1
|
Appunni S, Rubens M, Ramamoorthy V, Saxena A, McGranaghan P, Khosla A, Doke M, Chaparro S, Jimenez J. Molecular remodeling in comorbidities associated with heart failure: a current update. Mol Biol Rep 2024; 51:1092. [PMID: 39460797 PMCID: PMC11512903 DOI: 10.1007/s11033-024-10024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Recent advances in genomics and proteomics have helped in understanding the molecular mechanisms and pathways of comorbidities and heart failure. In this narrative review, we reviewed molecular alterations in common comorbidities associated with heart failure such as obesity, diabetes mellitus, systemic hypertension, pulmonary hypertension, coronary artery disease, hypercholesteremia and lipoprotein abnormalities, chronic kidney disease, and atrial fibrillation. We searched the electronic databases, PubMed, Ovid, EMBASE, Google Scholar, CINAHL, and PhysioNet for articles without time restriction. Although the association between comorbidities and heart failure is already well established, recent studies have explored the molecular pathways in much detail. These molecular pathways demonstrate how novels drugs for heart failure works with respect to the pathways associated with comorbidities. Understanding the altered molecular milieu in heart failure and associated comorbidities could help to develop newer medications and targeted therapies that incorporate these molecular alterations as well as key molecular variations across individuals to improve therapeutic outcomes. The molecular alterations described in this study could be targeted for novel and personalized therapeutic approaches in the future. This knowledge is also critical for developing precision medicine strategies to improve the outcomes for patients living with these conditions.
Collapse
Affiliation(s)
| | - Muni Rubens
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Anshul Saxena
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Center for Advanced Analytics, Baptist Health South Florida, Miami, FL, USA
| | - Peter McGranaghan
- Semmelweis University, Budapest, Hungary.
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 10117, Berlin, Germany.
| | - Atulya Khosla
- William Beaumont University Hospital, Royal Oak, MI, USA
| | | | - Sandra Chaparro
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA
| | - Javier Jimenez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA.
- Advance Heart Failure and Pulmonary Hypertension, South Miami Hospital, Baptist Health South, Miami, FL, USA.
| |
Collapse
|
2
|
Nan W, Yin J, Hao W, Meng H, Wu J, Yin X, Wu H. Cardamonin protects against diabetic cardiomyopathy by activating macrophage NRF2 signaling through molecular interaction with KEAP1. Food Funct 2024. [PMID: 39431579 DOI: 10.1039/d4fo03543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Diabetic cardiomyopathy (DCM) contributes to a large proportion of heart failure incidents in the diabetic population, but effective therapeutic approaches are rare. Cardamonin (CAD), a flavonoid found in Alpinia, possesses anti-inflammatory and anti-oxidative activities. Here we report a profound protective effect of CAD on DCM in a mouse model of type 2 diabetes induced by streptozotocin and a high-fat diet, in which gavage with CAD improved hyperglycemia and glucose intolerance and mitigated diabetic cardiac injuries including cardiac dysfunction, hypertrophy, apoptotic cell death and infiltration of inflammatory cells, especially M1 polarized macrophages. To verify whether CAD could protect against cardiomyocyte injury through inhibiting macrophage M1 polarization, M1 polarized macrophages were treated with CAD, followed by washing out and co-culturing with cardiomyocytes, showing that CAD remarkably inhibited macrophage M1 polarization and the following cardiomyocyte injury, along with activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant signaling pathway. Molecular docking and surface plasmon resonance assays found Kelch-like ECH-associated protein 1 (KEAP1) as the molecular target of CAD. Both CAD and the Kelch domain inhibitor Ki696 promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2). This work may provide CAD as a novel NRF2 activator in future interventions for DCM.
