1
|
Yalcinkaya A, Yalcinkaya R, Sardh F, Landegren N. Immune dynamics throughout life in relation to sex hormones and perspectives gained from gender-affirming hormone therapy. Front Immunol 2025; 15:1501364. [PMID: 39885993 PMCID: PMC11779622 DOI: 10.3389/fimmu.2024.1501364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Biological sex is closely associated with the properties and extent of the immune response, with males and females showing different susceptibilities to diseases and variations in immunity. Androgens, predominantly in males, generally suppress immune responses, while estrogens, more abundant in females, tend to enhance immunity. It is also established that sex hormones at least partially explain sex biases in different diseases, particularly autoimmune diseases in females. These differences are influenced by hormonal, genetic, and environmental factors, and vary throughout life stages. The advent of gender-affirming hormone therapy offers a novel opportunity to study the immunological effects of sex hormones. Despite the limited studies on this topic, available research has revealed that testosterone therapy in transgender men may suppress certain immune functions, such as type I interferon responses, while increasing inflammation markers like TNF-α. Transgender women on estrogen therapy also experience alterations in coagulation-related and inflammatory characteristics. Furthermore, other possible alterations in immune regulation can be inferred from the assessment of inflammatory and autoimmune markers in transgender individuals receiving hormone therapy. Understanding the complex interactions between sex hormones and the immune system, particularly through the unique perspective offered by gender-affirming hormone therapies, may facilitate the development of targeted therapies for infections and autoimmune diseases while also improving healthcare outcomes for transgender individuals. Here we review immune dynamics throughout life in both sexes and provide a summary of novel findings drawn from studies exploring gender-affirming hormone therapy.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Rumeysa Yalcinkaya
- Department of Pediatric Infectious Diseases, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Fabian Sardh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Li B, Khan H, Shaikh F, Zamzam A, Abdin R, Qadura M. Prediction of Major Adverse Limb Events in Females with Peripheral Artery Disease using Blood-Based Biomarkers and Clinical Features. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10574-y. [PMID: 39643751 DOI: 10.1007/s12265-024-10574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
The objective of this study was to identify a female-specific prognostic biomarker for peripheral artery disease (PAD) and develop a prediction model for 2-year major adverse limb events (MALE). Patients with/without PAD were recruited (n=461). Plasma concentrations of 68 circulating proteins were measured and patients were followed for 2 years. The primary outcome was MALE (composite of vascular intervention, major amputation, or acute/chronic limb threatening ischemia). We trained a random forest model using: 1) clinical characteristics, 2) female-specific PAD biomarker, and 3) clinical characteristics and female-specific PAD biomarker. Galectin-9 was the only protein to be significantly elevated in females compared to males in the discovery/validation analyses. The random forest model achieved the following AUROC's: 0.72 (clinical features), 0.83 (Galectin-9), and 0.86 (clinical features + Galectin-9). We identified Galectin-9 as a female-specific PAD biomarker and developed an accurate prognostic model for 2-year MALE using a combination of clinical features and plasma Galectin-9 levels.
Collapse
Affiliation(s)
- Ben Li
- Department of Surgery, University of Toronto, Toronto, Canada
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, Canada
| | - Hamzah Khan
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Mohammad Qadura
- Department of Surgery, University of Toronto, Toronto, Canada.
