1
|
Kumari S, Srilatha M, Nagaraju GP. Effect of Gut Dysbiosis on Onset of GI Cancers. Cancers (Basel) 2024; 17:90. [PMID: 39796717 PMCID: PMC11720164 DOI: 10.3390/cancers17010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Dysbiosis in the gut microbiota plays a significant role in GI cancer development by influencing immune function and disrupting metabolic functions. Dysbiosis can drive carcinogenesis through pathways like immune dysregulation and the release of carcinogenic metabolites, and altered metabolism, genetic instability, and pro-inflammatory signalling, contributing to GI cancer initiation and progression. Helicobacter pylori infection and genotoxins released from dysbiosis, lifestyle and dietary habits are other factors that contribute to GI cancer development. Emerging diagnostic and therapeutic approaches show promise in colorectal cancer treatment, including the multitarget faecal immunochemical test (mtFIT), standard FIT, and faecal microbiota transplantation (FMT) combined with PD-1 inhibitors. We used search engine databases like PubMed, Scopus, and Web of Science. This review discusses the role of dysbiosis in GI cancer onset and explores strategies such as FMT, probiotics, and prebiotics to enhance the immune response and improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to Be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Division of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
2
|
Fang L, Ning J. Recent advances in gut microbiota and thyroid disease: pathogenesis and therapeutics in autoimmune, neoplastic, and nodular conditions. Front Cell Infect Microbiol 2024; 14:1465928. [PMID: 39776440 PMCID: PMC11703873 DOI: 10.3389/fcimb.2024.1465928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
This review synthesizes key findings from the past five years of experimental literature, elucidating the gut microbiome's significant influence on the pathogenesis of thyroid diseases. A pronounced shift in the gut microbiota composition has been consistently observed, with a significant reduction in bacteria such as Bifidobacterium, Bacillaceae, Megamonas, and Clostridium, and a notable increase in bacteria, including Bacteroides, Proteobacteria, Actinobacteria, Desulfobacterota, and Klebsiella. These alterations are implicated in the development and progression of thyroid diseases by impacting metabolic pathways including bile acid and cytokine production, including a decrease in short-chain fatty acids (SCFAs) that are crucial for immune regulation and thyroid hormone homeostasis. The review also highlights the therapeutic implications of probiotics in managing thyroid conditions. Evidence suggests that probiotic adjunct therapy can modulate the gut microbiota, leading to improvements in thyroid function and patient outcomes. The use of specific probiotic strains, such as Lactiplantibacillus plantarum 299v and Bifidobacterium longum, has demonstrated potential in enhancing the effects of traditional treatments and possibly restoring a balanced gut microbiota. Notably, fecal microbiota transplantation (FMT) has emerged as a promising intervention in Graves' Disease (GD), demonstrating the potential to recalibrate the gut microbiota, thereby influencing neurotransmitters and trace elements via the gut-brain and gut-thyroid axes. The integration of microbiome-based therapies with traditional treatments is anticipated to usher in a new era of personalized thyroid disease management, offering a more nuanced approach to patient care. By integrating this body of work, the review offers an innovative perspective on the gut microbiome's broad impact on thyroid diseases and the therapeutic applications of probiotics.
Collapse
Affiliation(s)
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Yan K, Sun X, Fan C, Wang X, Yu H. Unveiling the Role of Gut Microbiota and Metabolites in Autoimmune Thyroid Diseases: Emerging Perspectives. Int J Mol Sci 2024; 25:10918. [PMID: 39456701 PMCID: PMC11507114 DOI: 10.3390/ijms252010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune thyroid diseases (AITDs) are among the most prevalent organ-specific autoimmune disorders, with thyroid hormones playing a pivotal role in the gastrointestinal system's structure and function. Emerging evidence suggests a link between AITDs and the gut microbiome, which is a diverse community of organisms that are essential for digestion, absorption, intestinal homeostasis, and immune defense. Recent studies using 16S rRNA and metagenomic sequencing of fecal samples from AITD patients have revealed a significant correlation between a gut microbiota imbalance and the severity of AITDs. Progress in animal models of autoimmune diseases has shown that intervention in the gut microbiota can significantly alter the disease severity. The gut microbiota influences T cell subgroup differentiation and modulates the pathological immune response to AITDs through mechanisms involving short-chain fatty acids (SCFAs), lipopolysaccharides (LPSs), and mucosal immunity. Conversely, thyroid hormones also influence gut function and microbiota composition. Thus, there is a bidirectional relationship between the thyroid and the gut ecosystem. This review explores the pathogenic mechanisms of the gut microbiota and its metabolites in AITDs, characterizes the gut microbiota in Graves' disease (GD) and Hashimoto's thyroiditis (HT), and examines the interactions between the gut microbiota, thyroid hormones, T cell differentiation, and trace elements. The review aims to enhance understanding of the gut microbiota-thyroid axis and proposes novel approaches to mitigate AITD severity through gut microbiota modulation.
