1662-1672. [PMID: 39058602 PMCID: PMC11417441 DOI: 10.2337/db23-0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
A hallmark of type 2 diabetes (T2D) is endocrine islet β-cell failure, which can occur via cell dysfunction, loss of identity, and/or death. How each is induced remains largely unknown. We used mouse β-cells deficient for myelin transcription factors (Myt TFs; including Myt1, -2, and -3) to address this question. We previously reported that inactivating all three Myt genes in pancreatic progenitor cells (MytPancΔ) caused β-cell failure and late-onset diabetes in mice. Their lower expression in human β-cells is correlated with β-cell dysfunction, and single nucleotide polymorphisms in MYT2 and MYT3 are associated with a higher risk of T2D. We now show that these Myt TF-deficient postnatal β-cells also dedifferentiate by reactivating several progenitor markers. Intriguingly, mosaic Myt TF inactivation in only a portion of islet β-cells did not result in overt diabetes, but this created a condition where Myt TF-deficient β-cells remained alive while activating several markers of Ppy-expressing islet cells. By transplanting MytPancΔ islets into the anterior eye chambers of immune-compromised mice, we directly show that glycemic and obesity-related conditions influence cell fate, with euglycemia inducing several Ppy+ cell markers and hyperglycemia and insulin resistance inducing additional cell death. These findings suggest that the observed β-cell defects in T2D depend not only on their inherent genetic/epigenetic defects but also on the metabolic load. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Mahircan Yagan
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Ruiying Hu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Simone Nevills
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Teri D. Doss
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Appakalai N. Balamurugan
- Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH
| | - Guoqiang Gu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
2
|
Welters A, Nortmann O, Wörmeyer L, Freiberg C, Eberhard D, Bachmann N, Bergmann C, Mayatepek E, Meissner T, Kummer S. Congenital Hyperinsulinism in Humans and Insulin Secretory Dysfunction in Mice Caused by Biallelic DNAJC3 Variants. Int J Mol Sci 2024; 25:1270. [PMID: 38279270 PMCID: PMC10816850 DOI: 10.3390/ijms25021270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
The BiP co-chaperone DNAJC3 protects cells during ER stress. In mice, the deficiency of DNAJC3 leads to beta-cell apoptosis and the gradual onset of hyperglycemia. In humans, biallelic DNAJC3 variants cause a multisystem disease, including early-onset diabetes mellitus. Recently, hyperinsulinemic hypoglycemia (HH) has been recognized as part of this syndrome. This report presents a case study of an individual with HH caused by DNAJC3 variants and provides an overview of the metabolic phenotype of individuals with HH and DNAJC3 variants. The study demonstrates that HH may be a primary symptom of DNAJC3 deficiency and can persist until adolescence. Additionally, glycemia and insulin release were analyzed in young DNACJ3 knockout (K.O.) mice, which are equivalent to human infants. In the youngest experimentally accessible age group of 4-week-old mice, the in vivo glycemic phenotype was already dominated by a reduced total insulin secretion capacity. However, on a cellular level, the degree of insulin release of DNAJC3 K.O. islets was higher during periods of increased synthetic activity (high-glucose stimulation). We propose that calcium leakage from the ER into the cytosol, due to disrupted DNAJC3-controlled gating of the Sec61 channel, is the most likely mechanism for HH. This is the first genetic mechanism explaining HH solely by the disruption of intracellular calcium homeostasis. Clinicians should screen for HH in DNAJC3 deficiency and consider DNAJC3 variants in the differential diagnosis of congenital hyperinsulinism.
Collapse
Affiliation(s)
- Alena Welters
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany;
| | - Oliver Nortmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany;
| | - Laura Wörmeyer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany;
| | - Clemens Freiberg
- Department of Pediatrics and Adolescent Medicine, Pediatric Endocrinology, University Medicine Göttingen, D-37075 Göttingen, Germany;
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany;
| | - Nadine Bachmann
- Medizinische Genetik Mainz, Limbach Genetics, D-55128 Mainz, Germany; (N.B.); (C.B.)
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, D-55128 Mainz, Germany; (N.B.); (C.B.)
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany; (O.N.); (E.M.); (T.M.); (S.K.)
| |
Collapse
|
3
|
Greeley SAW, Polak M, Njølstad PR, Barbetti F, Williams R, Castano L, Raile K, Chi DV, Habeb A, Hattersley AT, Codner E. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1188-1211. [PMID: 36537518 PMCID: PMC10107883 DOI: 10.1111/pedi.13426] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Siri Atma W. Greeley
- Section of Pediatric and Adult Endocrinology, Diabetes and Metabolism, Kovler Diabetes Center and Comer Children's HospitalUniversity of Chicago MedicineChicagoIllinoisUSA
| | - Michel Polak
- Hôpital Universitaire Necker‐Enfants MaladesUniversité de Paris Cité, INSERM U1016, Institut IMAGINEParisFrance
| | - Pål R. Njølstad
- Department of Clinical ScienceUniversity of Bergen, and Children and Youth Clinic, Hauk eland University HospitalBergenNorway
| | - Fabrizio Barbetti
- Clinical Laboratory UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Rachel Williams
- National Severe Insulin Resistance ServiceCambridge University Hospitals NHS TrustCambridgeUK
| | - Luis Castano
- Endocrinology and Diabetes Research Group, Biocruces Bizkaia Health Research InstituteCruces University Hospital, CIBERDEM, CIBERER, Endo‐ERN, UPV/EHUBarakaldoSpain
| | - Klemens Raile
- Department of Paediatric Endocrinology and DiabetologyCharité – UniversitätsmedizinBerlinGermany
| | - Dung Vu Chi
- Center for Endocrinology, Metabolism, Genetics and Molecular Therapy, Departement of Pediatric Endocrinology and DiabetesVietnam National Children's HospitalHanoiVietnam
- Department of Pediatrics and Department of Biology and Medical GeneticsHanoi Medical UniversityHanoiVietnam
| | - Abdelhadi Habeb
- Department of PediatricsPrince Mohamed bin Abdulaziz Hopsital, National Guard Health AffairsMadinahSaudi Arabia
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Ethel Codner
- Institute of Maternal and Child ResearchSchool of Medicine, University of ChileSantiagoChile
| |
Collapse
|