1
|
Liu Z, Lin Z, Chen Y, Lu M, Hong W, Yu B, Liu G. Lipoteichoic Acid Rescued Age-Related Bone Loss by Enhancing Neuroendocrine and Growth Hormone Secretion Through TLR2/COX2/PGE2 Signalling Pathway. J Cell Mol Med 2024; 28:e70247. [PMID: 39622781 PMCID: PMC11611525 DOI: 10.1111/jcmm.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
The phenomenon of brain-bone crosstalk pertains to the intricate interaction and communication pathways between the central nervous system and the skeletal system. Disruption in brain-bone crosstalk, particularly in disorders such as osteoporosis, can result in skeletal irregularities. Consequently, investigating and comprehending this communication network holds paramount importance in the realm of bone disease prevention and management. In this study, we found that Staphylococcus aureus lipoteichoic acid promoted the conversion of arachidonic acid to PGE2 by interacting with TLR2 receptors acting on the surface of microglial cells in the pituitary gland, leading to the upregulation of COX-2 expression. Subsequently, PGE2 bound to the EP4 receptor of growth hormone-secreting cells and activated the intracellular CREB signalling pathway, promoting GH secretion and ameliorating age-related bone loss.
Collapse
Affiliation(s)
- Zixian Liu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- The Second Hospital and Clinical Medical SchoolLanzhou UniversityLanzhouChina
| | - Zexin Lin
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yingqi Chen
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Mincheng Lu
- Department of Orthopedic, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Weisheng Hong
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Bin Yu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guanqiao Liu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Chen L, Zhao Y, Qiu J, Lin X. Analysis and validation of biomarkers of immune cell-related genes in postmenopausal osteoporosis: An observational study. Medicine (Baltimore) 2024; 103:e38042. [PMID: 38728482 PMCID: PMC11081595 DOI: 10.1097/md.0000000000038042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common metabolic inflammatory disease. In conditions of estrogen deficiency, chronic activation of the immune system leads to a hypo-inflammatory phenotype and alterations in its cytokine and immune cell profile, although immune cells play an important role in the pathology of osteoporosis, studies on this have been rare. Therefore, it is important to investigate the role of immune cell-related genes in PMOP. PMOP-related datasets were downloaded from the Gene Expression Omnibus database. Immune cells scores between high bone mineral density (BMD) and low BMD samples were assessed based on the single sample gene set enrichment analysis method. Subsequently, weighted gene co-expression network analysis was performed to identify modules highly associated with immune cells and obtain module genes. Differential analysis between high BMD and low BMD was also performed to obtain differentially expressed genes. Module genes are intersected with differentially expressed genes to obtain candidate genes, and functional enrichment analysis was performed. Machine learning methods were used to filter out the signature genes. The receiver operating characteristic (ROC) curves of the signature genes and the nomogram were plotted to determine whether the signature genes can be used as a molecular marker. Gene set enrichment analysis was also performed to explore the potential mechanism of the signature genes. Finally, RNA expression of signature genes was validated in blood samples from PMOP patients and normal control by real-time quantitative polymerase chain reaction. Our study of PMOP patients identified differences in immune cells (activated dendritic cell, CD56 bright natural killer cell, Central memory CD4 T cell, Effector memory CD4 T cell, Mast cell, Natural killer T cell, T follicular helper cell, Type 1 T-helper cell, and Type 17 T-helper cell) between high and low BMD patients. We obtained a total of 73 candidate genes based on modular genes and differential genes, and obtained 5 signature genes by least absolute shrinkage and selection operator and random forest model screening. ROC, principal component analysis, and t-distributed stochastic neighbor embedding down scaling analysis revealed that the 5 signature genes had good discriminatory ability between high and low BMD samples. A logistic regression model was constructed based on 5 signature genes, and both ROC and column line plots indicated that the model accuracy and applicability were good. Five signature genes were found to be associated with proteasome, mitochondria, and lysosome by gene set enrichment analysis. The real-time quantitative polymerase chain reaction results showed that the expression of the signature genes was significantly different between the 2 groups. HIST1H2AG, PYGM, NCKAP1, POMP, and LYPLA1 might play key roles in PMOP and be served as the biomarkers of PMOP.
Collapse
Affiliation(s)
- Lihua Chen
- Rehabilitation Department, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yu Zhao
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jingjing Qiu
- Rehabilitation Department, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiaosheng Lin
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
| |
Collapse
|
3
|
Cheng C, Tang S, Cui S, Yang T, Li L, Zhai M, Wei F, Ding G. Nerve growth factor promote osteogenic differentiation of dental pulp stem cells through MEK/ERK signalling pathways. J Cell Mol Med 2024; 28:e18143. [PMID: 38333908 PMCID: PMC10853700 DOI: 10.1111/jcmm.18143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 μM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 μM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.