Collapse
Affiliation(s)
- Kai Yan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Chenxi Fan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| |
Collapse
|
4
|
Tian S, Ding T, Li H. Oral microbiome in human health and diseases. MLIFE 2024; 3:367-383. [PMID: 39359681 PMCID: PMC11442140 DOI: 10.1002/mlf2.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 10/04/2024]
Abstract
The oral cavity contains the second-largest microbiota in the human body. The cavity's anatomically and physiologically diverse niches facilitate a wide range of symbiotic bacteria living at distinct oral sites. Consequently, the oral microbiota exhibits site specificity, with diverse species, compositions, and structures influenced by specific aspects of their placement. Variations in oral microbiota structure caused by changes in these influencing factors can impact overall health and lead to the development of diseases-not only in the oral cavity but also in organs distal to the mouth-such as cancer, cardiovascular disease, and respiratory disease. Conversely, diseases can exacerbate the imbalance of the oral microbiota, creating a vicious cycle. Understanding the heterogeneity of both the oral microbiome and individual humans is important for investigating the causal links between the oral microbiome and diseases. Additionally, understanding the intricacies of the oral microbiome's composition and regulatory factors will help identify the potential causes of related diseases and develop interventions to prevent and treat illnesses in this domain. Therefore, turning to the extant research in this field, we systematically review the relationship between oral microbiome dynamics and human diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University) Ministry of Education, China Guangzhou China
| | - Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| |
Collapse
|
5
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
6
|
Hu S, Tang C, Wang L, Feng F, Li X, Sun M, Yao L. Causal relationship between gut microbiota and differentiated thyroid cancer: a two-sample Mendelian randomization study. Front Oncol 2024; 14:1375525. [PMID: 38737897 PMCID: PMC11082393 DOI: 10.3389/fonc.2024.1375525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Background The gut microbiota has been significantly associated with differentiated thyroid cancer (DTC). However, the causal relationship between the gut microbiota and DTC remains unexplored. Methods Genome-wide association study (GWAS) summary databases were utilized to select exposures and outcomes. The Mendelian randomization (MR) method was employed to investigate the causal relationship between the gut microbiota and DTC. A sensitivity analysis was performed to assess the reliability of the findings. Results Four bacterial traits were associated with the risk of DTC: Class Mollicutes [odds ratio (OR) = 10.953, 95% confidence interval (95% CI): 2.333-51.428, p = 0.002], Phylum Tenericutes (OR = 10.953, 95% CI: 2.333-51.428, p = 0.002), Genus Eggerthella (OR = 3.219, 95% CI: 1.033-10.024, p = 0.044), and Order Rhodospirillales (OR = 2.829, 95% CI: 1.096-7.299, p = 0.032). The large 95% CI range for the Class Mollicutes and the Phylum Tenericutes may be attributed to the small sample size. Additionally, four other bacterial traits were negatively associated with DTC: Genus Eubacterium fissicatena group (OR = 0.381, 95% CI: 0.148-0.979, p = 0.045), Genus Lachnospiraceae UCG008 (OR = 0.317, 95% CI: 0.125-0.801, p = 0.015), Genus Christensenellaceae R-7 group (OR = 0.134, 95% CI: 0.020-0.886, p = 0.037), and Genus Escherichia Shigella (OR = 0.170, 95% CI: 0.037-0.769, p = 0.021). Conclusion These findings contribute to our understanding of the pathological mechanisms underlying DTC and provide novel insights for the clinical treatment of DTC.