Collapse
Affiliation(s)
- Wenshan Nan
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Huali Meng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, China
| | - Xiao Yin
- Department of Endocrinology and Metabolic Diseases, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Shandong Provincial Engineering and Technology Research Center for Food Safety Monitoring and Evaluation, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Zheng ZQ, Cai DH, Song YF. Identification of immune feature genes and intercellular profiles in diabetic cardiomyopathy. World J Diabetes 2024; 15:2093-2110. [DOI: 10.4239/wjd.v15.i10.2093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role. The immunological molecular mechanisms underlying DCM are poorly understood.
AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes (IFGs).
METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing (RNA-seq) datasets. Single-sample gene set enrichment analysis (ssGSEA) facilitated the analysis of immune cell infiltration. Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort. Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques. Additionally, single-cell RNA-seq data provided deeper insights into cellular profiles and interactions.
RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes. Four IFGs showed good diagnostic and prognostic values in the validation cohort: Proenkephalin (Penk) and retinol binding protein 7 (Rbp7), which were highly expressed, and glucagon receptor and inhibin subunit alpha, which were expressed at low levels in DCM patients (all area under the curves > 0.9). SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells. High expression of Penk (P < 0.0001) and Rbp7 (P = 0.001) was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro. Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM, especially between mesenchymal cells and macrophages.
CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers, and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis.
Collapse
Affiliation(s)
- Ze-Qun Zheng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Department of Cardiology, Clinical Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Di-Hui Cai
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Yong-Fei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| |
Collapse
|
4
|
Xia J, Li X, Bai C, Han X. Research Progress of Coenzyme Q in Diabetes Mellitus and Its Common Complications. Diabetes Metab Syndr Obes 2024; 17:3629-3641. [PMID: 39376660 PMCID: PMC11457790 DOI: 10.2147/dmso.s481690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
Coenzyme Q has garnered significant attention due to its potential role in enhancing cellular energy production and its antioxidant properties. We delve into the therapeutic potential of coenzyme Q in managing diabetes mellitus and its complications, highlighting its capacity to improve mitochondrial function, reduce inflammation and oxidative stress, and correct lipid profiles. Coenzyme Q has shown promise in ameliorating insulin resistance and alleviating complications such as diabetic peripheral neuropathy, kidney disease, retinopathy, and cardiomyopathy. However, its clinical application is limited by poor bio-availability. This review also provides a comprehensive overview of current therapeutic strategies for diabetes complications involving coenzyme Q, including stimulating endogenous synthesis and utilizing carrier transport systems, offering insights into mechanisms for enhancing coenzyme Q bio-availability. These findings suggest that, with improved delivery methods, coenzyme Q could become a valuable adjunct therapy in the management of diabetes mellitus.
Collapse
Affiliation(s)
- Jingdong Xia
- Affiliated Hospital of Chifeng University, Chifeng, The Inner Mongol Autonomous Region, Chifeng, People’s Republic of China
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng, People’s Republic of China
| | - Xiudan Li
- Affiliated Hospital of Chifeng University, Chifeng, The Inner Mongol Autonomous Region, Chifeng, People’s Republic of China
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng, People’s Republic of China
| | - Chunying Bai
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, Chifeng, People’s Republic of China
| | - Xuchen Han
- Affiliated Hospital of Chifeng University, Chifeng, The Inner Mongol Autonomous Region, Chifeng, People’s Republic of China
| |
Collapse
|
5
|
Yang M, Bi W, Zhang Z. Identification and validation of CCL5 as a key gene in HIV infection and pulmonary arterial hypertension. Front Cardiovasc Med 2024; 11:1417701. [PMID: 39119185 PMCID: PMC11306045 DOI: 10.3389/fcvm.2024.1417701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background The relationship between human immunodeficiency virus (HIV) infection and pulmonary arterial hypertension (PAH) has garnered significant scrutiny. Individuals with HIV infection have a higher risk of developing PAH. However, the specific mechanism of HIV-associated PAH remains unclear. Our study aims at investigating the shared biomarkers in HIV infection and PAH and predicting the potential therapeutic target for HIV-associated PAH. Methods Data for HIV infection and PAH were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) analysis was performed to detect shared genes in HIV infection and PAH. Enrichment analysis was conducted to identify the function of common DEGs. Protein-protein interaction (PPI) analysis was used to detect key genes. These crucial genes were subsequently verified by RT-qPCR. Finally, candidate drugs were identified by using the Drug Signatures Database (DSigDB). Results Nineteen common DEGs were identified in HIV infection and PAH. Enrichment analysis exhibited that the functions of these genes were mainly enriched in inflammatory responses, mainly including cellular immunity and interaction between viral proteins and cytokines. By constructing PPI networks, we identified the key gene CC-type chemokine ligand 5 (CCL5), and we verified that CCL5 was highly expressed in hypoxia induced human pulmonary artery endothelial cells (hPAECs) and human pulmonary artery smooth muscle cells (hPASMCs). In addition, we predicted 10 potential drugs targeting CCL5 by Autodock Vina. Conclusion This study revealed that CCL5 might be a common biomarker of HIV infection and PAH and provided a new therapeutic target for HIV-associated PAH. However, further clinical validation is still indispensable.
