1
|
李 泳, 奚 欣, 张 萌, 吴 勋, 汪 向. [High expression of LINC00467 promotes proliferation and metastasis of lung adenocarcinoma cells by suppressing autophagy via inhibiting the AMPK/mTOR pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1898-1909. [PMID: 39523090 PMCID: PMC11526448 DOI: 10.12122/j.issn.1673-4254.2024.10.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the regulatory effects of LINC00467 on proliferation and metastasis of lung adenocarcinoma cells and the involvement of autophagy in its regulatory mechanism. METHODS LINC00467 expression levels in lung adenocarcinoma tissues and their correlation with the patients' survival outcomes were analyzed using data from TCGA database. LINC00467 expression was also examined using qRT-PCR in human bronchial epithelial cells 16HBE and lung adenocarcinoma cell lines A549 and H1299. In A549 and H1299 cells transfected with a short hairpin RNA targeting LINC00467 (shLINC00467), the effects of 3-methyladenine (3-MA, an autophagy inhibitor) and BML-275 (an AMPK inhibitor) treatment on cell proliferation, migration, and expressions of LC3 and the AMPK/mTOR pathway proteins were tested using colony formation assay, wound-healing and Transwell assays, immunofluorescence staining and Western blotting. GSEA enrichment analysis was conducted to analyze the correlation between LINC00467 and the autophagy pathway. RESULTS The expression level of LINC00467 was significantly higher in lung adenocarcinoma tissues than in the adjacent tissues (P < 0.001) and increased progressively with the clinical stage (P < 0.05), and its high expression was associated with a poor overall survival (P= 0.049) and a high first progression rate (P=0.026) of the patients. LINC00467 expression was also significantly higher in A549 and H1299 cells than in 16HBE cells. In A549 and H1299 cells, LINC00467 knockdown significantly decreased colony-forming, migration and invasion abilities of the cells, lowered p-mTOR/mTOR and p62 expressions, and increased p-AMPK/AMPK expressions and LC3Ⅱ/Ⅰ ratio, and these effects were strongly attenuated by application of either 3-MA or BML-275. GSEA analysis suggested an inhibitory effect on LINC00467 on the autophagy pathway (|NES| > 1, P < 0.05, FDR < 0.25). CONCLUSION High expressions of LINC00467 promote proliferation and metastasis of lung adenocarcinoma cells possibly by inhibiting cell autophagy mediated by the AMPK/mTOR signaling pathway.
Collapse
|
2
|
Zhang W, Chen XS, Wei Y, Wang XM, Chen XJ, Chi BT, Huang LQ, He RQ, Huang ZG, Li Q, Chen G, He J, Wu M. Overexpressed KCNK1 regulates potassium channels affecting molecular mechanisms and biological pathways in bladder cancer. Eur J Med Res 2024; 29:257. [PMID: 38689322 PMCID: PMC11059691 DOI: 10.1186/s40001-024-01844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND This study aimed to explore the expression, molecular mechanism and its biological function of potassium two pore domain channel subfamily K member 1 (KCNK1) in bladder cancer (BC). METHODS We integrated large numbers of external samples (n = 1486) to assess KCNK1 mRNA expression levels and collected in-house samples (n = 245) for immunohistochemistry (IHC) experiments to validate at the KCNK1 protein level. Single-cell RNA sequencing (scRNA-seq) analysis was performed to further assess KCNK1 expression and cellular communication. The transcriptional regulatory mechanisms of KCNK1 expression were explored by ChIP-seq, ATAC-seq and ChIA-PET data. Highly expressed co-expressed genes (HECEGs) of KCNK1 were used to explore potential signalling pathways. Furthermore, the immunoassay, clinical significance and molecular docking of KCNK1 were calculated. RESULTS KCNK1 mRNA was significantly overexpressed in BC (SMD = 0.58, 95% CI [0.05; 1.11]), validated at the protein level (p < 0.0001). Upregulated KCNK1 mRNA exhibited highly distinguishing ability between BC and control samples (AUC = 0.82 [0.78-0.85]). Further, scRNA-seq analysis revealed that KCNK1 expression was predominantly clustered in BC epithelial cells and tended to increase with cellular differentiation. BC epithelial cells were involved in cellular communication mainly through the MK signalling pathway. Secondly, the KCNK1 transcription start site (TSS) showed promoter-enhancer interactions in three-dimensional space, while being transcriptionally regulated by GRHL2 and FOXA1. Most of the KCNK1 HECEGs were enriched in cell cycle-related signalling pathways. KCNK1 was mainly involved in cellular metabolism-related pathways and regulated cell membrane potassium channel activity. KCNK1 expression was associated with the level of infiltration of various immune cells. Immunotherapy and chemotherapy (docetaxel, paclitaxel and vinblastine) were more effective in BC patients in the high KCNK1 expression group. KCNK1 expression correlated