Collapse
Affiliation(s)
- Shaojun Hu
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Chuangang Tang
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, China
| | - Ling Wang
- Department of Critical Care Medicine, The People’s Hospital of Huaiyin, Jinan, China
| | - Fang Feng
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Xiaoxin Li
- Department of Pathology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, China
| | - Mingyu Sun
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, China
| | - Lijun Yao
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
7
|
Fang L, Tuohuti A, Cai W, Chen X. Changes in the nasopharyngeal and oropharyngeal microbiota in pediatric obstructive sleep apnea before and after surgery: a prospective study. BMC Microbiol 2024; 24:79. [PMID: 38459431 PMCID: PMC10921815 DOI: 10.1186/s12866-024-03230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE To explore the changes and potential mechanisms of microbiome in different parts of the upper airway in the development of pediatric OSA and observe the impact of surgical intervention on oral microbiome for pediatric OSA. METHODS Before adeno-tonsillectomy, we collected throat swab samples from different parts of the oropharynx and nasopharynx of 30 OSA patients and 10 non-OSA patients and collected throat swab samples from the oropharynx of the above patients one month after the adeno-tonsillectomy. The 16 S rRNA V3-V4 region was sequenced to identify the microbial communities. The correlation analysis was conducted based on clinical characteristics. RESULTS There was a significant difference of alpha diversity in different parts of the upper airway of pediatric OSA, but this difference was not found in children with non-OSA. Beta diversity was significantly different between non-OSA and pediatric OSA. At the genus level, the composition of flora in different parts is different between non-OSA and pediatric OSA. The correlation analysis revealed that the relative abundance of Neisseria was significantly correlated with obstructive apnea hypopnea index. Furthermore, the functional prediction revealed that pathways related to cell proliferation and material metabolism were significantly different between non-OSA and pediatric OSA. Besides, the adeno-tonsillectomy has minimal impact on oral microbiota composition in short term. CONCLUSION The changes in upper airway microbiome are highly associated with pediatric OSA. The relative abundance of some bacteria was significantly different between OSA and non-OSA. These bacteria have the potential to become new diagnostic and early warning biomarkers.
Collapse
Affiliation(s)
- Lucheng Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aikebaier Tuohuti
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanyue Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Roy R, Singh SK. The Microbiome Modulates the Immune System to Influence Cancer Therapy. Cancers (Basel) 2024; 16:779. [PMID: 38398170 PMCID: PMC10886470 DOI: 10.3390/cancers16040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiota composition can affect the tumor microenvironment and its interaction with the immune system, thereby having implications for treatment predictions. This article reviews the studies available to better understand how the gut microbiome helps the immune system fight cancer. To describe this fact, different mechanisms and approaches utilizing probiotics to improve advancements in cancer treatment will be discussed. Moreover, not only calorie intake but also the variety and quality of diet can influence cancer patients' immunotherapy treatment because dietary patterns can impair immunological activities either by stimulating or suppressing innate and adaptive immunity. Therefore, it is interesting and critical to understand gut microbiome composition as a biomarker to predict cancer immunotherapy outcomes and responses. Here, more emphasis will be given to the recent development in immunotherapies utilizing microbiota to improve cancer therapies, which is beneficial for cancer patients.
Collapse
Affiliation(s)
- Ruchi Roy
- UICentre for Drug Discovery, The University of Illinois, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Virili C, Stramazzo I, Bagaglini MF, Carretti AL, Capriello S, Romanelli F, Trimboli P, Centanni M. The relationship between thyroid and human-associated microbiota: A systematic review of reviews. Rev Endocr Metab Disord 2024; 25:215-237. [PMID: 37824030 PMCID: PMC10808578 DOI: 10.1007/s11154-023-09839-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
In recent years, a growing number of studies have examined the relationship between thyroid pathophysiology and intestinal microbiota composition. The reciprocal influence between these two entities has been proven so extensive that some authors coined the term "gut-thyroid axis". However, since some papers reported conflicting results, several aspects of this correlation need to be clarified. This systematic review was conceived to achieve more robust information about: 1)the characteristics of gut microbiota composition in patients with the more common morphological, functional and autoimmune disorders of the thyroid; 2)the influence of gut microbial composition on micronutrients that are essential for the maintenance of thyroid homeostasis; 3)the effect of probiotics, prebiotics and synbiotics, some of the most popular over-the-counter products, on thyroid balance; 4)the opportunity to use specific dietary advice. The literature evaluation was made by three authors independently. A five steps strategy was a priori adopted. After duplicates removal, 1106 records were initially found and 38 reviews were finally included in the analysis. The systematic reviews of reviews found that: 1) some significant variations characterize the gut microbiota composition in patients with thyroid disorders. However, geographical clustering of most of the studies prevents drawing definitive conclusions on this topic; 2) the available knowledge about the effect of probiotics and synbiotics are not strong enough to suggest the routine use of these compounds in patients with thyroid disorders; 3) specific elimination nutrition should not be routine suggested to patients, which, instead have to be checked for possible micronutrients and vitamins deficiency, often owed to gastrointestinal autoimmune comorbidities.
Collapse
Affiliation(s)
- Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza" University of Rome, Corso Della Repubblica 79, Latina, Italy.