Collapse
Affiliation(s)
- Mengyue Yang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wen Bi
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijie Zhang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
6
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
7
|
Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, Jin L, Zhu M, Zhang L. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e516. [PMID: 38617433 PMCID: PMC11014467 DOI: 10.1002/mco2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/16/2024] Open
Abstract
At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haoran Hu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zheting Liu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunchao Huang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qian Liu
- National Demonstration Center for Experimental Traditional Chinese Medicines Education (Zhejiang Chinese Medical University)College of Pharmaceutical Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Jin
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meifei Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Ling Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
8
|
Break MKB, Syed RU, Hussein W, Alqarni S, Magam SM, Nawaz M, Shaikh S, Otaibi AA, Masood N, Younes KM. Noncoding RNAs as therapeutic targets in autophagy-related diabetic cardiomyopathy. Pathol Res Pract 2024; 256:155225. [PMID: 38442448 DOI: 10.1016/j.prp.2024.155225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Diabetic cardiomyopathy, a multifaceted complication of diabetes mellitus, remains a major challenge in clinical management due to its intricate pathophysiology. Emerging evidence underscores the pivotal role of autophagy dysregulation in the progression of diabetic cardiomyopathy, providing a novel avenue for therapeutic intervention. Noncoding RNAs (ncRNAs), a diverse class of regulatory molecules, have recently emerged as promising candidates for targeted therapeutic strategies. The exploration of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) reveal their intricate regulatory networks in modulating autophagy and influencing the pathophysiological processes associated with diabetic cardiomyopathy. The nuanced understanding of the molecular mechanisms underlying ncRNA-mediated autophagic regulation offers a rationale for the development of precise and effective therapeutic interventions. Harnessing the regulatory potential of ncRNAs presents a promising frontier for the development of targeted and personalized therapeutic strategies, aiming to ameliorate the burden of diabetic cardiomyopathy in affected individuals. As research in this field advances, the identification and validation of specific ncRNA targets hold immense potential for the translation of these findings into clinically viable interventions, ultimately improving outcomes for patients with diabetic cardiomyopathy. This review encapsulates the current understanding of the intricate interplay between autophagy and diabetic cardiomyopathy, with a focus on the potential of ncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia.
