1
|
Yarahmadi A, Afkhami H, Javadi A, Kashfi M. Understanding the complex function of gut microbiota: its impact on the pathogenesis of obesity and beyond: a comprehensive review. Diabetol Metab Syndr 2024; 16:308. [PMID: 39710683 PMCID: PMC11664868 DOI: 10.1186/s13098-024-01561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Obesity is a multifactorial condition influenced by genetic, environmental, and microbiome-related factors. The gut microbiome plays a vital role in maintaining intestinal health, increasing mucus creation, helping the intestinal epithelium mend, and regulating short-chain fatty acid (SCFA) production. These tasks are vital for managing metabolism and maintaining energy balance. Dysbiosis-an imbalance in the microbiome-leads to increased appetite and the rise of metabolic disorders, both fuel obesity and its issues. Furthermore, childhood obesity connects with unique shifts in gut microbiota makeup. For instance, there is a surge in pro-inflammatory bacteria compared to children who are not obese. Considering the intricate nature and variety of the gut microbiota, additional investigations are necessary to clarify its exact involvement in the beginnings and advancement of obesity and related metabolic dilemmas. Currently, therapeutic methods like probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), dietary interventions like Mediterranean and ketogenic diets, and physical activity show potential in adjusting the gut microbiome to fight obesity and aid weight loss. Furthermore, the review underscores the integration of microbial metabolites with pharmacological agents such as orlistat and semaglutide in restoring microbial homeostasis. However, more clinical tests are essential to refine the doses, frequency, and lasting effectiveness of these treatments. This narrative overview compiles the existing knowledge on the multifaceted role of gut microbiota in obesity and much more, showcasing possible treatment strategies for addressing these health challenges.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Ali Javadi
- Department of Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Fang Q, Xu M, Yao W, Wu R, Han R, Kawakita S, Shen A, Guan S, Zhang J, Sun X, Zhou M, Li N, Sun Q, Dong CS. The role of KLF5 in gut microbiota and lung adenocarcinoma: unveiling programmed cell death pathways and prognostic biomarkers. Discov Oncol 2024; 15:408. [PMID: 39235679 PMCID: PMC11377401 DOI: 10.1007/s12672-024-01257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most important subtype of lung cancer. It is well known that the gut microbiome plays an important role in the pathophysiology of various diseases, including cancer, but little research has been done on the intestinal microbiome associated with LUAD. Utilizing bioinformatics tools and data analysis, we identified novel potential prognostic biomarkers for LUAD. To integrate differentially expressed genes and clinical significance modules, we used a weighted correlation network analysis system. According to the Peryton database and the gutMGene database, the composition and structure of gut microbiota in LUAD patients differed from those in healthy individuals. LUAD was associated with 150 gut microbiota and 767 gut microbiota targets, with Krüppel-like factor 5 (KLF5) being the most closely related. KLF5 was associated with immune status and correlated well with the prognosis of LUAD patients. The identification of KLF5 as a potential prognostic biomarker suggests its utility in improving risk stratification and guiding personalized treatment strategies for LUAD patients. Altogether, KLF5 could be a potential prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Qingliang Fang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
| | - Meijun Xu
- Acupuncture and Moxibustion Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Wenyi Yao
- Department of Oncology II, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Ruixin Wu
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Ruiqin Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Aidan Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Sisi Guan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
| | - Jiliang Zhang
- Beijing Tong Ren Tang Chinese Medicine Co., LTD, Hong Kong, 999077, China
| | - Xiuqiao Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
| | - Mingxi Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China
| | - Ning Li
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Qiaoli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
- Teaching Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
| | - Chang-Sheng Dong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, Wanping Rd, Shanghai, 200032, China.