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy.
| | | | - Maria Flavia Bagaglini
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy
- Department of Experimental Medicine, Sapienza" University of Rome, Rome, Italy
| | - Anna Lucia Carretti
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy
- Department of Experimental Medicine, Sapienza" University of Rome, Rome, Italy
| | | | - Francesco Romanelli
- Department of Experimental Medicine, Sapienza" University of Rome, Rome, Italy
| | - Pierpaolo Trimboli
- Clinic for Endocrinology and Diabetology, Lugano Regional Hospital, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana (USI), Lugano, Switzerland
| | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza" University of Rome, Corso Della Repubblica 79, Latina, Italy
- Endocrinology Unit, Santa Maria Goretti Hospital, Latina, Italy
| |
Collapse
|
10
|
Zhang W, Jia Q, Han M, Zhang X, Guo L, Sun S, Yin W, Bo C, Han R, Sai L. Bifidobacteria in disease: from head to toe. Folia Microbiol (Praha) 2024; 69:1-15. [PMID: 37644256 DOI: 10.1007/s12223-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bifidobacteria as a strictly anaerobic gram-positive bacteria, is widely distributed in the intestine, vagina and oral cavity, and is one of the first gut flora to colonize the early stages of life. Intestinal flora is closely related to health, and dysbiosis of intestinal flora, especially Bifidobacteria, has been found in a variety of diseases. Numerous studies have shown that in addition to maintaining intestinal homeostasis, Bifidobacteria may be involved in diseases covering all parts of the body, including the nervous system, respiratory system, genitourinary system and so on. This review collects evidence for the variation of Bifidobacteria in typical diseases among various systems, provides mild and effective therapeutic options for those diseases that are difficult to cure, and moves Bifidobacteria from basic research to further clinical applications.
Collapse
Affiliation(s)
- Weiliang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Limin Guo
- Rongcheng Municipal Hospital of Traditional Chinese Medicine, Rongcheng, Shandong, China
| | - Shichao Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine Doctoral candidate Class of 2022, Jinan, Shandong, China
| | - Wenhui Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ru Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
11
|
Shu Q, Kang C, Li J, Hou Z, Xiong M, Wang X, Peng H. Effect of probiotics or prebiotics on thyroid function: A meta-analysis of eight randomized controlled trials. PLoS One 2024; 19:e0296733. [PMID: 38206993 PMCID: PMC10783727 DOI: 10.1371/journal.pone.0296733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Microbiome-directed therapies are increasingly utilized to optimize thyroid function in both healthy individuals and those with thyroid disorders. However, recent doubts have been raised regarding the efficacy of probiotics, prebiotics, and synbiotics in improving thyroid function. This systematic review aimed to investigate the potential relationship between probiotics/prebiotics and thyroid function by analyzing the impact on thyroid hormone levels. METHODS We conducted a comprehensive systematic review and meta-analysis of randomized controlled trials that investigated the effects of probiotics, prebiotics, and synbiotics on free triiodothyronine (fT3), free thyroxine (fT4), thyroid stimulating hormone (TSH), and thyroid stimulating hormone receptor antibody (TRAb) levels. We searched for articles from PubMed, Scopus, Web of Science, and Embase up until April 1st, 2023, without any language restriction. Quantitative data analysis was performed using a random-effects model, with standardized mean difference (SMD) and 95% confidence interval as summary statistics. The methods and results were reported according to the PRISMA2020 statement. RESULTS A total of eight articles were included in this review. The meta-analysis showed no significant alterations in TSH (SMD: -0.01, 95% CI: -0.21, 0.20, P = 0.93; I2: 0.00%), fT4 (SMD: 0.04, 95% CI: -0.29, 0.21, P = 0.73; I2: 0.00%) or fT3 (SMD: 0.45, 95% CI: -0.14, 1.03, P = 0.43; I2: 78.00%), while a significant reduction in TRAb levels was observed (SMD: -0.85, 95% CI: -1.54, -0.15, P = 0.02; I2: 18.00%) following probiotics/prebiotics supplementation. No indication of publication bias was found. CONCLUSIONS Probiotics/prebiotics supplementation does not influence thyroid hormone levels, but may modestly reduce TRAb levels in patients with Graves' disease.