with age, pathology grade and pathologic_M in BC patients. CONCLUSIONS KCNK1 was significantly overexpressed in BC. A complex and sophisticated three-dimensional spatial transcriptional regulatory network existed in the KCNK1 TSS and promoted the upregulated of KCNK1 expression. The high expression of KCNK1 might be involved in the cell cycle, cellular metabolism, and tumour microenvironment through the regulation of potassium channels, and ultimately contributed to the deterioration of BC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Song Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ying Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Min Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xian-Jin Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lin-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Mei Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
3
|
Pokorná M, Černá M, Boussios S, Ovsepian SV, O’Leary VB. lncRNA Biomarkers of Glioblastoma Multiforme. Biomedicines 2024; 12:932. [PMID: 38790894 PMCID: PMC11117901 DOI: 10.3390/biomedicines12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
- Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| |
Collapse
|
4
|
Chen X, Luo Q, Xiao Y, Zhu J, Zhang Y, Ding J, Li J. LINC00467: an oncogenic long noncoding RNA. Cancer Cell Int 2022; 22:303. [PMID: 36203193 PMCID: PMC9541002 DOI: 10.1186/s12935-022-02733-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to play essential roles in the cell proliferation, fission and differentiation, involving various processes in humans. Recently, there is more and more interest in exploring the relationship between lncRNAs and tumors. Many latest evidences revealed that LINC00467, an oncogenic lncRNA, is highly expressed in lung cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma, breast cancer, glioblastoma, head and neck squamous cell carcinoma, osteosarcoma, and other malignant tumors. Besides, LINC00467 expression was linked with proliferation, migration, invasion and apoptosis via the regulation of target genes and multiple potential pathways. We reviewed the existing data on the expression, downstream targets, molecular mechanisms, functions, relevant signaling pathways, and clinical implications of LINC00467 in various cancers. LINC00467 may serve as a novel biomarker or therapeutic target for the diagnosis and prognosis of various human tumors.
Collapse
Affiliation(s)
- Xuyu Chen
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Qian Luo
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanan Xiao
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jing Zhu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yirao Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jie Ding
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Juan Li
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
5
|
Liu M, Liu C, Li X, Li S. RP11-79H23.3 Inhibits the Proliferation and Metastasis of Non-small-cell Lung Cancer Through Promoting miR-29c. Biochem Genet 2022; 61:506-520. [PMID: 35972581 DOI: 10.1007/s10528-022-10263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Evidences indicate that long non-coding RNAs (lncRNAs) are closely involved and contributed to tumorigenesis and cancer progression. As a novel lncRNA, RP11-79H23.3 was found to be an anti-oncogene in bladder cancer. However, the essential roles and functions of RP11-79H23.3 in non-small-cell lung cancer (NSCLC) remains to be elucidated. Here, loss of functional assay was applied to gain insights into the functions of RP11-79H23.3 on the proliferation and metastasis capabilities of A549 and H1299 cells. Meantime, Real-time PCR was utilized to measure RP11-79H23.3 and miR-29c expression in NSCLC tissues. Dual-luciferase reporter assay, CCK8, colony formation assay, transwell and Western blot were performed to illustrate the potential molecular basis of RP11-79H23.3 in NSCLC. RP11-79H23.3 downregulation facilitated cell proliferation, migration, and invasion of NSCLC. The result of dual-luciferase reporter assay represented a direct interaction of RP11-79H23.3 with miR-29c, which suppressed miR-29c expression that showed inversely correlation in NSCLC. Moreover, RP11-79H23.3 siRNA facilitated the progression of NSCLC partially via regulating the expression of miR-29c and the activation of Wnt/β-catenin signaling pathway. Our findings highlighted that RP11-79H23.3, served as an anti-oncogene, accelerated NSCLC progression through sequestering miR-29c, providing a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Mulin Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Chang Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Xi Li
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong Province, China
| | - Shijun Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China.
