1
|
Holst JJ. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat Metab 2024; 6:1866-1885. [PMID: 39160334 DOI: 10.1038/s42255-024-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
The introduction of the highly potent incretin receptor agonists semaglutide and tirzepatide has marked a new era in the treatment of type 2 diabetes and obesity. With normalisation of glycated haemoglobin levels and weight losses around 15-25%, therapeutic goals that were previously unrealistic are now within reach, and clinical trials have documented that these effects are associated with reduced risk of cardiovascular events and premature mortality. Here, I review this remarkable development from the earliest observations of glucose lowering and modest weight losses with native glucagon-like peptide (GLP)-1 and short acting compounds, to the recent development of highly active formulations and new molecules. I will classify these agents as GLP-1-based therapies in the understanding that these compounds or combinations may have actions on other receptors as well. The physiology of GLP-1 is discussed as well as its mechanisms of actions in obesity, in particular, the role of sensory afferents and GLP-1 receptors in the brain. I provide details regarding the development of GLP-1 receptor agonists for anti-obesity therapy and discuss the possible mechanism behind their beneficial effects on adverse cardiovascular events. Finally, I highlight new pharmacological developments, including oral agents, and discuss important questions regarding maintenance therapy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences. Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Lupianez-Merly C, Dilmaghani S, Vosoughi K, Camilleri M. Review article: Pharmacologic management of obesity - updates on approved medications, indications and risks. Aliment Pharmacol Ther 2024; 59:475-491. [PMID: 38169126 DOI: 10.1111/apt.17856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Obesity has reached epidemic proportions, with >40% of the US population affected. Although traditionally managed by lifestyle modification, and less frequently by bariatric therapies, there are significant pharmacological advancements. AIMS To conduct a narrative review of the neurohormonal and physiological understanding of weight gain and obesity, and the development, clinical testing, indications, expected clinical outcomes, and associated risks of current FDA-approved and upcoming anti-obesity medications (AOMs). METHODS We conducted a comprehensive review in PubMed for articles on pathophysiology and complications of obesity, including terms 'neurohormonal', 'obesity', 'incretin', and 'weight loss'. Next, we searched for clinical trial data of all FDA-approved AOMs, including both the generic and trade names of orlistat, phentermine/topiramate, bupropion/naltrexone, liraglutide, and semaglutide. Additional searches were conducted for tirzepatide and retatrutide - medications expecting regulatory approval. Searches included combinations of terms related to mechanism of action, indications, side effects, risks, and future directions. RESULTS We reviewed the pathophysiology of obesity, including specific role of incretins and glucagon. Clinical data supporting the use of various FDA-approved medications for weight loss are presented, including placebo-controlled or, when available, head-to-head trials. Beneficial metabolic effects, including impact on liver disease, adverse effects and risks of medications are discussed, including altered gastrointestinal motility and risk for periprocedural aspiration. CONCLUSION AOMs have established efficacy and effectiveness for weight loss even beyond 52 weeks. Further pharmacological options, such as dual and triple incretins, are probable forthcoming additions to clinical practice for combating obesity and its metabolic consequences such as metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Camille Lupianez-Merly
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Saam Dilmaghani
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kia Vosoughi
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Drucker DJ, Holst JJ. The expanding incretin universe: from basic biology to clinical translation. Diabetologia 2023; 66:1765-1779. [PMID: 36976349 DOI: 10.1007/s00125-023-05906-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023]
Abstract
Incretin hormones, principally glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(GLP-1), potentiate meal-stimulated insulin secretion through direct (GIP + GLP-1) and indirect (GLP-1) actions on islet β-cells. GIP and GLP-1 also regulate glucagon secretion, through direct and indirect pathways. The incretin hormone receptors (GIPR and GLP-1R) are widely distributed beyond the pancreas, principally in the brain, cardiovascular and immune systems, gut and kidney, consistent with a broad array of extrapancreatic incretin actions. Notably, the glucoregulatory and anorectic activities of GIP and GLP-1 have supported development of incretin-based therapies for the treatment of type 2 diabetes and obesity. Here we review evolving concepts of incretin action, focusing predominantly on GLP-1, from discovery, to clinical proof of concept, to therapeutic outcomes. We identify established vs uncertain mechanisms of action, highlighting biology conserved across species, while illuminating areas of active investigation and uncertainty that require additional clarification.