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Tampé JF, Monni E, Palma-Tortosa S, Brogårdh E, Böiers C, Lindgren AG, Kokaia Z. Human monocyte subtype expression of neuroinflammation- and regeneration-related genes is linked to age and sex. PLoS One 2024; 19:e0300946. [PMID: 39475881 PMCID: PMC11524521 DOI: 10.1371/journal.pone.0300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Aging profoundly affects the immune system leading to an increased propensity for inflammation. Age-related dysregulation of immune cells is implicated in the development and progression of numerous age-related diseases such as: cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Monocytes and monocyte-derived macrophages, being important players in the inflammatory response, significantly influence the aging process and the associated increase in inflammatory disease risk. Ischemic stroke is among age-related diseases where inflammation, particularly monocyte-derived macrophages, plays an important deteriorating role but could also strongly promote post-stroke recovery. Also, biological sex influences the incidence, presentation, and outcomes of ischemic stroke, reflecting both biological differences between men and women. Here, we studied whether human peripheral blood monocyte subtype (classical, intermediate, and non-classical) expression of genes implicated in stroke-related inflammation and post-stroke tissue regeneration depends on age and sex. A flow cytometry analysis of blood samples from 44 healthy volunteers (male and female, aged 28 to 98) showed that in contrast to other immune cells, the proportion of NK-cells increased in females. The proportion of B-cells decreased in both sexes with age. Gene expression analysis by qPCR identified several genes differentially correlating with age and sex within different monocyte subtypes. Interestingly, ANXA1 and CD36 showed a consistent increase with aging in all monocytes, specifically in intermediate (CD36) and intermediate and non-classical (ANXA1) subtypes. Other genes (IL-1β, S100A8, TNFα, CD64, CD33, TGFβ1, TLR8, CD91) were differentially changed in monocyte subtypes with increasing age. Most age-dependent gene changes were differentially expressed in female monocytes. Our data shed light on the nuanced interplay of age and sex in shaping the expression of inflammation- and regeneration-related genes within distinct monocyte subtypes. Understanding these dynamics could pave the way for targeted interventions and personalized approaches in post-stroke care, particularly for the aging population and individuals of different sexes.
Collapse
Affiliation(s)
- Juliane F. Tampé
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emanuela Monni
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emil Brogårdh
- Department of Neurology, Skåne University Hospital; Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Arne G. Lindgren
- Department of Neurology, Skåne University Hospital; Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Leek C, Cantu A, Sonti S, Gutierrez MC, Eldredge L, Sajti E, Xu HN, Lingappan K. Role of sex as a biological variable in neonatal alveolar macrophages. Redox Biol 2024; 75:103296. [PMID: 39098263 PMCID: PMC11345582 DOI: 10.1016/j.redox.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.
Collapse
Affiliation(s)
- Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Abiud Cantu
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Shilpa Sonti
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Laurie Eldredge
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Washington School of Medicine, Seattle Children's Hospital, WA, USA
| | - Eniko Sajti
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA, USA
| | - He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA.
| |
Collapse
|
5
|
Lefebvre C, Tiffay A, Breemeersch CE, Dreux V, Bôle-Feysot C, Guérin C, Breton J, Maximin E, Monnoye M, Déchelotte P, Douard V, Goichon A, Coëffier M. Sex-dependent effects of a high fat diet on metabolic disorders, intestinal barrier function and gut microbiota in mouse. Sci Rep 2024; 14:19835. [PMID: 39191839 DOI: 10.1038/s41598-024-70931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity is often associated with sex-dependent metabolic complications, in which altered intestinal barrier function and gut microbiota contribute. We aimed to characterize in mice the sex-dependent effects of a high fat diet on these parameters. Male and female C57BL/6 mice received a standard (SD) or high fat diet (HFD; 60% kcal from fat) during 14 weeks (W14). Body composition, glucose tolerance, insulin sensitivity, intestinal permeability, colonic expression of 44 genes encoding factors involved in inflammatory response and gut barrier function, cecal microbiota, plasma adipokines and white adipose tissue response have been assessed. Both male and female HFD mice exhibited an increase of body weight and fat mass gain and glucose intolerance compared to SD mice. However, only male HFD mice tended to develop insulin resistance associated to increased Tnfα and Ccl2 mRNA expression in perigonadal adipose tissue. By contrast, only female HFD mice showed significant intestinal hyperpermeability that was associated with more markedly altered colonic inflammatory response. Cecal microbiota richness was markedly reduced in both sexes (Observed species) with sex-dependent modifications at the phyla or family level, e.g. decreased relative abundance of Bacillota and Lachnospiraceae in females, increased of Bacteroidaceae in males. Interestingly, some of these microbiota alterations were correlated with peripheral metabolic and inflammatory markers. In conclusions, male and female mice exhibit different responses to a high fat diet with specific changes of gut microbiota, intestinal barrier function, colonic and white adipose tissue inflammation, metabolic markers and body weight gain. The underlying mechanisms should be deciphered in further investigations.