| |
Collapse
|
3
|
Chan JCN, Yang A, Chu N, Chow E. Current type 2 diabetes guidelines: Individualized treatment and how to make the most of metformin. Diabetes Obes Metab 2024; 26 Suppl 3:55-74. [PMID: 38992869 DOI: 10.1111/dom.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024]
Abstract
Evidence-based guidelines provide the premise for the delivery of quality care to preserve health and prevent disabilities and premature death. The systematic gathering of observational, mechanistic and experimental data contributes to the hierarchy of evidence used to guide clinical practice. In the field of diabetes, metformin was discovered more than 100 years ago, and with 60 years of clinical use, it has stood the test of time regarding its value in the prevention and management of type 2 diabetes. Although some guidelines have challenged the role of metformin as the first-line glucose-lowering drug, it is important to point out that the cardiovascular-renal protective effects of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists were gathered from patients with type 2 diabetes, the majority of whom were treated with metformin. Most national, regional and international guidelines recommend metformin as a foundation therapy with emphasis on avoidance of therapeutic inertia and early attainment of multiple treatment goals. Moreover, real-world evidence has confirmed the glucose-lowering and cardiovascular-renal benefits of metformin accompanied by an extremely low risk of lactic acidosis. In patients with type 2 diabetes and advanced chronic kidney disease (estimated glomerular filtration rate 15-30 mL/min/1.73m2), metformin discontinuation was associated with an increased risk of cardiovascular-renal events compared with metformin persistence. Meanwhile, it is understood that microbiota, nutrients and metformin can interact through the gut-brain-kidney axis to modulate homeostasis of bioactive molecules, systemic inflammation and energy metabolism. While these biological changes contribute to the multisystem effects of metformin, they may also explain the gastrointestinal side effects and vitamin B12 deficiency associated with metformin intolerance. By understanding the interactions between metformin, foods and microbiota, healthcare professionals are in a better position to optimize the use of metformin and mitigate potential side effects. The United Kingdom Prospective Diabetes Study and the Da Qing Diabetes Prevention Program commenced 40 years ago provided the first evidence that type 2 diabetes is preventable and treatable. To drive real-world impact from this evidence, payors, practitioners and planners need to co-design and implement an integrated, data-driven, metformin-based programme to detect people with undiagnosed diabetes and prediabetes (intermediate hyperglycaemia), notably impaired glucose tolerance, for early intervention. The systematic data collection will create real-world evidence to bring out the best of metformin and make healthcare sustainable, affordable and accessible.
Collapse
Affiliation(s)
- Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Natural Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
4
|
Li Y, Chen Q, Sun HJ, Zhang JH, Liu X. The Active Ingredient Catalpol in Rehmannia glutinosa Reduces Blood Glucose in Diabetic Rats via the AMPK Pathway. Diabetes Metab Syndr Obes 2024; 17:1761-1767. [PMID: 38645660 PMCID: PMC11032140 DOI: 10.2147/dmso.s446318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) poses a huge threat to population health globally, and more drugs need to be explored for treatment. In this study, we investigated the mechanism of active ingredient catalpol in Rehmannia glutinosa on reduces blood glucose in diabetic. Methods The T2DM model was constructed by intraperitoneal injection of streptozotocin into Sprague-Dawley (SD) rats, which were randomly grouped into diabetes model group, pioglitazone group, Rehmannia glutinosa group, catalpol high-dose group, catalpol low-dose group and normal control group.The intervention was continued for 28 d, and changes in body weight, fasting blood glucose, insulin and lipid levels were observed. Results Of all the drugs, pioglitazone had the most pronounced hypoglycemic effect, which began to decline after 2 weeks of treatment in the low-dose catalpol group and had no hypoglycemic effect in the high-dose catalpol group. Among them, Rehmannia glutinosa was able to increase serum triglyceride level, and pioglitazone effectively reduced total cholesterol level in rats. The low dose of catalpol decreased the concentration of low-density lipoprotein cholesterol (LDL), while the high dose of catalpol increased the concentration of LDL. Conclusion As an active ingredient in Rehmannia glutinosa, catalpol has the potential to lower blood glucose and improve blood lipids in diabetes treatment, and its action may be achieved by regulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, which provides a new idea for the development of new diabetes therapeutic approaches.
