1
|
Läppchen T, Bilinska A, Pilatis E, Menéndez E, Imlimthan S, Moon ES, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E. Tailoring Fibroblast-Activation Protein Targeting for Theranostics: A Comparative Preclinical Evaluation of the 68Ga- and 177Lu-Labeled Monomeric and Dimeric Fibroblast-Activation Protein Inhibitors DOTA.SA.FAPi and DOTAGA.(SA.FAPi) 2. Molecules 2024; 29:3093. [PMID: 38999044 PMCID: PMC11243320 DOI: 10.3390/molecules29133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND FAP radiopharmaceuticals show promise for cancer diagnosis; however, their limited tumor residency hinders treatment. This study compared two FAPi derivatives, DOTA.SA.FAPi and DOTAGA.(SA.FAPi)2, labeled with gallium-68 and lutetium-177, aiming to determine an optimum combination for creating theranostic pairs. METHODS The radiotracers were studied for lipophilicity, binding to human serum proteins, and binding to human cancer-associated fibroblasts (CAFs) in vitro, including saturation and internalization/externalization studies. PET/SPECT/CT and biodistribution studies were conducted in PC3 and U87MG xenografts for [68Ga]Ga-DOTA.SA.FAPi and [68Ga]Ga-DOTAGA.(SA.FAPi)2. [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2, were evaluated in PC3 xenografts. Biodistribution studies of [68Ga]Ga-DOTA.SA.FAPi were performed in healthy male and female mice. RESULTS All radiotracers exhibited strong binding to FAP. Their internalization rate was fast while only [177Lu]Lu-DOTAGA.(SA.FAPi)2 was retained longer in CAFs. [68Ga]Ga-DOTAGA.(SA.FAPi)2 and [177Lu]Lu-DOTAGA.(SA.FAPi)2 displayed elevated lipophilicity and affinity for human serum proteins compared to [68Ga]Ga-DOTA.SA.FAPi and [177Lu]Lu-DOTA.SA.FAPi. In vivo studies revealed slower washout of [68Ga]Ga-DOTAGA.(SA.FAPi)2 within 3 h compared to [68Ga]Ga-DOTA.SA.FAPi. The tumor-to-tissue ratios of [68Ga]Ga-DOTAGA.(SA.FAPi)2 versus [68Ga]Ga-DOTA.SA.FAPi did not exhibit any significant differences. [177Lu]Lu-DOTAGA.(SA.FAPi)2 maintained a significant tumor uptake even after 96 h p.i. compared to [177Lu]Lu-DOTA.SA.FAPi. CONCLUSIONS Dimeric compounds hold promise for therapy, while monomers are better suited for diagnostics. Finding the right combination is essential for effective disease management.
Collapse
Affiliation(s)
- Tilman Läppchen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Adrianna Bilinska
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Eirinaios Pilatis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Elena Menéndez
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Surachet Imlimthan
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Euy Sung Moon
- Department of Chemistry—TRIGA Site, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Frank Rösch
- Department of Chemistry—TRIGA Site, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Eleni Gourni
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| |
Collapse
|
2
|
Niu T, Fan M, Lin B, Gao F, Tan B, Du X. Current clinical application of lutetium‑177 in solid tumors (Review). Exp Ther Med 2024; 27:225. [PMID: 38596660 PMCID: PMC11002837 DOI: 10.3892/etm.2024.12514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024] Open
Abstract
Radionuclide-based therapy represents a novel treatment regimen for tumors. Among these therapies, lutetium-177 (177Lu) has gained significant attention due to its stability and safety, as well as its ability to emit both γ and β rays, allowing for both imaging with single photon emission computed tomography and tumor treatment. As a result, 177Lu can be used for both diagnosis and treatment for diseases such as prostatic and gastric cancer. Therefore, based on the available data, the present review provides a brief overview of the clinical applications of 177Lu-targeted radionuclide therapy in metastatic prostate cancer, neuroendocrine tumors and other types of solid tumors, and highlights the current therapeutic effect, reduction in damage to normal tissues and future research directions, including the development of new nuclides and the application of more nuclides in different tumors. In the future, such treatments could be used in more tumors.