Collapse
Affiliation(s)
- Candice Lefebvre
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Adam Tiffay
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Charles-Edward Breemeersch
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Virginie Dreux
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Christine Bôle-Feysot
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Charlène Guérin
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Jonathan Breton
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Elise Maximin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Magali Monnoye
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Pierre Déchelotte
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - Véronique Douard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Alexis Goichon
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France
| | - Moïse Coëffier
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", UFR Santé, 22 Boulevard Gambetta, 76000, Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), Univ Rouen Normandie, 76000, Rouen, France.
- Department of Nutrition, CHU Rouen, 76000, Rouen, France.
| |
Collapse
|
6
|
Fresquez AM, Hogan JO, Rivera P, Patterson KM, Singer K, Reynolds JM, White C. STIM1-dependent store-operated calcium entry mediates sex differences in macrophage chemotaxis and monocyte recruitment. J Biol Chem 2024; 300:107422. [PMID: 38815866 PMCID: PMC11231831 DOI: 10.1016/j.jbc.2024.107422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Infiltration of monocyte-derived cells to sites of infection and injury is greater in males than in females, due in part, to increased chemotaxis, the process of directed cell movement toward a chemical signal. The mechanisms governing sexual dimorphism in chemotaxis are not known. We hypothesized a role for the store-operated calcium entry (SOCE) pathway in regulating chemotaxis by modulating leading and trailing edge membrane dynamics. We measured the chemotactic response of bone marrow-derived macrophages migrating toward complement component 5a (C5a). Chemotactic ability was dependent on sex and inflammatory phenotype (M0, M1, and M2), and correlated with SOCE. Notably, females exhibited a significantly lower magnitude of SOCE than males. When we knocked out the SOCE gene, stromal interaction molecule 1 (STIM1), it eliminated SOCE and equalized chemotaxis across both sexes. Analysis of membrane dynamics at the leading and trailing edges showed that STIM1 influences chemotaxis by facilitating retraction of the trailing edge. Using BTP2 to pharmacologically inhibit SOCE mirrored the effects of STIM1 knockout, demonstrating a central role of STIM/Orai-mediated calcium signaling. Importantly, by monitoring the recruitment of adoptively transferred monocytes in an in vivo model of peritonitis, we show that increased infiltration of male monocytes during infection is dependent on STIM1. These data support a model in which STIM1-dependent SOCE is necessary and sufficient for mediating the sex difference in monocyte recruitment and macrophage chemotactic ability by regulating trailing edge dynamics.
Collapse
Affiliation(s)
- Adriana M Fresquez
- Physiology & Biophysics, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - James O Hogan
- Physiology & Biophysics, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - Patricia Rivera
- Physiology & Biophysics, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - Kristen M Patterson
- Microbiology and Immunology, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph M Reynolds
- Microbiology and Immunology, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA
| | - Carl White
- Physiology & Biophysics, Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, USA.
| |
Collapse
|
7
|
Valentine Y, Nikolajczyk BS. T cells in obesity-associated inflammation: The devil is in the details. Immunol Rev 2024; 324:25-41. [PMID: 38767210 PMCID: PMC11694249 DOI: 10.1111/imr.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.