Collapse
Affiliation(s)
- Yang Li
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Qiang Chen
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Hong-Juan Sun
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Jian-Hong Zhang
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Xuan Liu
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| |
Collapse
|
5
|
Ma X, Qiu Y, Mao M, Lu B, Zhao H, Pang Z, Li S. PuRenDan alleviates type 2 diabetes mellitus symptoms by modulating the gut microbiota and its metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117627. [PMID: 38147943 DOI: 10.1016/j.jep.2023.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE PuRenDan (PRD) is a traditional Chinese medicine formula comprising five herbs that have been traditionally used to treat type 2 diabetes mellitus (T2DM). While PRD has been shown to be effective in treating T2DM in clinical and animal studies, the mechanisms by which it works on the gut microbiome and metabolites related to T2DM are not well understood. AIM OF THE STUDY The objective of this study was to partially elucidate the mechanism of PRD in treating T2DM through analyses of the gut microbiota metagenome and metabolome. MATERIALS AND METHODS Sprague-Dawley rats were fed high-fat diets (HFDs) and injected with low-dose streptozotocin (STZ) to replicate T2DM models. Then the therapeutic effects of PRD were evaluated by measuring clinical markers such as blood glucose, insulin resistance (IR), lipid metabolism biomarkers (total cholesterol, low-density lipoprotein, non-esterified fatty acids, and triglycerides), and inflammatory factors (tumor necrosis factor alpha, interleukin-6 [IL-6], interferon gamma, and IL-1β). Colon contents were collected, and metagenomics, combined with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry metabolic profiling, was performed to evaluate the effects of T2DM and PRD on gut microbiota and its metabolites in rats. Spearman analysis was used to calculate the correlation coefficient among different microbiota, clinical indices, and metabolites. RESULTS PRD exhibited significant improvement in blood glucose and IR, and reduced serum levels of lipid metabolism biomarkers and inflammatory factors. Moreover, the diversity and abundance of gut microbiota undergo significant changes in rats with T2DM that PRD was able to reverse. The gut microbiota associated with T2DM including Rickettsiaceae bacterium 4572_127, Psychrobacter pasteurii, Parabacteroides sp. CAG409, and Paludibacter propionicigenes were identified. The gut microbiota most closely related to PRD were Prevotella sp. 10(H), Parabacteroides sp. SN4, Flavobacteriales bacterium, Bacteroides massiliensis, Alistipes indistinctus, and Ruminococcus flavefaciens. Additionally, PRD regulated the levels of gut microbiota metabolites including pantothenic acid, 1-Methylhistamine, and 1-Methylhistidine; these affected metabolites were involved in pantothenate and coenzyme A biosynthesis, histidine metabolism, and secondary bile acid biosynthesis. Correlation analysis illustrated a close relationship among gut microbiota, its metabolites, and T2DM-related indexes. CONCLUSION Our study provides insights into the gut microbiota and its metabolites of PRD therapy for T2DM. It clarifies the role of gut microbiota and the metabolites in the pathogenesis of T2DM, highlighting the potential of PRD for the treatment of this disease.
Collapse
Affiliation(s)
- Xiaoqin Ma
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Yuqing Qiu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Minghui Mao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Huanhu Zhao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Shuchun Li
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| |
Collapse
|
6
|
Yu G, Tam HCH, Huang C, Shi M, Lim CKP, Chan JCN, Ma RCW. Lessons and Applications of Omics Research in Diabetes Epidemiology. Curr Diab Rep 2024; 24:27-44. [PMID: 38294727 PMCID: PMC10874344 DOI: 10.1007/s11892-024-01533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE OF REVIEW Recent advances in genomic technology and molecular techniques have greatly facilitated the identification of disease biomarkers, advanced understanding of pathogenesis of different common diseases, and heralded the dawn of precision medicine. Much of these advances in the area of diabetes have been made possible through deep phenotyping of epidemiological cohorts, and analysis of the different omics data in relation to detailed clinical information. In this review, we aim to provide an overview on how omics research could be incorporated into the design of current and future epidemiological studies. RECENT FINDINGS We provide an up-to-date review of the current understanding in the area of genetic, epigenetic, proteomic and metabolomic markers for diabetes and related outcomes, including polygenic risk scores. We have drawn on key examples from the literature, as well as our own experience of conducting omics research using the Hong Kong Diabetes Register and Hong Kong Diabetes Biobank, as well as other cohorts, to illustrate the potential of omics research in diabetes. Recent studies highlight the opportunity, as well as potential benefit, to incorporate molecular profiling in the design and set-up of diabetes epidemiology studies, which can also advance understanding on the heterogeneity of diabetes. Learnings from these examples should facilitate other researchers to consider incorporating research on omics technologies into their work to advance the field and our understanding of diabetes and its related co-morbidities. Insights from these studies would be important for future development of precision medicine in diabetes.