Collapse
Affiliation(s)
- Tingting Niu
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Mi Fan
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Binwei Lin
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Feng Gao
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaobo Du
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
3
|
Criss CR, Makary MS. Liver-Directed Locoregional Therapies for Neuroendocrine Liver Metastases: Recent Advances and Management. Curr Oncol 2024; 31:2076-2091. [PMID: 38668057 PMCID: PMC11049250 DOI: 10.3390/curroncol31040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroendocrine tumors (NETs) are a heterogeneous class of cancers, predominately occurring in the gastroenteropancreatic system, which pose a growing health concern with a significant rise in incidence over the past four decades. Emerging from neuroendocrine cells, these tumors often elicit paraneoplastic syndromes such as carcinoid syndrome, which can manifest as a constellation of symptoms significantly impacting patients' quality of life. The prognosis of NETs is influenced by their tendency for metastasis, especially in cases involving the liver, where the estimated 5-year survival is between 20 and 40%. Although surgical resection remains the preferred curative option, challenges emerge in cases of neuroendocrine tumors with liver metastasis (NELM) with multifocal lobar involvement, and many patients may not meet the criteria for surgery. Thus, minimally invasive and non-surgical treatments, such as locoregional therapies, have surfaced. Overall, these approaches aim to prioritize symptom relief and aid in overall tumor control. This review examines locoregional therapies, encompassing catheter-driven procedures, ablative techniques, and radioembolization therapies. These interventions play a pivotal role in enhancing progression-free survival and managing hormonal symptoms, contributing to the dynamic landscape of evolving NELM treatment. This review meticulously explores each modality, presenting the current state of the literature on their utilization and efficacy in addressing NELM.
Collapse
Affiliation(s)
- Cody R. Criss
- Department of Internal Medicine, OhioHealth Riverside Methodist Hospital, Columbus, OH 43214, USA;
| | - Mina S. Makary
- Division of Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43240, USA
| |
Collapse
|
4
|
Trautwein NF, Hinterleitner C, Kiefer LS, Singer S, Mattern S, Schwenck J, Reischl G, Sipos B, Lauer UM, Dittmann H, Zender L, la Fougère C, Hinterleitner M. Radiosensitizing Favors Response to Peptide Receptor Radionuclide Therapy in Patients With Highly Proliferative Neuroendocrine Malignancies: Preliminary Evidence From a Clinical Pilot Study. Clin Nucl Med 2024; 49:207-214. [PMID: 38271237 PMCID: PMC11444366 DOI: 10.1097/rlu.0000000000005006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/30/2023] [Indexed: 01/27/2024]
Abstract
AIM/INTRODUCTION Peptide receptor radionuclide therapy (PRRT) represents a cornerstone of treatment regimens for patients with low proliferative neuroendocrine tumors (NETs). However, in patients experiencing somatostatin receptor-positive NET with higher proliferation rates, a value and potential therapeutic benefit of PRRT as part of multimodal treatment approaches and potentially with addition of radiosensitizing agents has not yet been established. PATIENTS AND METHODS In this study, 20 patients with histologically confirmed gastroenteropancreatic (GEP) NET with proliferation rates (Ki67) between 15% and 55% were treated either with PRRT only (n = 10) or with a combination therapy (n = 10) comprising PRRT and capecitabine/temozolomide (CAP/TEM) for at least 2 consecutive cycles. RESULTS Disease control rate in patients treated with PRRT alone was 60% (40% stable disease and 20% partial response). Strikingly, in patients treated with PRRT in combination with radiosensitization (CAP/TEM), the disease control rate was 90% (20% stable disease and 70% partial response). The median progression-free survival in the PRRT only group was 12 months, whereas the median progression-free survival in the PRRT + CAP/TEM group was 26 months and has not been yet reached for all patients in the group during the observation period. The median disease-specific survival for patients with PRRT alone was 51 months, whereas this end point was not yet reached in the PRRT + CAP/TEM group. Moreover, the PRRT + CAP/TEM group showed a significantly higher reduction of SSTR-PET-based metabolic tumor volume and chromogranin A levels compared with the PRRT only group. Importantly, adverse events of all grades did not differ between both groups. CONCLUSIONS PRRT + CAP/TEM represents a highly promising and well-tolerated therapeutic regimen for patients experiencing somatostatin receptor-positive NET with higher (Ki67 ≥ 15%) proliferation rate. Prospective randomized clinical trials are warranted.