Collapse
Affiliation(s)
- Yolander Valentine
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Tampé JF, Monni E, Palma-Tortosa S, Brogårdh E, Böiers C, Lindgren AG, Kokaia Z. Human monocyte subtype expression of neuroinflammation and regeneration-related genes is linked to age and sex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584323. [PMID: 38559207 PMCID: PMC10979900 DOI: 10.1101/2024.03.10.584323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Stroke is a leading cause of disability and the third cause of death. The immune system plays an essential role in post-stroke recovery. After an ischemic stroke, monocytes infiltrate the injured brain tissue and can exacerbate or mitigate the damage. Ischemic stroke is more prevalent in the aged population, and the aging brain exhibits an altered immune response. There are also sex disparities in ischemic stroke incidence, outcomes, and recovery, and these differences may be hormone-driven and determined by genetic and epigenetic factors. Here, we studied whether human peripheral blood monocyte subtype (classical, intermediate, and non-classical) expression of neuronal inflammation- and regeneration-related genes depends on age and sex. A FACS analysis of blood samples from 44 volunteers (male and female, aged 28 to 98) showed that in contrast to other immune cells, the proportion of natural killer cells increased in females. The proportion of B-cells decreased in both sexes with age, and subtypes of monocytes were not linked to age or sex. Gene expression analysis by qPCR identified several genes differentially correlating with age and sex within different monocyte subtypes. Interestingly, ANXA1 and CD36 showed a consistent increase with aging in all monocytes, specifically in intermediate (CD36) and intermediate and non-classical (ANXA1) subtypes. Other genes (IL-1β, S100A8, TNFα, CD64, CD33, TGFβ1, TLR8, CD91) were differentially changed in monocyte subtypes with increased aging. Most age-dependent gene changes were differentially expressed in female monocytes. Our data shed light on the nuanced interplay of age and sex in shaping the expression of inflammation- and regeneration-related genes within distinct monocyte subtypes. Understanding these dynamics could pave the way for targeted interventions and personalized approaches in post-stroke care, particularly for the aging population and individuals of different sexes.
Collapse
Affiliation(s)
- Juliane F. Tampé
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emanuela Monni
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emil Brogårdh
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Arne G. Lindgren
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Barros B, Paiva AM, Oliveira M, Alves S, Esteves F, Fernandes A, Vaz J, Slezakova K, Costa S, Teixeira JP, Morais S. Baseline data and associations between urinary biomarkers of polycyclic aromatic hydrocarbons, blood pressure, hemogram, and lifestyle among wildland firefighters. Front Public Health 2024; 12:1338435. [PMID: 38510349 PMCID: PMC10950961 DOI: 10.3389/fpubh.2024.1338435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Available literature has found an association between firefighting and pathologic pathways leading to cardiorespiratory diseases, which have been linked with exposure to polycyclic aromatic hydrocarbons (PAHs). PAHs are highlighted as priority pollutants by the European Human Biomonitoring Initiative in occupational and non-occupational contexts. Methods This cross-sectional study is the first to simultaneously characterize six creatinine-adjusted PAHs metabolites (OHPAHs) in urine, blood pressure, cardiac frequency, and hemogram parameters among wildland firefighters without occupational exposure to fire emissions (> 7 days), while exploring several variables retrieved via questionnaires. Results Overall, baseline levels for total OHPAHs levels were 2 to 23-times superior to the general population, whereas individual metabolites remained below the general population median range (except for 1-hydroxynaphthalene+1-hydroxyacenaphtene). Exposure to gaseous pollutants and/or particulate matter during work-shift was associated with a 3.5-fold increase in total OHPAHs levels. Firefighters who smoke presented 3-times higher total concentration of OHPAHs than non-smokers (p < 0.001); non-smoker females presented 2-fold lower total OHPAHs (p = 0.049) than males. 1-hydroxypyrene was below the recommended occupational biological exposure value (2.5 μg/L), and the metabolite of carcinogenic PAH (benzo(a)pyrene) was not detected. Blood pressure was above 120/80 mmHg in 71% of subjects. Firefighters from the permanent intervention team presented significantly increased systolic pressure than those who performed other functions (p = 0.034). Tobacco consumption was significantly associated with higher basophils (p = 0.01-0.02) and hematocrit (p = 0.03). No association between OHPAHs and blood pressure was found. OHPAHs concentrations were positively correlated with monocyte, basophils, large immune cells, atypical lymphocytes, and mean corpuscular volume, which were stronger among smokers. Nevertheless, inverse associations were observed between fluorene and pyrene metabolites with neutrophils and eosinophils, respectively, in non-smokers. Hemogram was negatively affected by overworking and lower physical activity. Conclusion This study suggests possible associations between urinary PAHs metabolites and health parameters in firefighters, that should be further assessed in larger groups.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Ana Margarida Paiva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, Bragança, Portugal