Collapse
Affiliation(s)
- Chen Cheng
- School of StomatologyShandong Second Medical UniversityWeifangChina
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesChina
- Department of StomatologyHeze Municipal HospitalChina
| | - Shuai Tang
- School of StomatologyShandong Second Medical UniversityWeifangChina
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesChina
| | - Shuyue Cui
- School of StomatologyShandong Second Medical UniversityWeifangChina
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesChina
| | - Tong Yang
- School of StomatologyShandong Second Medical UniversityWeifangChina
| | - Lan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesChina
| | - Mingrui Zhai
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesChina
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesChina
| | - Gang Ding
- School of StomatologyShandong Second Medical UniversityWeifangChina
| |
Collapse
|
4
|
Liu Y, Li B, Chen X, Xiong H, Huang C. The effect of immunomodulatory drugs on bone metabolism of patients with multiple myeloma. Expert Rev Hematol 2024; 17:47-54. [PMID: 38319240 DOI: 10.1080/17474086.2024.2316090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Immunomodulatory drugs (IMiDs) are widely used in the management of newly diagnosed and relapsed/refractory multiple myeloma patients. These agents show their potential effect on myeloma bone disease (MBD), including inhibition of osteoclasts activity and effects on osteoblasts differentiation. It is unclear whether these effects are direct, which may have an impact on bone formation markers when combined with proteasome inhibitors. AREAS COVERED This review summarizes the available evidence on the role of IMiDs in microenvironment regulation and their potential effects on bone metabolism. The literature search methodology consisted of searching PubMed for basic and clinical trials using medical subject terms. Included articles were screened and evaluated by the coauthors of this review. EXPERT OPINION As a therapeutic option, IMiDs directly affect preosteoblast/osteoclast differentiation. The combination of proteasome inhibitors may counteract the short-term up-regulation of osteogenic activity markers, and therefore intravenous zoledronic acid is recommended, however, obtaining a more significant myeloma response will have a long-term positive impact on myeloma bone disease.
Collapse
Affiliation(s)
- Yang Liu
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Clinical Research Institute, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Li
- Department of Intensive Care Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaomin Chen
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Clinical Research Institute, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Xiong
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Clinical Research Institute, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunlan Huang
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Clinical Research Institute, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Tang X, Huang Y, Fang X, Tong X, Yu Q, Zheng W, Fu F. Cornus officinalis: a potential herb for treatment of osteoporosis. Front Med (Lausanne) 2023; 10:1289144. [PMID: 38111697 PMCID: PMC10725965 DOI: 10.3389/fmed.2023.1289144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decline in bone mass, bone mineral density, and deterioration of bone microstructure. It is prevalent among the elderly, particularly postmenopausal women, and poses a substantial burden to patients and society due to the high incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine (TCM) has long been utilized for OP prevention and treatment. In contrast to conventional approaches such as hormone replacement therapy, TCM offers distinct advantages such as minimal side effects, low toxicity, excellent tolerability, and suitability for long-term administration. Extensive experimental evidence supports the efficacy of kidney-tonifying TCM, exemplified by formulations based on the renowned herb Cornus officinalis and its bioactive constituents, including morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this review, we provide a comprehensive elucidation of the underlying pathological principles governing OP, with particular emphasis on bone marrow mesenchymal stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of vascular and immune systems, all of which critically influence bone homeostasis. Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM formulations and Cornus officinalis-derived active constituents are discussed. In conclusion, this review aims to enhance understanding of the pharmacological mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, specifically focusing on Cornus officinalis, and seeks to explore more efficacious and safer treatment strategies for OP.