Collapse
Affiliation(s)
- Nils Florian Trautwein
- From the Department of Nuclear Medicine and Clinical Molecular Imaging
- ENETS Center of Excellence, University Hospital Tuebingen
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen
| | - Clemens Hinterleitner
- ENETS Center of Excellence, University Hospital Tuebingen
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy,’ University of Tuebingen; Tuebingen, Germany
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lena Sophie Kiefer
- From the Department of Nuclear Medicine and Clinical Molecular Imaging
- Departments of Diagnostic and Interventional Radiology
| | - Stephan Singer
- ENETS Center of Excellence, University Hospital Tuebingen
- Pathology, University Hospital Tuebingen
| | | | - Johannes Schwenck
- From the Department of Nuclear Medicine and Clinical Molecular Imaging
- ENETS Center of Excellence, University Hospital Tuebingen
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy,’ University of Tuebingen; Tuebingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy,’ University of Tuebingen; Tuebingen, Germany
| | - Bence Sipos
- ENETS Center of Excellence, University Hospital Tuebingen
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen
| | - Ulrich M. Lauer
- ENETS Center of Excellence, University Hospital Tuebingen
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy,’ University of Tuebingen; Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Helmut Dittmann
- From the Department of Nuclear Medicine and Clinical Molecular Imaging
- ENETS Center of Excellence, University Hospital Tuebingen
| | - Lars Zender
- ENETS Center of Excellence, University Hospital Tuebingen
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy,’ University of Tuebingen; Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Christian la Fougère
- From the Department of Nuclear Medicine and Clinical Molecular Imaging
- ENETS Center of Excellence, University Hospital Tuebingen
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy,’ University of Tuebingen; Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Martina Hinterleitner
- ENETS Center of Excellence, University Hospital Tuebingen
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy,’ University of Tuebingen; Tuebingen, Germany
| |
Collapse
|
5
|
Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, de Blois E. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem 2024; 9:9. [PMID: 38319526 PMCID: PMC10847084 DOI: 10.1186/s41181-024-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.
Collapse
Affiliation(s)
- Eline L Hooijman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Christyani G, Carswell M, Qin S, Kim W. An Overview of Advances in Rare Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:1201. [PMID: 38256274 PMCID: PMC10815984 DOI: 10.3390/ijms25021201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as the leading global cause of mortality, with rare cancer comprising 230 distinct subtypes characterized by infrequent incidence. Despite the inherent challenges in addressing the diagnosis and treatment of rare cancers due to their low occurrence rates, several biomedical breakthroughs have led to significant advancement in both areas. This review provides a comprehensive overview of state-of-the-art diagnostic techniques that encompass new-generation sequencing and multi-omics, coupled with the integration of artificial intelligence and machine learning, that have revolutionized rare cancer diagnosis. In addition, this review highlights the latest innovations in rare cancer therapeutic options, comprising immunotherapy, targeted therapy, transplantation, and drug combination therapy, that have undergone clinical trials and significantly contribute to the tumor remission and overall survival of rare cancer patients. In this review, we summarize recent breakthroughs and insights in the understanding of rare cancer pathophysiology, diagnosis, and therapeutic modalities, as well as the challenges faced in the development of rare cancer diagnosis data interpretation and drug development.
Collapse
Affiliation(s)
| | | | - Sisi Qin
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| |
Collapse
|
7
|
Fan S, Zheng H, Zhan Y, Luo J, Zang H, Wang H, Wang W, Xu Y. Somatostatin receptor2 (SSTR2) expression, prognostic implications, modifications and potential therapeutic strategies associates with head and neck squamous cell carcinomas. Crit Rev Oncol Hematol 2024; 193:104223. [PMID: 38036157 DOI: 10.1016/j.critrevonc.2023.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) constitute a heterogeneous cluster of tumors celebrated for their predisposition to metastasize and exhibit local recurrence. Recent explorations have illuminated the intricate involvement of Somatostatin Receptor 2 (SSTR2), a growth-regulatory receptor traditionally classified as a tumor suppressor, yet concurrently implicated in bolstering specific tumor phenotypes. Advances in the realm of SSTR2 investigation within HNSCC, with a specific spotlight on laryngeal squamous cell carcinomas (LSCC), tongue squamous cell carcinomas (TSCC), and nasopharyngeal carcinomas (NPC), have been established. This study aims to provide a comprehensive overview of SSTR2 expression patterns, prognostic implications, distinctive signaling pathways, epigenetic modifications, and potential therapeutic strategies associated with SSTR2 in HNSCC.