| | - Filipa Esteves
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, Bragança, Portugal
| | - Josiana Vaz
- CIMO, Instituto Politécnico de Bragança, Bragança, Centro de Investigação de Montanha Campus Santa Apolónia, Bragança, Portugal
- SusTEC, Instituto Politécnico de Bragança, Bragança, Sustec – Associate Laboratory for Sustainability and Technology in Inland Regions – Campus Santa Apolónia, Bragança, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
10
|
Simmons A, Mihalek O, Bimonte Nelson HA, Sirianni RW, Stabenfeldt SE. Acute brain injury and nanomedicine: sex as a biological variable. FRONTIERS IN BIOMATERIALS SCIENCE 2024; 3:1348165. [PMID: 39450372 PMCID: PMC11500709 DOI: 10.3389/fbiom.2024.1348165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Sex as a biological variable has been recognized for decades to be a critical aspect of the drug development process, as differences in drug pharmacology and toxicity in female versus male subjects can drive the success or failure of new therapeutics. These concepts in development of traditional drug systems have only recently begun to be applied for advancing nanomedicine systems that are designed for drug delivery or imaging in the central nervous system (CNS). This review provides a comprehensive overview of the current state of two fields of research - nanomedicine and acute brain injury-centering on sex as a biological variable. We highlight areas of each field that provide foundational understanding of sex as a biological variable in nanomedicine, brain development, immune response, and pathophysiology of traumatic brain injury and stroke. We describe current knowledge on female versus male physiology as well as a growing number of empirical reports that directly address sex as a biological variable in these contexts. In sum, the data make clear two key observations. First, the manner in which sex affects nanomedicine distribution, toxicity, or efficacy is important, complex, and depends on the specific nanoparticle system under considerations; second, although field knowledge is accumulating to enable us to understand sex as a biological variable in the fields of nanomedicine and acute brain injury, there are critical gaps in knowledge that will need to be addressed. We anticipate that understanding sex as a biological variable in the development of nanomedicine systems to treat acute CNS injury will be an important determinant of their success.
Collapse
Affiliation(s)
- Amberlyn Simmons
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Olivia Mihalek
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | | | - Rachael W. Sirianni
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
11
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Borgiani E, Nasello G, Ory L, Herpelinck T, Groeneveldt L, Bucher CH, Schmidt-Bleek K, Geris L. COMMBINI: an experimentally-informed COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse. Front Immunol 2023; 14:1231329. [PMID: 38130715 PMCID: PMC10733790 DOI: 10.3389/fimmu.2023.1231329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Bone fracture healing is a well-orchestrated but complex process that involves numerous regulations at different scales. This complexity becomes particularly evident during the inflammatory stage, as immune cells invade the healing region and trigger a cascade of signals to promote a favorable regenerative environment. Thus, the emergence of criticalities during this stage might hinder the rest of the process. Therefore, the investigation of the many interactions that regulate the inflammation has a primary importance on the exploration of the overall healing progression. In this context, an in silico model named COMMBINI (COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse) has been developed to investigate the mechano-biological interactions during the early inflammatory stage at the tissue, cellular and molecular levels. An agent-based model is employed to simulate the behavior of immune cells, inflammatory cytokines and fracture debris as well as their reciprocal multiscale biological interactions during the development of the early inflammation (up to 5 days post-injury). The strength of the computational approach is the capacity of the in silico model to simulate the overall healing process by taking into account the numerous hidden events that contribute to its success. To calibrate the model, we present an in silico immunofluorescence method that enables a direct comparison at the cellular level between the model output and experimental immunofluorescent images. The combination of sensitivity analysis and a Genetic Algorithm allows dynamic cooperation between these techniques, enabling faster identification of the most accurate parameter values, reducing the disparity between computer simulation and histological data. The sensitivity analysis showed a higher sensibility of the computer model to the macrophage recruitment ratio during the early inflammation and to proliferation in the late stage. Furthermore, the Genetic Algorithm highlighted an underestimation of macrophage proliferation by in vitro experiments. Further experiments were conducted using another externally fixated murine model, providing an independent validation dataset. The validated COMMBINI platform serves as a novel tool to deepen the understanding of the intricacies of the early bone regeneration phases. COMMBINI aims to contribute to designing novel treatment strategies in both the biological and mechanical domains.