Collapse
Affiliation(s)
- Xinyun Tang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuxin Huang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuanying Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qian Yu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
6
|
Hart DA. Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis. Biomolecules 2023; 13:1136. [PMID: 37509172 PMCID: PMC10377148 DOI: 10.3390/biom13071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
During evolution, the development of bone was critical for many species to thrive and function in the boundary conditions of Earth. Furthermore, bone also became a storehouse for calcium that could be mobilized for reproductive purposes in mammals and other species. The critical nature of bone for both function and reproductive needs during evolution in the context of the boundary conditions of Earth has led to complex regulatory mechanisms that require integration for optimization of this tissue across the lifespan. Three important regulatory variables include mechanical loading, sex hormones, and innervation/neuroregulation. The importance of mechanical loading has been the target of much research as bone appears to subscribe to the "use it or lose it" paradigm. Furthermore, because of the importance of post-menopausal osteoporosis in the risk for fractures and loss of function, this aspect of bone regulation has also focused research on sex differences in bone regulation. The advent of space flight and exposure to microgravity has also led to renewed interest in this unique environment, which could not have been anticipated by evolution, to expose new insights into bone regulation. Finally, a body of evidence has also emerged indicating that the neuroregulation of bone is also central to maintaining function. However, there is still more that is needed to understand regarding how such variables are integrated across the lifespan to maintain function, particularly in a species that walks upright. This review will attempt to discuss these regulatory elements for bone integrity and propose how further study is needed to delineate the details to better understand how to improve treatments for those at risk for loss of bone integrity, such as in the post-menopausal state or during prolonged space flight.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone & Joint Research, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
7
|
Wang J, Li X, Wang S, Cui J, Ren X, Su J. Bone-Targeted Exosomes: Strategies and Applications. Adv Healthc Mater 2023; 12:e2203361. [PMID: 36881547 DOI: 10.1002/adhm.202203361] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 03/08/2023]
Abstract
As the global population ages, bone-related diseases have increasingly become a major social problem threatening human health. Exosomes, as natural cell products, have been used to treat bone-related diseases due to their superior biocompatibility, biological barrier penetration, and therapeutic effects. Moreover, the modified exosomes exhibit strong bone-targeting capabilities that may improve efficacy and avoid systemic side effects, demonstrating promising translational potential. However, a review of bone-targeted exosomes is still lacking. Thus, the recently developed exosomes for bone-targeting applications in this review are focused. The biogenesis and bone-targeting regulatory functions of exosomes, the constructive strategies of modified exosomes to improve bone-targeting, and their therapeutic effects for bone-related diseases are introduced. By summarizing developments and challenges in bone-targeted exosomes, It is striven to shed light on the selection of exosome constructive strategies for different bone diseases and highlight their translational potential for future clinical orthopedics.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaoqun Li
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jin Cui
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
The Possible Role of Electrical Stimulation in Osteoporosis: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010121. [PMID: 36676745 PMCID: PMC9861581 DOI: 10.3390/medicina59010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Osteoporosis is mainly a geriatric disease with a high incidence, and the resulting spinal fractures and hip fractures cause great harm to patients. Anti-osteoporosis drugs are the main treatment for osteoporosis currently, but these drugs have potential clinical limitations and side effects, so the development of new therapies is of great significance to patients with osteoporosis. Electrical stimulation therapy mainly includes pulsed electromagnetic fields (PEMF), direct current (DC), and capacitive coupling (CC). Meanwhile, electrical stimulation therapy is clinically convenient without side effects. In recent years, many researchers have explored the use of electrical stimulation therapy for osteoporosis. Based on this, the role of electrical stimulation therapy in osteoporosis was summarized. In the future, electrical stimulation might become a new treatment for osteoporosis.
Collapse
|
9
|
Wang S, Greenbaum J, Qiu C, Gong Y, Wang Z, Lin X, Liu Y, He P, Meng X, Zhang Q, Shen H, Vemulapalli KC, Sanchez FL, Schiller MR, Xiao H, Deng H. Single-cell RNA sequencing reveals in vivo osteoimmunology interactions between the immune and skeletal systems. Front Endocrinol (Lausanne) 2023; 14:1107511. [PMID: 37051201 PMCID: PMC10083244 DOI: 10.3389/fendo.2023.1107511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND While osteoimmunology interactions between the immune and skeletal systems are known to play an important role in osteoblast development, differentiation and bone metabolism related disease like osteoporosis, such interactions in either bone microenvironment or peripheral circulation in vivo at the single-cell resolution have not yet been characterized. METHODS We explored the osteoimmunology communications between immune cells and osteoblastic lineage cells (OBCs) by performing CellphoneDB and CellChat analyses with single-cell RNA sequencing (scRNA-seq) data from human femoral head. We also explored the osteoimmunology effects of immune cells in peripheral circulation on skeletal phenotypes. We used a scRNA-seq dataset of peripheral blood monocytes (PBMs) to perform deconvolution analysis. Then weighted gene co-expression network analysis (WGCNA) was used to identify monocyte subtype-specific subnetworks. We next used cell-specific network (CSN) and the least absolute shrinkage and selection operator (LASSO) to analyze the correlation of a gene subnetwork identified by WGCNA with bone mineral density (BMD). RESULTS We constructed immune cell and OBC communication networks and further identified L-R genes, such as JAG1 and NOTCH1/2, with ossification related functions. We also found a Mono4 related subnetwork that may relate to BMD variation in both older males and postmenopausal female subjects. CONCLUSIONS This is the first study to identify numerous ligand-receptor pairs that likely mediate signals between immune cells and osteoblastic lineage cells. This establishes a foundation to reveal advanced and in-depth osteoimmunology interactions to better understand the relationship between local bone microenvironment and immune cells in peripheral blood and the impact on bone phenotypes.
Collapse
Affiliation(s)
- Shengran Wang
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Chuan Qiu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Zun Wang
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yong Liu
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xianghe Meng
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiang Zhang
- College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Krishna Chandra Vemulapalli
- Department of Orthopaedic Surgery, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Fernando L. Sanchez
- Department of Orthopaedic Surgery, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Hongmei Xiao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Hongwen Deng, ; Hongmei Xiao,
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
- *Correspondence: Hongwen Deng, ; Hongmei Xiao,
| |
Collapse
|