Collapse
Affiliation(s)
- Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Huilin Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Weiyuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China.
| |
Collapse
|
8
|
Smalley I, Boire A, Brastianos P, Kluger HM, Hernando-Monge E, Forsyth PA, Ahmed KA, Smalley KSM, Ferguson S, Davies MA, Glitza Oliva IC. Leptomeningeal disease in melanoma: An update on the developments in pathophysiology and clinical care. Pigment Cell Melanoma Res 2024; 37:51-67. [PMID: 37622466 DOI: 10.1111/pcmr.13116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Leptomeningeal disease (LMD) remains a major challenge in the clinical management of metastatic melanoma patients. Outcomes for patient remain poor, and patients with LMD continue to be excluded from almost all clinical trials. However, recent trials have demonstrated the feasibility of conducting prospective clinical trials in these patients. Further, new insights into the pathophysiology of LMD are identifying rational new therapeutic strategies. Here we present recent advances in the understanding of, and treatment options for, LMD from metastatic melanoma. We also annotate key areas of future focus to accelerate progress for this challenging but emerging field.
Collapse
Affiliation(s)
- Inna Smalley
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla Brastianos
- Department of Medicine, MGH Cancer Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Eva Hernando-Monge
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Peter A Forsyth
- Department of Neuro-Oncology and Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kamran A Ahmed
- Department of Radiation Oncology and Immunology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Richter S, Steenblock C, Fischer A, Lemm S, Ziegler CG, Bechmann N, Nölting S, Pietzsch J, Ullrich M. Improving susceptibility of neuroendocrine tumors to radionuclide therapies: personalized approaches towards complementary treatments. Theranostics 2024; 14:17-32. [PMID: 38164150 PMCID: PMC10750207 DOI: 10.7150/thno.87345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/30/2023] [Indexed: 01/03/2024] Open
Abstract
Radionuclide therapies are an important tool for the management of patients with neuroendocrine neoplasms (NENs). Especially [131I]MIBG and [177Lu]Lu-DOTA-TATE are routinely used for the treatment of a subset of NENs, including pheochromocytomas, paragangliomas and gastroenteropancreatic tumors. Some patients suffering from other forms of NENs, such as medullary thyroid carcinoma or neuroblastoma, were shown to respond to radionuclide therapy; however, no general recommendations exist. Although [131I]MIBG and [177Lu]Lu-DOTA-TATE can delay disease progression and improve quality of life, complete remissions are achieved rarely. Hence, better individually tailored combination regimes are required. This review summarizes currently applied radionuclide therapies in the context of NENs and informs about recent advances in the development of theranostic agents that might enable targeting subgroups of NENs that previously did not respond to [131I]MIBG or [177Lu]Lu-DOTA-TATE. Moreover, molecular pathways involved in NEN tumorigenesis and progression that mediate features of radioresistance and are particularly related to the stemness of cancer cells are discussed. Pharmacological inhibition of such pathways might result in radiosensitization or general complementary antitumor effects in patients with certain genetic, transcriptomic, or metabolic characteristics. Finally, we provide an overview of approved targeted agents that might be beneficial in combination with radionuclide therapies in the context of a personalized molecular profiling approach.
Collapse
Affiliation(s)
- Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| | - Sandy Lemm
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Christian G. Ziegler
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Hospital Würzburg, Division of Endocrinology and Diabetes, Würzburg, Germany
| | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
10
|
Yu XY, Zhu YQ, Liu X, Tian R, Chen JJ, Liu GQ, Yang DY, Zhang XP, Li B, Zhao HJ, Li X. Case report: 177Lu DOTA-TATE: a new scheme for the treatment of prostate neuroendocrine cancer. Front Oncol 2023; 13:1289272. [PMID: 38152366 PMCID: PMC10752594 DOI: 10.3389/fonc.2023.1289272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Background Most instances of small cell carcinoma originate from the lungs, while the gastrointestinal tract serves as a secondary site. Only a minuscule proportion of cases manifest within the urogenital system. Prostate small cell carcinoma (SCCP) represents an exceedingly uncommon pathological subtype within the realm of prostate cancer, displaying significant rarity in clinical settings. This scarcity has resulted in a paucity of adequate foundational and clinical research for SCCP treatment. While investigations have unveiled a certain therapeutic efficacy of radiotherapy and chemotherapy for SCCP, clinical practice has revealed suboptimal treatment outcomes. We hereby present a case report detailing the utilization of 177Lu-DOTA-TATE in the treatment of SCCP, aiming to investigate the therapeutic efficacy of 177Lu-DOTA-TATE for SCCP. Case presentation A male patient in his 80s presented with elevated prostate-specific antigen (PSA) levels and underwent a biopsy that revealed prostate adenocarcinoma. The patient received CAB (bicalutamide + goserelin) therapy. One year later, disease progression was detected, and a second biopsy confirmed the presence of prostate small cell carcinoma. Following the diagnosis of prostate small cell carcinoma, the patient underwent two cycles of 177Lu-DOTA-TATE treatment. Subsequent to the treatment, the original lesions showed shrinkage, metastatic lesions disappeared, and there was significant improvement, approaching complete remission. Conclusion SCCP exhibits a high degree of malignancy and aggressive invasiveness, currently lacking effective therapeutic modalities. The treatment course of this patient serves as compelling evidence for the efficacy of 177Lu-DOTA-TATE in managing SCCP, thereby opening new avenues for future SCCP treatments.