Collapse
Affiliation(s)
- Gechang Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Henry C H Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Chuiguo Huang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, HKSAR, China.
- Chinese University of Hong Kong- Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, HKSAR, China.
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, HKSAR, China.
| |
Collapse
|
7
|
Akhlaq S, Ara SA, Itrat M, Fazil M, Ahmad B, Akram U, Haque M, Quddusi N, Sayeed A. An Exploratory Review on the Hypoglycemic Action of Unani Anti-diabetic Drugs via Possible Modulation of Gut Microbiota. Curr Drug Targets 2024; 25:1-11. [PMID: 38115618 DOI: 10.2174/0113894501275731231215101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND AND AIM Diabetes mellitus is a chronic, multi-factorial metabolic disorder and also an important public health issue that requires multi-dimensional therapeutic strategies for effective control. Unani herbs have long been used to effectively mitigate diabetes through various mechanisms. In recent years, it has been speculated that the alteration of gut microbiome ecology is potentially one of the important mechanisms through which the Unani drugs exert hypoglycemic action. This review aims at the trans-disciplinary interpretation of the holistic concepts of the Unani system of medicine and the molecular insights of contemporary medicine for novel strategies for diabetes management. METHODOLOGY We searched scientific databases such as PubMed, Google Scholar, and Science-Direct, etc. Unani classical texts (Urdu, Arabic, and Persian), and medical books, for diabetic control with Unani medicine through the gut microbiome. RESULTS Unani medicine defines, diabetes as a urinary system disorder disrupting the transformational faculty (Quwwat Mughayyira) in the gastrointestinal tract. The Unani system and contemporary biomedicine use different epistemology and ontology for describing diabetes through gutderived factors in whole-body glucose homeostasis. Unani Pharmaceutics have reported in clinical and preclinical (in vitro/ in vivo) trials in improving diabetes by altering gut microbiota composition, microvascular dysfunction, and inflammation. However, the preventive plan is the preservance of six essential factors (Asbāb Sitta Ḍarūriyya) as a lifestyle plan. CONCLUSION This is the first study on the integrative strategy about the hypoglycemic effects of Unani herbs that could serve as a prerogative novel approach for cost-effective, holistic, rationalistic, and multi-targeted diabetes management.
Collapse
Affiliation(s)
- Shaheen Akhlaq
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shabnam Anjum Ara
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Malik Itrat
- National Institute of Unani Medicine, Kottigepalya, Magadi Main Road, Bengaluru, Karnataka 560091, India
| | - Mohammad Fazil
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Bilal Ahmad
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Usama Akram
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Merajul Haque
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Neelam Quddusi
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ahmad Sayeed
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
8
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Jakubczyk K, Janda-Milczarek K, Czarnecka W, Rębacz-Maron E, Zacha S, Sieńko J, Zeair S, Dalewski B, Marlicz W, Łoniewski I, Skonieczna-Żydecka K. Clinical Relevance of Gut Microbiota Alterations under the Influence of Selected Drugs-Updated Review. Biomedicines 2023; 11:biomedicines11030952. [PMID: 36979931 PMCID: PMC10046554 DOI: 10.3390/biomedicines11030952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As pharmacology and science progress, we discover new generations of medicines. This relationship is a response to the increasing demand for medicaments and is powered by progress in medicine and research about the respective entities. However, we have questions about the efficiency of pharmacotherapy in individual groups of patients. The effectiveness of therapy is controlled by many variables, such as genetic predisposition, age, sex and diet. Therefore, we must also pay attention to the microbiota, which fulfill a lot of functions in the human body. Drugs used in psychiatry, gastroenterology, diabetology and other fields of medicine have been demonstrated to possess much potential to change the composition and probably the function of the intestinal microbiota, which consequently creates long-term risks of developing chronic diseases. The article describes the amazing interactions between gut microbes and drugs currently used in healthcare.