Collapse
Affiliation(s)
- Edoardo Borgiani
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Gabriele Nasello
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Liesbeth Ory
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Tim Herpelinck
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Lisanne Groeneveldt
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Christian H. Bucher
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Eren N, Gerike S, Üsekes B, Peters O, Cosma NC, Hellmann-Regen J. Effects of autologous serum on TREM2 and APOE in a personalized monocyte-derived macrophage assay of late-onset Alzheimer's patients. Immun Ageing 2023; 20:52. [PMID: 37833781 PMCID: PMC10576307 DOI: 10.1186/s12979-023-00376-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Age-associated deterioration of the immune system contributes to a chronic low-grade inflammatory state known as "inflammaging" and is implicated in the pathogenesis of late-onset Alzheimer's disease (LOAD). Whether changes in the tissue environment caused by circulatory factors associated with aging may alter the innate immune response is unknown. Monocyte-derived macrophages (Mo-MФs) infiltrating the brain alongside microglia are postulated to play a modulatory role in LOAD and both express triggering receptor expressed on myeloid cells 2 (TREM2). Apolipoprotein E (APOE) acts as a ligand for TREM2, and their role in amyloid beta (Aβ) clearance highlights their importance in LOAD. However, the influence of the patient's own milieu (autologous serum) on the synthesis of TREM2 and APOE in infiltrating macrophages remains unknown. OBJECTIVES To functionally assess patient-specific TREM2 and APOE synthesis, we designed a personalized assay based on Mo-MФs using monocytes from LOAD patients and matched controls (CO). We assessed the influence of each participant's own milieu, by examining the effect of short- (1 day) and long- (10 days) term differentiation of the cells in the presence of the donor´s autologous serum (AS) into M1-, M2- or M0-macrophages. Additionally, sex differences and Aβ-uptake ability in short- and long-term differentiated Mo-MФs were assessed. RESULTS We showed a time-dependent increase in TREM2 and APOE protein levels in LOAD- and CO-derived cells. While AS did not differentially modulate TREM2 compared to standard fetal calf serum (FCS), AS decreased APOE levels in M2 macrophages but increased levels in M1 macrophages. Interestingly, higher levels of TREM2 and lower levels of APOE were detected in female- than in male- LOAD patients. Finally, we report decreased Aβ-uptake in long-term differentiated CO- and LOAD-derived cells, particularly in APOEε4(+) carriers. CONCLUSIONS We demonstrate for the first time the suitability of a personalized Mo-MФ cell culture-based assay for studying functional TREM2 and APOE synthesis in a patient's own aged milieu. Our strategy may thus provide a useful tool for future research on diagnostic and therapeutic aspects of personalized medicine.