Collapse
Affiliation(s)
- Qinxi Shu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Chao Kang
- Department of Nutriology of the General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Jiaxin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zhenzhu Hou
- Department of Emergency Medicine, No. 922 Hospital of the Joint Service Support Force of the PLA, Hengyang, Hunan Province, China
| | - Minfen Xiong
- Department of Critical Care Medicine, No. 922 Hospital of the Joint Service Support Force of the PLA, Hengyang, Hunan Province, China
| | - Xingang Wang
- Department of Health Medicine, No. 922 Hospital of the Joint Service Support Force of the PLA, Hengyang, Hunan Province, China
| | - Hongyan Peng
- Department of Critical Care Medicine, No. 922 Hospital of the Joint Service Support Force of the PLA, Hengyang, Hunan Province, China
| |
Collapse
|
12
|
Zhu F, Zhang P, Liu Y, Bao C, Qian D, Ma C, Li H, Yu T. Mendelian randomization suggests a causal relationship between gut dysbiosis and thyroid cancer. Front Cell Infect Microbiol 2023; 13:1298443. [PMID: 38106470 PMCID: PMC10722196 DOI: 10.3389/fcimb.2023.1298443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Background Alterations in gut microbiota composition and function have been linked to the development and progression of thyroid cancer (TC). However, the exact nature of the causal relationship between them remains uncertain. Methods A bidirectional two-sample Mendelian randomization (TSMR) analysis was conducted to assess the causal connection between gut microbiota (18,340 individuals) and TC (6,699 cases combined with 1,613,655 controls) using data from a genome-wide association study (GWAS). The primary analysis used the inverse-variance weighted (IVW) method to estimate the causal effect, with supplementary approaches including the weighted median, weighted mode, simple mode, and MR-Egger. Heterogeneity and pleiotropy were assessed using the Cochrane Q test, MR-Egger intercept test, and MR-PRESSO global test. A reverse TSMR analysis was performed to explore reverse causality. Results This study identified seven microbial taxa with significant associations with TC. Specifically, the genus Butyrivibrio (OR: 1.127, 95% CI: 1.008-1.260, p = 0.036), Fusicatenibacter (OR: 1.313, 95% CI: 1.066-1.618, p = 0.011), Oscillospira (OR: 1.240, 95% CI: 1.001-1.536, p = 0.049), Ruminococcus2 (OR: 1.408, 95% CI: 1.158-1.711, p < 0.001), Terrisporobacter (OR: 1.241, 95% CI: 1.018-1.513, p = 0.032) were identified as risk factors for TC, while The genus Olsenella (OR: 0.882, 95% CI: 0.787-0.989, p = 0.031) and Ruminococcaceae UCG004 (OR: 0.719, 95% CI: 0.566-0.914, p = 0.007) were associated with reduced TC risk. The reverse MR analysis found no evidence of reverse causality and suggested that TC may lead to increased levels of the genus Holdemanella (β: 0.053, 95% CI: 0.012~0.094, p = 0.011) and decreased levels of the order Bacillales (β: -0.075, 95% CI: -0.143~-0.006, p = 0.033). No significant bias, heterogeneity, or pleiotropy was detected in this study. Conclusion This study suggests a potential causal relationship between gut microbiota and TC, providing new insights into the role of gut microbiota in TC. Further research is needed to explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ying Liu
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Chongchan Bao
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Dong Qian
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Hua Li
- Department of General Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Liu X, Liu J, Zhang T, Wang Q, Zhang H. Complex relationship between gut microbiota and thyroid dysfunction: a bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1267383. [PMID: 38027113 PMCID: PMC10667917 DOI: 10.3389/fendo.2023.1267383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Many studies have reported the link between gut microbiota and thyroid dysfunction. However, the causal effect of gut microbiota on thyroid dysfunction and the changes in gut microbiota after the onset of thyroid dysfunction are not clear. Methods A two-sample Mendelian randomization (MR) study was used to explore the complex relationship between gut microbiota and thyroid dysfunction. Data on 211 bacterial taxa were obtained from the MiBioGen consortium, and data on thyroid dysfunction, including hypothyroidism, thyroid-stimulating hormone alteration, thyroxine deficiency, and thyroid peroxidase antibodies positivity, were derived from several databases. Inverse variance weighting (IVW), weighted median, MR-Egger, weighted mode, and simple mode were applied to assess the causal effects of gut microbiota on thyroid dysfunction. Comprehensive sensitivity analyses were followed to validate the robustness of the results. Finally, a reverse MR study was conducted to explore the alteration of gut microbiota after hypothyroidism onset. Results Our bidirectional two-sample MR study revealed that the genera Intestinimonas, Eubacterium brachy group, Ruminiclostridium5, and Ruminococcaceae UCG004 were the risk factors for decreased thyroid function, whereas the genera Bifidobacterium and Lachnospiraceae UCG008 and phyla Actinobacteria and Verrucomicrobia were protective. The abundance of eight bacterial taxa varied after the onset of hypothyroidism. Sensitivity analysis showed that no heterogeneity or pleiotropy existed in the results of this study. Conclusion This novel MR study systematically demonstrated the complex relationship between gut microbiota and thyroid dysfunction, which supports the selection of more targeted probiotics to maintain thyroid-gut axis homeostasis and thus to prevent, control, and reverse the development of thyroid dysfunction.