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Aden University, Aden 6075, Yemen
| | - Saad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Sami M Magam
- Basic Science Department, Preparatory Year, University of Hail, Hail City 1560, Kingdom of Saudi Arabia; Department of Marine Chemistry and Pollution, Faculty of Marine Science and Environment, Hodeidah University, Hodeidah City, Yemen
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sameer Shaikh
- Division of Oral Diagnosis and Oral Medicine, Department of OMFS and Diagnostic Sciences, College of Dentistry, University of Hail, Ha'il, Saudi Arabia
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
9
|
Praveen M, Ullah I, Buendia R, Khan IA, Sayed MG, Kabir R, Bhat MA, Yaseen M. Exploring Potentilla nepalensis Phytoconstituents: Integrated Strategies of Network Pharmacology, Molecular Docking, Dynamic Simulations, and MMGBSA Analysis for Cancer Therapeutic Targets Discovery. Pharmaceuticals (Basel) 2024; 17:134. [PMID: 38276007 PMCID: PMC10819299 DOI: 10.3390/ph17010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Potentilla nepalensis belongs to the Rosaceae family and has numerous therapeutic applications as potent plant-based medicine. Forty phytoconstituents (PCs) from the root and stem through n-hexane (NR and NS) and methanolic (MR and MS) extracts were identified in earlier studies. However, the PCs affecting human genes and their roles in the body have not previously been disclosed. In this study, we employed network pharmacology, molecular docking, molecular dynamics simulations (MDSs), and MMGBSA methodologies. The SMILES format of PCs from the PubChem was used as input to DIGEP-Pred, with 764 identified as the inducing genes. Their enrichment studies have shown inducing genes' gene ontology descriptions, involved pathways, associated diseases, and drugs. PPI networks constructed in String DB and network topological analyzing parameters performed in Cytoscape v3.10 revealed three therapeutic targets: TP53 from MS-, NR-, and NS-induced genes; HSPCB and Nf-kB1 from MR-induced genes. From 40 PCs, two PCs, 1b (MR) and 2a (MS), showed better binding scores (kcal/mol) with p53 protein of -8.6 and -8.0, and three PCs, 3a, (NR) 4a, and 4c (NS), with HSP protein of -9.6, -8.7, and -8.2. MDS and MMGBSA revealed these complexes are stable without higher deviations with better free energy values. Therapeutic targets identified in this study have a prominent role in numerous cancers. Thus, further investigations such as in vivo and in vitro studies should be carried out to find the molecular functions and interlaying mechanism of the identified therapeutic targets on numerous cancer cell lines in considering the PCs of P. nepalensis.
Collapse
Affiliation(s)
- Mallari Praveen
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak 484886, India;
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan; (I.U.); (M.G.S.); (R.K.)
| | - Ricardo Buendia
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Puebla 72810, Mexico;
| | - Imran Ahmad Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Mian Gul Sayed
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan; (I.U.); (M.G.S.); (R.K.)
| | - Rahmul Kabir
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan; (I.U.); (M.G.S.); (R.K.)
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan; (I.U.); (M.G.S.); (R.K.)
| |
Collapse
|
10
|
Zhang M, Wang X, Chen W, Liu W, Xin J, Yang D, Zhang Z, Zheng X. Integrated bioinformatics analysis for identifying key genes and pathways in female and male patients with dilated cardiomyopathy. Sci Rep 2023; 13:8977. [PMID: 37268658 DOI: 10.1038/s41598-023-36117-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure, and males are more likely to suffer from DCM than females. This research aimed at exploring possible DCM-associated genes and their latent regulatory effects in female and male patients. WGCNA analysis found that in the yellow module, 341 and 367 key DEGs were identified in females and males, respectively. A total of 22 hub genes in females and 17 hub genes in males were identified from the PPI networks of the key DEGs based on Metascape database. And twelve and eight potential TFs of the key DEGs were also identified in females and males, respectively. Eight miRNAs of 15 key DEGs were screened in both females and males, which may be differentially expressed in females and males. Dual-luciferase reporter assay demonstrated that miR-21-5P could directly target the key gene MATN2. Furthermore, Sex differences in KEGG pathways were identified. Both KOBAS and GSEA analysis identified 19 significantly enriched pathways related to immune response in both females and males, and the TGF-β signaling pathway was exclusively identified in males. Network pharmacology analysis revealed that seven key DEGs were potential targets for the treatment of DCM, of which the OLR1 gene was only identified in males, the expression levels of the seven genes were verified by RT-PCR. The above results could offer a novel understanding of sex differences in key genes and pathways in DCM progression.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xinzhou Wang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Wenbo Chen
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jile Xin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Debao Yang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Zhongyuan Zhang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|