1
|
Timmermans EPM, Blankevoort J, Grinwis GCM, Mesu SJ, Gehring R, Delhanty PJD, Maas PEM, Strous GJ, Mol JA. In Vivo Effects of a GHR Synthesis Inhibitor During Prolonged Treatment in Dogs. Pharmaceuticals (Basel) 2024; 17:1381. [PMID: 39459020 PMCID: PMC11510805 DOI: 10.3390/ph17101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The activation of the growth hormone receptor (GHR) is a major determinant of body growth. Defective GHR signaling, as seen in human Laron dwarfism, resulted in low plasma IGF-1 concentrations and limited growth, but also marked absence in the development of breast cancer and type 2 diabetes. In vitro, we identified a small molecule (C#1) that inhibits the translation of GHR mRNA to receptor protein. Methods: Before its application in humans as a potential anticancer drug, C#1 was tested in animals to evaluate whether it could be administered to achieve a plasma concentration in vivo that inhibits cell proliferation in vitro without causing unwanted toxicity. To evaluate the efficacy and toxicity of C#1, a group of six intact female Beagle dogs was treated daily each morning for 90 days with an oral solution of C#1 in Soiae oleum emulgatum at a dose of 0.1 mg/kg body weight. During treatment, dogs were closely monitored clinically, and blood samples were taken to measure plasma C#1 concentrations, complete blood counts (CBC), clinical chemistry, and endocrinology. At the end of the treatment, dogs were euthanized for gross and histopathological analysis. An additional group of six female Beagle dogs was included for statistical reasons and only evaluated for efficacy during treatment for 30 days. Results: Daily administration of C#1 resulted in a constant mean plasma concentration of approximately 50 nmol/L. In both groups, two out of six dogs developed decreased appetite and food refusal after 4-5 weeks, and occasionally diarrhea. No significant effects in CBC or routine clinical chemistry were seen. Plasma IGF-1 concentrations, used as biomarkers for defective GHR signaling, significantly decreased by 31% over time. As plasma growth hormone (GH) concentrations decreased by 51% as well, no proof of GHR dysfunction could be established. The measured 43% decrease in plasma acylated/non-acylated ghrelin ratios will also lower plasma GH concentrations by reducing activation of the GH secretagogue receptor (GHSR). C#1 did not directly inhibit the GHSR in vivo, as shown in vitro. There were no significant effects on glucose, lipid, or folate/homocysteine metabolism. Conclusions: It is concluded that with daily dosing of 0.1 mg C#1/kg body weight, the induction of toxic effects prevented further increases in dosage. Due to the concomitant decrease in both IGF-1 and GH, in vivo inhibition of GHR could not be confirmed. Since the concept of specific inhibition of GHR synthesis by small molecules remains a promising strategy, searching for compounds similar to C#1 with lower toxicity should be worthwhile.
Collapse
Affiliation(s)
- Elpetra P. M. Timmermans
- Department Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands (J.A.M.)
| | - Joëlle Blankevoort
- Department Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands (J.A.M.)
| | - Guy C. M. Grinwis
- Department of Biomolecular Health Sciences, Pathology Division, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands;
| | - Sietske J. Mesu
- Department Population Health Sciences, Institute for Risk assessment Sciences (IRAS), 3584 CM Utrecht, The Netherlands; (S.J.M.); (R.G.)
| | - Ronette Gehring
- Department Population Health Sciences, Institute for Risk assessment Sciences (IRAS), 3584 CM Utrecht, The Netherlands; (S.J.M.); (R.G.)
| | - Patric J. D. Delhanty
- Department Internal Medicine, Endocrinology, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands;
| | - Peter E. M. Maas
- Specs Compound Handling B.V., 2712 PB Zoetermeer, The Netherlands;
| | - Ger J. Strous
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands;
| | - Jan A. Mol
- Department Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands (J.A.M.)