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| | - Jens J Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Yu J, Zhang H, Liu Q, Li H, Wu L, Qi T, Song Z, Huang H, He J, Ding Y. New Mouse Models of Roux-en Y Gastric Bypass and One Anastomosis Gastric Bypass for Type 2 Diabetes. Obes Surg 2023; 33:3163-3176. [PMID: 37635165 DOI: 10.1007/s11695-023-06768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Current bariatric surgery models primarily utilize mice with obesity, overlooking those with type 2 diabetes (T2DM). These models have limitations in replicating clinical procedures accurately and achieving broad applicability. This study aimed to develop novel mouse models of Roux-en-Y gastric bypass (RYGB) and one anastomosis gastric bypass (OAGB) surgeries specifically designed for T2DM research, utilizing simplified surgical techniques closely resembling clinical procedures. METHODS Eight-week-old C57/Bl6 mice, except for the Blank-Control group, were induced with T2DM by combining a high-fat diet and streptozotocin injection. RYGB involved creating a 10% gastric pouch, a 4-cm biliopancreatic limb (BL), and a 4-cm Roux limb (RL). Similarly, OAGB maintained a 10% gastric pouch and a 4-cm BL. To assess the efficacy of these models, we measured the body weight and fasting blood glucose (FBG) and conducted intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), and liver B-ultrasound, as well as a histopathological analysis of multiple organs 12 weeks post-operation. RESULTS The survival rates in the Blank-Control, T2DM-Sham, T2DM-RYGB, and T2DM-OAGB groups were 100% (6/6), 100% (6/6), 85.7% (6/7), and 100% (6/6), respectively. Both RYGB and OAGB surgeries similarly led to sustained weight loss, reduced the FBG levels, improved the IPGTT and ITT results, and alleviated the histopathological manifestations in multiple organs. CONCLUSION The innovative mouse models of RYGB and OAGB surgeries effectively improve T2DM. Both surgeries demonstrate comparable efficacy in ameliorating T2DM, even when utilizing a gastric pouch of the same size and the same length of BL in OAGB.
Collapse
Affiliation(s)
- Jinlong Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510280, People's Republic of China.
| | - Hongbin Zhang
- Southern Medical University School of Laboratory Medicine and Biotechnology, Guangzhou, Guangdong Province, 510280, People's Republic of China.
- Department of Basic Medical Research, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong Province, 510280, People's Republic of China.
| | - Qing Liu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510280, People's Republic of China
| | - Heng Li
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510282, People's Republic of China
| | - Liangping Wu
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510282, People's Republic of China
| | - Tengfei Qi
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510282, People's Republic of China
| | - Zhigao Song
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510280, People's Republic of China
| | - Hongyan Huang
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510282, People's Republic of China
| | - Jipei He
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510282, People's Republic of China
| | - Yunfa Ding
- Surgical Center for Obesity and Diabetes, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510282, People's Republic of China
| |
Collapse
|
5
|
Zhang H, Zuo Y, Zhao H, Zhao H, Wang Y, Zhang X, Zhang J, Wang P, Sun L, Zhang H, Liang H. Folic acid ameliorates alcohol-induced liver injury via gut–liver axis homeostasis. Front Nutr 2022; 9:989311. [PMID: 36337656 PMCID: PMC9632181 DOI: 10.3389/fnut.2022.989311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The gut–liver axis (GLA) plays an important role in the development of alcohol-induced liver injury. Alcohol consumption is typically associated with folic acid deficiency. However, no clear evidence has confirmed the effect of folic acid supplementation on alcohol-induced liver injury via GLA homeostasis. In this study, male C57BL/6J mice were given 56% (v/v) ethanol and 5.0 mg/kg folic acid daily by gavage for 10 weeks to investigate potential protective mechanisms of folic acid in alcohol-induced liver injury via GLA homeostasis. Histopathological and biochemical analyses showed that folic acid improved lipid deposition and inflammation in the liver caused by alcohol consumption and decreased the level of ALT, AST, TG, and LPS in serum. Folic acid inhibited the expression of the TLR4 signaling pathway and its downstream inflammatory mediators in the liver and upregulated the expression of ZO-1, claudin 1, and occludin in the intestine. But compared with the CON group, folic acid did not completely eliminate alcohol-induced intestine and liver injury. Furthermore, folic acid regulated alcohol-induced alterations in gut microbiota. In alcohol-exposed mice, the relative abundance of Bacteroidota was significantly increased, and the relative abundance of unclassified_Lachnospiraceae was significantly decreased. Folic acid supplementation significantly increased the relative abundance of Verrucomicrobia, Lachnospiraceae_NK4A136_group and Akkermansia, and decreased the relative abundance of Proteobacteria. The results of Spearman’s correlation analysis showed that serum parameters and hepatic inflammatory cytokines were significantly correlated with several bacteria, mainly including Bacteroidota, Firmicutes, and unclassified_Lachnospiraceae. In conclusion, folic acid could ameliorate alcohol-induced liver injury in mice via GLA homeostasis to some extent, providing a new idea and method for prevention of alcohol-induced liver injury.
Collapse
Affiliation(s)
- Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yuwei Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huichao Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yutong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huizhen Zhang
- Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Hui Liang,
| |
Collapse
|