Collapse
Affiliation(s)
| | | | | | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Nie Q, Wan X, Tao H, Yang Q, Zhao X, Liu H, Hu J, Luo Y, Shu T, Geng R, Gu Z, Fan F, Liu Z. Multi-function screening of probiotics to improve oral health and evaluating their efficacy in a rat periodontitis model. Front Cell Infect Microbiol 2023; 13:1261189. [PMID: 38029238 PMCID: PMC10660970 DOI: 10.3389/fcimb.2023.1261189] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The oral cavity is the second most microbially rich region of the human body, and many studies have shown that there is a strong association between microorganisms and oral health. Some pathogenic bacteria produce biofilms and harmful metabolites in the mouth that may cause oral problems such as oral malodor, periodontitis, and dental caries. Altering the oral microbiota by using probiotics may alleviate oral health problems. Thus, using multi-function screening, we aimed to identify probiotics that can significantly improve oral health. The main parameters were the inhibition of pathogenic bacteria growth, inhibition of biofilm formation, reduction in the production of indole, H2S, and NH3 metabolites that cause halitosis, increase in the production of H2O2 to combat harmful bacteria, and co-aggregation with pathogens to prevent their adhesion and colonization in the oral cavity. Tolerance to cholic acid and choline was also assessed. Bifidobacterium animalis ZK-77, Lactobacillus salivarius ZK-88, and Streptococcus salivarius ZK-102 had antibacterial activity and inhibited biofilm production to prevent caries. They also improved the oral malodor parameter, H2S, NH3, and indole production. The selected probiotics (especially L. salivarius ZK-88) alleviated the inflammation in the oral cavity of rats with periodontitis. The analysis of the gingival crevicular fluid microbiome after probiotic intervention showed that B. animalis ZK-77 likely helped to restore the oral microbiota and maintain the oral microecology. Next, we determined the best prebiotics for each candidate probiotic in order to obtain a formulation with improved effects. We then verified that a probiotics/prebiotic combination (B. animalis ZK-77, L. salivarius ZK-88, and fructooligosaccharides) significantly improved halitosis and teeth color in cats. Using whole-genome sequencing and acute toxicity mouse experiments involving the two probiotics, we found that neither probiotic had virulence genes and they had no significant effects on the growth or development of mice, indicating their safety. Taking the results together, B. animalis ZK-77 and L. salivarius ZK-88 can improve oral health, as verified by in vivo and in vitro experiments. This study provides a reference for clinical research and also provides new evidence for the oral health benefits of probiotics.
Collapse
Affiliation(s)
- Qingqing Nie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Tao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyang Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Haixia Liu
- Huayuan Biotechnology Institute, Beijing, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Yanan Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Shu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Geng
- Huayuan Biotechnology Institute, Beijing, China
| | - Zhijing Gu
- Huayuan Biotechnology Institute, Beijing, China
| | - Fengkai Fan
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Gorini F, Tonacci A. Tumor Microbial Communities and Thyroid Cancer Development-The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants (Basel) 2023; 12:1898. [PMID: 37891977 PMCID: PMC10604861 DOI: 10.3390/antiox12101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid cancer (TC), the most frequent malignancy of the endocrine system, has recorded an increasing incidence in the last decades. The etiology of TC remains at least partly unknown and, among modifiable risk factors, the gut microbiota and dietary nutrients (vitamins, essential microelements, polyphenols, probiotics) have been recognized to not only influence thyroid function, but exert critical effects on TC development and progression. Recent discoveries on the existence of tumor microbiota also in the TC microenvironment provide further evidence for the essential role of tumor microorganisms in TC etiology and severity, as well as acting as prognostic markers and as a potential target of adjuvant care in the treatment of TC patients. Therefore, in this review, we summarize current knowledge on the relationship of the tumor microbiome with the clinical tumor characteristics and TC progression, also illustrating the molecular mechanisms underlying this association, and how antioxidant nutrients may be used as a novel strategy to both control gut health and reduce the risk for TC. Furthermore, we discuss how new technologies might be exploited for the development of new foods with high nutritional values, antioxidant capability, and even attractiveness to the individual in terms of sensory and emotional features.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
16
|
Kun Y, Xiaodong W, Haijun W, Xiazi N, Dai Q. Exploring the oral-gut microbiota during thyroid cancer: Factors affecting the thyroid functions and cancer development. Food Sci Nutr 2023; 11:5657-5674. [PMID: 37823092 PMCID: PMC10563736 DOI: 10.1002/fsn3.3538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 10/13/2023] Open
Abstract
Thyroid cancer (TC) is categorized into papillary, follicular, medullary, and anaplastic. The TC is increasing in several countries, including China, the United States, the United Kingdom, Canada, France, Australia, Germany, Japan, Spain, and Italy. Thus, this review comprehensively covers the factors that affect thyroid gland function, TC types, risk factors, and symptoms. Lifestyle factors (such as nutrient consumption and smoking) and pollutants (such as chemicals and heavy metals) increased the thyroid-stimulating hormone (TSH) levels which are directly related to TC prevalence. The conventional and recent TC treatments are also highlighted. The role of the oral and gut microbiota as well as the application of probiotics on TC are also discussed. The variations in the composition of oral and gut microbes influence the thyroid function indirectly through alteration in metabolites (such as short-chain fatty acids) that are eminent for cellular energy metabolism. Maintenance of healthy gut and oral microbiota can help in regulating thyroid function by regulating iodine uptake. Oral or gut microbial dysbiosis can be considered as an early diagnosis factor or TC marker. High TSH during TC can increase the oral microbial diversity while disrupting the high ratio of Firmicutes and Bacteroidetes in the gut. Supplementation of probiotics as an adjuvant in TC treatment is beneficial. However, needs more extensive research to explore the direct effect of probiotics on thyroid function.