| |
Collapse
|
6
|
Wu D, Li R, Liu J, Zhou C, Jia R. Long Noncoding RNA LINC00467: Role in Various Human Cancers. Front Genet 2022; 13:892009. [PMID: 35719391 PMCID: PMC9198549 DOI: 10.3389/fgene.2022.892009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
Intricate genetic mutations promote the progression of different cancer types. Long noncoding RNAs (lncRNAs) have been widely demonstrated to participate in the genomic activities of various human cancers. Long intergenic non-coding RNA 467 (LINC00467) is an upregulated lncRNA in diverse diseases, especially in several types of cancers. Functional experiments of LINC00467 revealed that LINC00467 overexpression enhanced cell chemoresistance, proliferation, migration, and invasion in several types of cancers. Moreover, overexpressed LINC00467 was associated with a poor clinical prognosis. The present evidence suggests that LINC00467 may serve as a promising prognostic indicator and become a novel cancer therapeutic target. In this review, we introduce the biologic functions of lncRNAs and describe the molecular mechanism and clinical significance of LINC00467 in detail.
Collapse
Affiliation(s)
- Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfei Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
MotieGhader H, Tabrizi-Nezhadi P, Deldar Abad Paskeh M, Baradaran B, Mokhtarzadeh A, Hashemi M, Lanjanian H, Jazayeri SM, Maleki M, Khodadadi E, Nematzadeh S, Kiani F, Maghsoudloo M, Masoudi-Nejad A. Drug repositioning in non-small cell lung cancer (NSCLC) using gene co-expression and drug–gene interaction networks analysis. Sci Rep 2022; 12:9417. [PMID: 35676421 PMCID: PMC9177601 DOI: 10.1038/s41598-022-13719-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the most common cancer in men and women. This cancer is divided into two main types, namely non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Around 85 to 90 percent of lung cancers are NSCLC. Repositioning potent candidate drugs in NSCLC treatment is one of the important topics in cancer studies. Drug repositioning (DR) or drug repurposing is a method for identifying new therapeutic uses of existing drugs. The current study applies a computational drug repositioning method to identify candidate drugs to treat NSCLC patients. To this end, at first, the transcriptomics profile of NSCLC and healthy (control) samples was obtained from the GEO database with the accession number GSE21933. Then, the gene co-expression network was reconstructed for NSCLC samples using the WGCNA, and two significant purple and magenta gene modules were extracted. Next, a list of transcription factor genes that regulate purple and magenta modules' genes was extracted from the TRRUST V2.0 online database, and the TF–TG (transcription factors–target genes) network was drawn. Afterward, a list of drugs targeting TF–TG genes was obtained from the DGIdb V4.0 database, and two drug–gene interaction networks, including drug-TG and drug-TF, were drawn. After analyzing gene co-expression TF–TG, and drug–gene interaction networks, 16 drugs were selected as potent candidates for NSCLC treatment. Out of 16 selected drugs, nine drugs, namely Methotrexate, Olanzapine, Haloperidol, Fluorouracil, Nifedipine, Paclitaxel, Verapamil, Dexamethasone, and Docetaxel, were chosen from the drug-TG sub-network. In addition, nine drugs, including Cisplatin, Daunorubicin, Dexamethasone, Methotrexate, Hydrocortisone, Doxorubicin, Azacitidine, Vorinostat, and Doxorubicin Hydrochloride, were selected from the drug-TF sub-network. Methotrexate and Dexamethasone are common in drug-TG and drug-TF sub-networks. In conclusion, this study proposed 16 drugs as potent candidates for NSCLC treatment through analyzing gene co-expression, TF–TG, and drug–gene interaction networks.
Collapse
|