1
|
Jiang N, Feng H, Xie W, Gu L, Fang W, Ding T, Yuan J. Inhibition of ADAM17 attenuates high glucose-induced angiogenesis and inflammation in endothelial cells partly through down-regulation of GRO-α/CXCR2 expression: implications in peritoneal dialysis. Clin Exp Nephrol 2024; 28:1232-1240. [PMID: 39305454 PMCID: PMC11621206 DOI: 10.1007/s10157-024-02546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Angiogenesis and inflammation are key events leading to peritoneal morphologic alteration and ultrafiltration failure in patients undergoing peritoneal dialysis (PD). The current study aims to explore the role of ADAM17 in the angiogenetic and inflammatory responses of endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and treated with a high glucose-containing medium. In parallel experiments, the expression of ADAM17 in HUVECs was inhibited by SiRNA interference. The mRNA and protein expression of ADAM17, GRO-α and CXCR2 were assessed by qPCR and Western blotting, respectively. The concentrations of GRO-α, VEGF, IL-6 and TNF-α in the cellular supernatants were determined by ELISA. Tube formation and migration of HUVECs were evaluated by Matrigel and transwell migration apparatus. RESULTS High glucose increased the expression of ADAM17, CXCR2 and GRO-α in cultured HUVECs. RNA silencing of ADAM17 abolished high glucose-mediated increase of GRO-α and CXCR2, which were accompanied by reduced secretion of VEGF, IL-6, TNF-α, as well as tube formation and cell migration in HUVECs. CONCLUSIONS Inhibition of ADAM17 ameliorates high glucose-induced angiogenic and inflammatory responses in endothelial cells partly through down-regulation of GRO-α/CXCR2 expression.
Collapse
Affiliation(s)
- Na Jiang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Feng
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weizhen Xie
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Fang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Ding
- Department of Nephrology, Baoshan Site of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiangzi Yuan
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Nephrology, Baoshan Site of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ortega-Cuellar D, González-Sánchez I, Piñón-Zárate G, Cerbón MA, De la Rosa V, Franco-Juárez Y, Castell-Rodríguez A, Islas LD, Coronel-Cruz C. Protector Role of Cx30.2 in Pancreatic β-Cell against Glucotoxicity-Induced Apoptosis. BIOLOGY 2024; 13:468. [PMID: 39056663 PMCID: PMC11273625 DOI: 10.3390/biology13070468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024]
Abstract
Glucotoxicity may exert its deleterious effects on pancreatic β-cell function via a myriad of mechanisms, leading to impaired insulin secretion and, eventually, type 2 diabetes. β-cell communication requires gap junction channels to be present among these cells. Gap junctions are constituted by transmembrane proteins of the connexins (Cxs) family. Two Cx genes have been identified in β cells, Cx36 and Cx30.2. We have found evidence that the glucose concentration on its own is sufficient to regulate Cx30.2 gene expression in mouse islets. In this work, we examine the involvement of the Cx30.2 protein in the survival of β cells (RIN-m5F). METHODS RIN-m5F cells were cultured in 5 mM D-glucose (normal) or 30 mM D-glucose (high glucose) for 24 h. Cx30.2 siRNAs was used to downregulate Cx30.2 expression. Apoptosis was measured by means of TUNEL, an annexin V staining method, and the cleaved form of the caspase-3 protein was determined using Western blot. RESULTS High glucose did not induce apoptosis in RIN-m5F β cells after 24 h; interestingly, high glucose increased the Cx30.2 total protein levels. Moreover, this work found that the downregulation of Cx30.2 expression in high glucose promoted apoptosis in RIN-m5F cells. CONCLUSION The data suggest that the upregulation of Cx30.2 protects β cells from hyperglycemia-induced apoptosis. Furthermore, Cx30.2 may be a promising avenue of therapeutic investigation for the treatment of glucose metabolic disorders.