Collapse
Affiliation(s)
- Yao Kun
- Department of Nuclear MedicineGansu Provincial HospitalLanzhouChina
| | - Wei Xiaodong
- Emergency Department of Gansu Provincial HospitalLanzhouChina
| | - Wang Haijun
- Department of Nuclear MedicineGansu Provincial HospitalLanzhouChina
| | - Nie Xiazi
- Department of GynecologyGansu Provincial HospitalLanzhouChina
| | - Qiang Dai
- Department of RespiratoryGansu Provincial HospitalLanzhouChina
| |
Collapse
|
17
|
Bazeli J, Banikazemi Z, Hamblin MR, Sharafati Chaleshtori R. Could probiotics protect against human toxicity caused by polystyrene nanoplastics and microplastics? Front Nutr 2023; 10:1186724. [PMID: 37492595 PMCID: PMC10363603 DOI: 10.3389/fnut.2023.1186724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Nanoplastics (NPs) and microplastics (MPs) made of polystyrene (PS) can be toxic to humans, especially by ingestion of plastic particles. These substances are often introduced into the gastrointestinal tract, where they can cause several adverse effects, including disturbances in intestinal flora, mutagenicity, cytotoxicity, reproductive toxicity, neurotoxicity, and exacerbated oxidative stress. Although there are widespread reports of the protective effects of probiotics on the harm caused by chemical contaminants, limited information is available on how these organisms may protect against PS toxicity in either humans or animals. The protective effects of probiotics can be seen in organs, such as the gastrointestinal tract, reproductive tract, and even the brain. It has been shown that both MPs and NPs could induce microbial dysbiosis in the gut, nose and lungs, and probiotic bacteria could be considered for both prevention and treatment. Furthermore, the improvement in gut dysbiosis and intestinal leakage after probiotics consumption may reduce inflammatory biomarkers and avoid unnecessary activation of the immune system. Herein, we show probiotics may overcome the toxicity of polystyrene nanoplastics and microplastics in humans, although some studies are required before any clinical recommendations can be made.
Collapse
Affiliation(s)
- Javad Bazeli
- Department of Medical Emergencies, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Inchingolo AM, Malcangi G, Piras F, Palmieri G, Settanni V, Riccaldo L, Morolla R, Buongiorno S, de Ruvo E, Inchingolo AD, Mancini A, Inchingolo F, Dipalma G, Benagiano S, Tartaglia GM, Patano A. Precision Medicine on the Effects of Microbiota on Head-Neck Diseases and Biomarkers Diagnosis. J Pers Med 2023; 13:933. [PMID: 37373922 DOI: 10.3390/jpm13060933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Precision medicine using highly precise technologies and big data has produced personalised medicine with rapid and reliable diagnoses and targeted therapies. The most recent studies have directed precision medicine into the study of tumours. The application of precision medicine in the oral microbiota can be used both in the field of prevention and treatment in the strictly dental field. This article aims to evaluate the interaction between microbiota and oral cancer and the presence of biomarkers as risk predictors. MATERIALS AND METHODS A literature search of PubMed, Scopus, and Web of Science was performed analysing the various interactions between microorganisms, biomarkers, and oral cancer. RESULTS After screening processes, 21 articles were selected for qualitative analysis. CONCLUSION The correlation between oral diseases/cancers and changes in the microbiota explains the increasing utility of precision medicine in enhancing diagnosis and adapting treatment on the individual components of the microbiota. Diagnosing and treating oral diseases and cancers through precision medicine gives, as well as economic advantages to the health care system, predictable and rapid management of the patient.