Collapse
Affiliation(s)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Institute of Biology, Department of Ecology and Anthropology, University of Szczecin, 71-415 Szczecin, Poland
| | - Sławomir Zacha
- Department of Pediatric Orthopedics and Oncology of the Musculoskeletal System, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Jerzy Sieńko
- Department of General and Gastroenterology Oncology Surgery, Pomeranian Medical University in Szczecin, 71-899 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Samir Zeair
- General and Transplant Surgery Ward with Sub-Departments of Pomeranian Regional Hospital in Szczecin, 71-455 Arkonska, Poland
| | - Bartosz Dalewski
- Department of Dental Prosthetics, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | | |
Collapse
|
9
|
Ma Q, Li Y, Zhao R, Tang Z, Li J, Chen C, Liu X, Hu Y, Wang T, Zhao B. Therapeutic mechanisms of mulberry leaves in type 2 diabetes based on metabolomics. Front Pharmacol 2022; 13:954477. [PMID: 36110521 PMCID: PMC9468646 DOI: 10.3389/fphar.2022.954477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Type 2 diabetes (T2D) is considered as one of the most significant metabolic syndromes worldwide, and the long-term use of the drugs already on the market for T2D often gives rise to some side effects. The mulberry leaf (ML), Morus alba L., has advantages in terms of its comprehensive therapeutic efficacy, which are characterized as multicomponent, multitarget, multipathway, and matching with the complex pathological mechanisms of diabetes. Methods: T2D rats were established by a high-fat diet combined with an intraperitoneal injection of streptozotocin; an evaluation of the hypoglycemic effects of the ML in combination with fasting blood glucose and other indicators, in addition to the utilization of metabolomics technology, was performed to analysis the metabolite changes in serum of rats. Results: MLs significantly reduced the fasting blood glucose of T2D rats, while improving the symptoms of polyphagia and polyuria. ML treatment altered the levels of various metabolites in the serum of T2D rats, which are involved in multiple metabolic pathways (amino acid metabolism, carbohydrate metabolism, and lipid metabolism), played a role in antioxidative stress and anti-inflammation, modulated immune and gluconeogenesis processes, and improved obesity as well as insulin resistance (IR). Conclusion: The ML contains a variety of chemical components, and metabolomic results have shown that MLs regulate multiple metabolic pathways to exert hypoglycemic effects, suggesting that MLs may have great promise in the development of new hypoglycemic drugs.
Collapse
Affiliation(s)
- Quantao Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruixue Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyan Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyao Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yujie Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ting Wang, ; Baosheng Zhao,
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ting Wang, ; Baosheng Zhao,
| |
Collapse
|
10
|
Chu N, Chan JCN, Chow E. A diet high in FODMAPs as a novel dietary strategy in diabetes? Clin Nutr 2022; 41:2103-2112. [DOI: 10.1016/j.clnu.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
|
11
|
Chu N, Ling J, Jie H, Leung K, Poon E. The potential role of lactulose pharmacotherapy in the treatment and prevention of diabetes. Front Endocrinol (Lausanne) 2022; 13:956203. [PMID: 36187096 PMCID: PMC9519995 DOI: 10.3389/fendo.2022.956203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The non-absorbable disaccharide lactulose is mostly used in the treatment of various gastrointestinal disorders such as chronic constipation and hepatic encephalopathy. The mechanism of action of lactulose remains unclear, but it elicits more than osmotic laxative effects. As a prebiotic, lactulose may act as a bifidogenic factor with positive effects in preventing and controlling diabetes. In this review, we summarized the current evidence for the effect of lactulose on gut metabolism and type 2 diabetes (T2D) prevention. Similar to acarbose, lactulose can also increase the abundance of the short-chain fatty acid (SCFA)-producing bacteria Lactobacillus and Bifidobacterium as well as suppress the potentially pathogenic bacteria Escherichia coli. These bacterial activities have anti-inflammatory effects, nourishing the gut epithelial cells and providing a protective barrier from microorganism infection. Activation of peptide tyrosine tyrosine (PYY) and glucagon-like peptide 1 (GLP1) can influence secondary bile acids and reduce lipopolysaccharide (LPS) endotoxins. A low dose of lactulose with food delayed gastric emptying and increased the whole gut transit times, attenuating the hyperglycemic response without adverse gastrointestinal events. These findings suggest that lactulose may have a role as a pharmacotherapeutic agent in the management and prevention of type 2 diabetes via actions on the gut microbiota.
Collapse
|