Collapse
Affiliation(s)
- Neriman Eren
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Susanna Gerike
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Berk Üsekes
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Center for Mental Health (DZPG) Partner Site Berlin, Berlin, Germany
| | - Nicoleta-Carmen Cosma
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| |
Collapse
|
14
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Mikhailova L, Minchenko A, Soroko I, Khlusov I, Litvinova L. Adipocyte- and Monocyte-Mediated Vicious Circle of Inflammation and Obesity (Review of Cellular and Molecular Mechanisms). Int J Mol Sci 2023; 24:12259. [PMID: 37569635 PMCID: PMC10418857 DOI: 10.3390/ijms241512259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Monocytes play a key role in the development of metabolic syndrome, and especially obesity. Given the complex features of their development from progenitor cells, whose regulation is mediated by their interactions with bone marrow adipocytes, the importance of a detailed study of the heterogeneous composition of monocytes at the molecular and systemic levels becomes clear. Research argues for monocytes as indicators of changes in the body's metabolism and the possibility of developing therapeutic strategies to combat obesity and components of metabolic syndrome based on manipulations of the monocyte compound of the immune response. An in-depth study of the heterogeneity of bone-marrow-derived monocytes and adipocytes could provide answers to many questions about the pathogenesis of obesity and reveal their therapeutic potential.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Larisa Mikhailova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Anastasia Minchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Irina Soroko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
15
|
Li J, Ruggiero-Ruff RE, He Y, Qiu X, Lainez N, Villa P, Godzik A, Coss D, Nair MG. Sexual dimorphism in obesity is governed by RELMα regulation of adipose macrophages and eosinophils. eLife 2023; 12:e86001. [PMID: 37162190 PMCID: PMC10171862 DOI: 10.7554/elife.86001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Obesity incidence is increasing worldwide with the urgent need to identify new therapeutics. Sex differences in immune cell activation drive obesity-mediated pathologies where males are more susceptible to obesity comorbidities and exacerbated inflammation. Here, we demonstrate that the macrophage-secreted protein RELMα critically protects females against high-fat diet (HFD)-induced obesity. Compared to male mice, serum RELMα levels were higher in both control and HFD-fed females and correlated with frequency of adipose macrophages and eosinophils. RELMα-deficient females gained more weight and had proinflammatory macrophage accumulation and eosinophil loss in the adipose stromal vascular fraction (SVF), while RELMα treatment or eosinophil transfer rescued this phenotype. Single-cell RNA-sequencing of the adipose SVF was performed and identified sex and RELMα-dependent changes. Genes involved in oxygen sensing and iron homeostasis, including hemoglobin and lncRNA Gm47283/Gm21887, correlated with increased obesity, while eosinophil chemotaxis and response to amyloid-beta were protective. Monocyte-to-macrophage transition was also dysregulated in RELMα-deficient animals. Collectively, these studies implicate a RELMα-macrophage-eosinophil axis in sex-specific protection against obesity and uncover new therapeutic targets for obesity.
Collapse
Affiliation(s)
- Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Yuxin He
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Xinru Qiu
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California RiversideRiversideUnited States
| | - Nancy Lainez
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Pedro Villa
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| |
Collapse
|
16
|
Wang S, Singh M, Yang H, Morrell CN, Mohamad LA, Xu JJ, Nguyen T, Ture S, Tyrell A, Maggirwar SB, Schifitto G, Pang J. Monocyte-derived Dll4 is a novel contributor to persistent systemic inflammation in HIV patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537330. [PMID: 37131726 PMCID: PMC10153122 DOI: 10.1101/2023.04.18.537330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background In people living with HIV (PLWH) on combination antiretroviral therapy (cART), persistent systemic inflammation is a driving force for the progression of comorbidities, such as cardiovascular and cerebrovascular diseases. In this context, monocyte- and macrophage-related inflammation rather than T cell activation is a major cause of chronic inflammation. However, the underlying mechanism of how monocytes cause persistent systemic inflammation in PLWH is elusive. Methods and Results In vitro, we demonstrated that lipopolysaccharides (LPS) or tumor necrosis factor alpha (TNFα), induced a robust increase of Delta-like ligand 4 (Dll4) mRNA and protein expression in human monocytes and Dll4 secretion (extracellular Dll4, exDll4) from monocytes. Enhanced membrane-bound Dll4 (mDll4) expression in monocytes triggered Notch1 activation to promote pro-inflammatory factors expression. Dll4 silencing and inhibition of Nocth1 activation diminished the LPS or TNFα -induced inflammation. exDll4 releases in response to cytokines occurred in monocytes but not endothelial cells or T cells. In clinical specimens, we found that PLWH, both male and female, on cART, showed a significant increase in mDll4 expression, activation of Dll4-Notch1 signaling, and inflammatory markers in monocytes. Although there was no sex effect on mDII4 in PLWH, plasma exDll4 was significantly elevated in males but not females compared to HIV uninfected individuals. Furthermore, exDll4 plasma levels paralleled with monocytes mDll4 in male PLWH. Circulating exDll4 was also positively associated with pro-inflammatory monocytes phenotype and negatively associated with classic monocytes phenotype in male PLWH. Conclusion Pro-inflammatory stimuli increase Dll4 expression and Dll4-Notch1 signaling activation in monocytes and enhance monocyte proinflammatory phenotype, contributing to persistent systemic inflammation in male and female PLWH. Therefore, monocyte mDll4 could be a potential biomarker and therapeutic target of systemic inflammation. Plasma exDll4 may also play an additional role in systemic inflammation but primarily in men.