Collapse
Affiliation(s)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Lilla Riccaldo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Roberta Morolla
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Silvio Buongiorno
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Stefania Benagiano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| |
Collapse
|
19
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Probiotic Bacteria Cannot Mitigate the Adverse Effects of Radioactive Iodine-131 Treatment. Cancers (Basel) 2023; 15:cancers15030740. [PMID: 36765697 PMCID: PMC9913142 DOI: 10.3390/cancers15030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Thyroid carcinoma is the most common cancer of the endocrine system, accounting for 12% of all cancer cases in adolescents in the United States. Radioiodine therapy plays a key role in differentiated thyroid cancer (DTC) treatment. This double-blind, randomized, placebo-controlled clinical trial was aimed at evaluating the effect of probiotics supplementation in reducing the acute side-effects of radioiodine therapy in PTC patients. Fifty-six patients were randomly divided into four groups: one placebo and three intervention groups. The probiotics product used in this study was LactoCare (ZistTakhmir Co., Tehran, Iran), a multi-strain commercially available symbiotic containing 12 strains of probiotic species including Lactobacillus strains, Bifidobacteria strains, and Streptococcus thermophilus, plus Fructo-oligosaccharides as the prebiotic. Group 0 was our placebo group (no probiotics), while the other three groups received probiotics capsules for 2/4 days, starting only 2 days prior to radioiodine therapy, only 4 days after radioiodine therapy or 2 days prior and 4 days after radioiodine therapy. Six patients were withdrawn during the study because of poor compliance or at their own request. The symptoms reported by patients including data about the incidence and duration of each complication were recorded. The probiotics' effectiveness was confirmed for dry mouth and taste loss or change when it was administered prior to the radioiodine treatment. The benefit was not confirmed for other radiation-induced complications such as pain and swelling in the neck, nausea and vomiting, salivary gland swelling, and diarrhea. Further large-scale clinical trials are warranted to improve our knowledge in this quickly evolving field.
Collapse
|
21
|
Stramazzo I, Capriello S, Filardo S, Centanni M, Virili C. Microbiota and Thyroid Disease: An Updated Systematic Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023. [DOI: 10.1007/5584_2023_770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
22
|
Lin B, Zhao F, Liu Y, Sun J, Feng J, Zhao L, Wang H, Chen H, Yan W, Guo X, Shi S, Li Z, Wang S, Lu Y, Zheng J, Wei Y. Alterations in Oral Microbiota of Differentiated Thyroid Carcinoma Patients With Xerostomia After Radioiodine Therapy. Front Endocrinol (Lausanne) 2022; 13:895970. [PMID: 36093087 PMCID: PMC9459331 DOI: 10.3389/fendo.2022.895970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Oral xerostomia remains one of the most common complications of differentiated thyroid carcinoma patients (DTC) after radioiodine therapy (RAI). Environmental factors in the etiology of xerostomia are largely unknown. We aimed to characterize the oral microbiota signatures and related biological functions associated with xerostomia and identify environmental factors affecting them. METHODS Saliva was collected from 30 DTC patients with xerostomia (XAs), 32 patients without xerostomia (indicated as non-XAs) following RAI after total thyroidectomy, and 40 healthy people (HCs) for 16S rRNA sequencing analysis. RESULTS The oral microbiota of XAs and non-XAs exhibited significant differences in α and β diversities and bacterial taxa. The abundance of porphyromonas, fusobacterium, and treponema_2 were significantly higher in XAs, while the abundance of the streptococcus was lower in the microbiota of non-XAs. Fusobacterium, and porphyromonas were negatively correlated with unstimulated/stimulated whole salivary secretion (USW)/(SWS), while fusobacterium, porphyromonas, and treponema_2 genera levels were positively associated with cumulative radioiodine dose. PICRUSt2 and BugBase suggested a significant difference in the expression of potentially_pathogenic, anaerobic, gram_negative, the arachidonic acid metabolism, and lipopolysaccharide (LPS) biosynthesis between XAs and non-XAs, possibly interdependent on radioiodine-induced inflammation. NetShift analysis revealed that porphyromonas genus might play as a key driver during the process of xerostomia. Five genera effectively distinguished XAs from non-XAs (AUC = 0.87). CONCLUSION Our study suggests for the first time that DTC patients with xerostomia after RAI display microbiota profiles and associated functional changes that may promote a pro-inflammatory environment. Dysbiosis of the oral microbiota may contribute to exacerbating the severity of xerostomia. Our results provide a research direction of the interaction mechanism between oral microbiota alteration and the progress of xerostomia.
Collapse
Affiliation(s)
- Baiqiang Lin
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fuya Zhao
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Liu
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiayu Sun
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- General Surgery, Zhujiang Hospital, SouthernMedical University, Guangzhou, China
| | - Jing Feng
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoran Wang
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongye Chen
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shang Shi
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyong Li
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Wang
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Lu
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Zheng
- Imaging Center, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Clinical Medical Research Center of Imaging Medicine, Ningbo, China
- *Correspondence: Yunwei Wei, ; Jianjun Zheng,
| | - Yunwei Wei
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yunwei Wei, ; Jianjun Zheng,
| |
Collapse
|