| |
Collapse
|
2
|
Zhu J, Zhou T, Menggen M, Aimulajiang K, Wen H. Ghrelin regulating liver activity and its potential effects on liver fibrosis and Echinococcosis. Front Cell Infect Microbiol 2024; 13:1324134. [PMID: 38259969 PMCID: PMC10800934 DOI: 10.3389/fcimb.2023.1324134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Ghrelin widely exists in the central nervous system and peripheral organs, and has biological activities such as maintaining energy homeostasis, regulating lipid metabolism, cell proliferation, immune response, gastrointestinal physiological activities, cognition, memory, circadian rhythm and reward effects. In many benign liver diseases, it may play a hepatoprotective role against steatosis, chronic inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress and apoptosis, and improve liver cell autophagy and immune response to improve disease progression. However, the role of Ghrelin in liver Echinococcosis is currently unclear. This review systematically summarizes the molecular mechanisms by which Ghrelin regulates liver growth metabolism, immune-inflammation, fibrogenesis, proliferation and apoptosis, as well as its protective effects in liver fibrosis diseases, and further proposes the role of Ghrelin in liver Echinococcosis infection. During the infectious process, it may promote the parasitism and survival of parasites on the host by improving the immune-inflammatory microenvironment and fibrosis state, thereby accelerating disease progression. However, there is currently a lack of targeted in vitro and in vivo experimental evidence for this viewpoint.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tanfang Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Meng Menggen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Apaydin T, Zonis S, Zhou C, Valencia CW, Barrett R, Strous GJ, Mol JA, Chesnokova V, Melmed S. WIP1 is a novel specific target for growth hormone action. iScience 2023; 26:108117. [PMID: 37876819 PMCID: PMC10590974 DOI: 10.1016/j.isci.2023.108117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
DNA damage repair (DDR) is mediated by phosphorylating effectors ATM kinase, CHK2, p53, and γH2AX. We showed earlier that GH suppresses DDR by suppressing pATM, resulting in DNA damage accumulation. Here, we show GH acting through GH receptor (GHR) inducing wild-type p53-inducible phosphatase 1 (WIP1), which dephosphorylated ATM and its effectors in normal human colon cells and three-dimensional human intestinal organoids. Mice bearing GH-secreting xenografts exhibited induced colon WIP1 with suppressed pATM and γH2AX. WIP1 was also induced in buffy coats derived from patients with elevated GH from somatotroph adenomas. In contrast, decreased colon WIP1 was observed in GHR-/- mice. WIP1 inhibition restored ATM phosphorylation and reversed GH-induced DNA damage. We elucidated a novel GH signaling pathway activating Src/AMPK to trigger HIPK2 nuclear-cytoplasmic relocation and suppressing WIP1 ubiquitination. Concordantly, blocking either AMPK or Src abolished GH-induced WIP1. We identify WIP1 as a specific target for GH-mediated epithelial DNA damage accumulation.
Collapse
Affiliation(s)
- Tugce Apaydin
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Svetlana Zonis
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cuiqi Zhou
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Wong Valencia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ger J. Strous
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, the Netherlands
| | - Vera Chesnokova
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shlomo Melmed
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
van der Krift F, Zijlmans DW, Shukla R, Javed A, Koukos PI, Schwarz LLE, Timmermans-Sprang EP, Maas PE, Gahtory D, van den Nieuwboer M, Mol JA, Strous GJ, Bonvin AM, van der Stelt M, Veldhuizen EJ, Weingarth M, Vermeulen M, Klumperman J, Maurice MM. A novel antifolate suppresses growth of FPGS-deficient cells and overcomes methotrexate resistance. Life Sci Alliance 2023; 6:e202302058. [PMID: 37591722 PMCID: PMC10435995 DOI: 10.26508/lsa.202302058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency.
Collapse
Affiliation(s)
- Felix van der Krift
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dick W Zijlmans
- Department of Molecular Biology and Oncode Institute, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Rhythm Shukla
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ali Javed
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Panagiotis I Koukos
- Computational Structural Biology, Bijvoet Centre for Biomolecular Research, Faculty of Science, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Laura LE Schwarz
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Peter Em Maas
- Specs Compound Handling B.V., Zoetermeer, The Netherlands
| | | | | | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Ger J Strous
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexandre Mjj Bonvin
- Computational Structural Biology, Bijvoet Centre for Biomolecular Research, Faculty of Science, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology and Oncode Institute, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Edwin Ja Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology and Oncode Institute, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Madelon M Maurice
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Zhang Y, Li J, Chu P, Shang R, Yin S, Wang T. Construction of a high-density genetic linkage map and QTL mapping of growth and cold tolerance traits in Takifugu fasciatus. BMC Genomics 2023; 24:645. [PMID: 37891474 PMCID: PMC10604518 DOI: 10.1186/s12864-023-09740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Takifugu fasciatus is an aquaculture species with high economic value. In recent years, problems such as environmental pollution and inbreeding have caused a serious decline in T. fasciatus germplasm resources. In this study, a high-density genetic linkage map was constructed by whole-genome resequencing. The map consists of 4891 bin markers distributed across 22 linkage groups (LGs), with a total genetic coverage of 2381.353 cM and a mean density of 0.535 cM. Quantitative trait locus (QTL) localization analysis showed that a total of 19 QTLs associated with growth traits of T. fasciatus in the genome-wide significance threshold range, distributed on 11 LGs. In addition, 11 QTLs associated with cold tolerance traits were identified, each scattered on a different LG. Furthermore, we used QTL localization analysis to screen out three candidate genes (IGF1, IGF2, ADGRB) related to growth in T. fasciatus. Meanwhile, we screened three candidate genes (HSP90, HSP70, and HMGB1) related to T. fasciatus cold tolerance. Our study can provide a theoretical basis for the selection and breeding of cold-tolerant or fast-growing T. fasciatus.
Collapse
Affiliation(s)
- Ying Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Peng Chu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ruhua Shang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|