Collapse
|
17
|
Nance SA, Muir L, Delproprosto J, Lumeng CN. MSR1 is not required for obesity-associated inflammation and insulin resistance in mice. Sci Rep 2023; 13:2651. [PMID: 36788340 PMCID: PMC9927046 DOI: 10.1038/s41598-023-29736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity induces a chronic inflammatory state associated with changes in adipose tissue macrophages (ATMs). Macrophage scavenger receptor 1 (MSR1) has been implicated in the regulation of adipose tissue inflammation and diabetes pathogenesis; however, reports have been mixed on the contribution of MSR1 in obesity and glucose intolerance. We observed increased MSR1 expression in VAT of obese diabetic individuals compared to non-diabetic and single nuclear RNA sequencing identified macrophage-specific expression of MSR1 in human adipose tissue. We examined male Msr1-/- (Msr1KO) and WT controls and observed protection from obesity and AT inflammation in non-littermate Msr1KO mice. We then evaluated obese littermate Msr1+/- (Msr1HET) and Msr1KO mice. Both Msr1KO mice and Msr1HET mice became obese and insulin resistant when compared to their normal chow diet counterparts, but there was no Msr1-dependent difference in body weight, glucose metabolism, or insulin resistance. Flow cytometry revealed no significant differences between genotypes in ATM subtypes or proliferation in male and female mice. We observed increased frequency of proliferating ATMs in obese female compared to male mice. Overall, we conclude that while MSR1 is a biomarker of diabetes status in human adipose tissue, in mice Msr1 is not required for obesity-associated insulin resistance or ATM accumulation.
Collapse
Affiliation(s)
- Sierra A Nance
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Lindsey Muir
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer Delproprosto
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Li J, Ruggiero-Ruff RE, He Y, Qiu X, Lainez NM, Villa PA, Godzik A, Coss D, Nair MG. Sexual dimorphism in obesity is governed by RELMα regulation of adipose macrophages and eosinophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523880. [PMID: 36711654 PMCID: PMC9882128 DOI: 10.1101/2023.01.13.523880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Obesity incidence is increasing worldwide with the urgent need to identify new therapeutics. Sex differences in immune cell activation drive obesity-mediated pathologies where males are more susceptible to obesity co-morbidities and exacerbated inflammation. Here, we demonstrate that the macrophage-secreted protein RELMα critically protects females against high fat diet-induced obesity. Compared to male mice, RELMα levels were elevated in both control and high fat dietfed females and correlated with adipose macrophages and eosinophils. RELMα-deficient females gained more weight and had pro-inflammatory macrophage accumulation and eosinophil loss, while both RELMα treatment and eosinophil transfer rescued this phenotype. Single cell RNA-sequencing of the adipose stromal vascular fraction was performed and identified sex and RELMα-dependent changes. Genes involved in oxygen sensing and iron homeostasis, including hemoglobin and lncRNA Gm47283, correlated with increased obesity, while eosinophil chemotaxis and response to amyloid-beta were protective. Monocyte-to-macrophage transition was also dysregulated in RELMα-deficient animals. Collectively, these studies implicate a RELMα-macrophage-eosinophil axis in sex-specific protection against obesity and uncover new therapeutic targets for obesity.
Collapse
Affiliation(s)
- Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Rebecca E. Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Yuxin He
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Xinru Qiu
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, CA, USA
| | - Nancy M. Lainez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Pedro A. Villa
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| |
Collapse
|