Collapse
Affiliation(s)
- Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (D.O.-C.); (Y.F.-J.)
| | - Ignacio González-Sánchez
- Departamento de Biología, Facultad de Química, UNAM, Mexico City 04510, Mexico; (I.G.-S.); (M.A.C.)
| | - Gabriela Piñón-Zárate
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (G.P.-Z.); (A.C.-R.)
| | - Marco A. Cerbón
- Departamento de Biología, Facultad de Química, UNAM, Mexico City 04510, Mexico; (I.G.-S.); (M.A.C.)
| | - Víctor De la Rosa
- Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (V.D.l.R.); (L.D.I.)
| | - Yuliana Franco-Juárez
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (D.O.-C.); (Y.F.-J.)
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (G.P.-Z.); (A.C.-R.)
| | - León D. Islas
- Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (V.D.l.R.); (L.D.I.)
| | - Cristina Coronel-Cruz
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City 04510, Mexico; (G.P.-Z.); (A.C.-R.)
| |
Collapse
|
3
|
Rodriguez D, Church KA, Smith CT, Vanegas D, Cardona SM, Muzzio IA, Nash KR, Cardona AE. Therapeutic Delivery of Soluble Fractalkine Ameliorates Vascular Dysfunction in the Diabetic Retina. Int J Mol Sci 2024; 25:1727. [PMID: 38339005 PMCID: PMC10855319 DOI: 10.3390/ijms25031727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.
Collapse
Affiliation(s)
- Derek Rodriguez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Kaira A. Church
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Chelsea T. Smith
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Sandra M. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Isabel A. Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA;
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA;
| | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| |
Collapse
|
4
|
Espinoza H, Figueroa XF. Opening of Cx43-formed hemichannels mediates the Ca 2+ signaling associated with endothelial cell migration. Biol Direct 2023; 18:52. [PMID: 37635249 PMCID: PMC10463847 DOI: 10.1186/s13062-023-00408-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
Endothelial cell migration is a key process in angiogenesis. Progress of endothelial cell migration is orchestrated by coordinated generation of Ca2+ signals through a mechanism organized in caveolar microdomains. Connexins (Cx) play a central role in coordination of endothelial cell function, directly by cell-to-cell communication via gap junction and, indirectly, by the release of autocrine/paracrine signals through Cx-formed hemichannels. However, Cx hemichannels are also permeable to Ca2+ and Cx43 can be associated with caveolin-1, a structural protein of caveolae. We proposed that endothelial cell migration relies on Cx43 hemichannel opening. Here we show a novel mechanism of Ca2+ signaling in endothelial cell migration. The Ca2+ signaling that mediates endothelial cell migration and the subsequent tubular structure formation depended on Cx43 hemichannel opening and is associated with the translocation of Cx43 with caveolae to the rear part of the cells. These findings indicate that Cx43 hemichannels play a central role in endothelial cell migration and provide new therapeutic targets for the control of deregulated angiogenesis in pathological conditions such as cancer.
Collapse
Affiliation(s)
- Hilda Espinoza
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8330025, Chile
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, 8370007, Chile
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8330025, Chile.
| |
Collapse
|
5
|
Kiełbowski K, Bakinowska E, Pawlik A. The Potential Role of Connexins in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032600. [PMID: 36768920 PMCID: PMC9916887 DOI: 10.3390/ijms24032600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell-cell messengers such as 3',5'-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among others. Therefore, they play a significant role in regulating cell homeostasis, proliferation, and differentiation. Alterations in Cx distribution, degradation, and post-translational modifications have been correlated with cancers, as well as cardiovascular and neurological diseases. Depending on the isoform, Cx have been shown either to promote or suppress the development of atherosclerosis, a progressive inflammatory disease affecting large and medium-sized arteries. Cx might contribute to the progression of the disease by enhancing endothelial dysfunction, monocyte recruitment, vascular smooth muscle cell (VSMC) activation, or by inhibiting VSMC autophagy. Inhibition or modulation of the expression of specific isoforms could suppress atherosclerotic plaque formation and diminish pro-inflammatory conditions. A better understanding of the complexity of atherosclerosis pathophysiology linked with Cx could result in developing novel therapeutic strategies. This review aims to present the role of Cx in the pathogenesis of atherosclerosis and discusses whether they can become novel therapeutic targets.
Collapse
|