Collapse
Affiliation(s)
- Xin-yuan Yu
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yu-qin Zhu
- Department of Intensive Care, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xin Liu
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Rong Tian
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jun-jie Chen
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Guo-qing Liu
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Dong-yu Yang
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xue-ping Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Bao Li
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Hong-jun Zhao
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiao Li
- Department of Urology Surgery, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
11
|
Dekempeneer Y, Massa S, Santens F, Navarro L, Berdal M, Lucero MM, Pombo Antunes AR, Lahoutte T, Van Ginderachter JA, Devoogdt N, D'Huyvetter M. Preclinical Evaluation of a Radiotheranostic Single-Domain Antibody Against Fibroblast Activation Protein α. J Nucl Med 2023; 64:1941-1948. [PMID: 38040444 DOI: 10.2967/jnumed.123.266381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2023] [Indexed: 12/03/2023] Open
Abstract
Fibroblast activation protein α (FAP) is highly expressed on cancer-associated fibroblasts of epithelial-derived cancers. Breast, colon, and pancreatic tumors often show strong desmoplastic reactions, which result in a dominant presence of stromal cells. FAP has gained interest as a target for molecular imaging and targeted therapies. Single-domain antibodies (sdAbs) are the smallest antibody-derived fragments with beneficial pharmacokinetic properties for molecular imaging and targeted therapy. Methods: We describe the generation, selection, and characterization of a sdAb against FAP. In mice, we assessed its imaging and therapeutic potential after radiolabeling with tracer-dose 131I and 68Ga for SPECT and PET imaging, respectively, and with 131I and 225Ac for targeted radionuclide therapy. Results: The lead sdAb, 4AH29, exhibiting picomolar affinity for a distinct FAP epitope, recognized both purified and membrane-bound FAP protein. Radiolabeled versions, including [68Ga]Ga-DOTA-4AH29, [225Ac]Ac-DOTA-4AH29, and [131I]I-guanidinomethyl iodobenzoate (GMIB)-4AH29, displayed radiochemical purities exceeding 95% and effectively bound to recombinant human FAP protein and FAP-positive GM05389 human fibroblasts. These radiolabeled compounds exhibited rapid and specific accumulation in human FAP-positive U87-MG glioblastoma tumors, with low but specific uptake in lymph nodes, uterus, bone, and skin (∼2-3 percentage injected activity per gram of tissue [%IA/g]). Kidney clearance of unbound [131I]I-GMIB-4AH29 was fast (<1 %IA/g after 24 h), whereas [225Ac]Ac-DOTA-4AH29 exhibited slower clearance (8.07 ± 1.39 %IA/g after 24 h and 2.47 ± 0.18 %IA/g after 96 h). Mice treated with [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 demonstrated prolonged survival compared with those receiving vehicle solution. Conclusion: [68Ga]Ga-DOTA-4AH29 and [131I]I-GMIB-4AH29 enable precise FAP-positive tumor detection in mice. Therapeutic [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 exhibit strong and sustained tumor targeting, resulting in dose-dependent therapeutic effects in FAP-positive tumor-bearing mice, albeit with kidney toxicity observed later for [225Ac]Ac-DOTA-4AH29. This study confirms the potential of radiolabeled sdAb 4AH29 as a radiotheranostic agent for FAP-positive cancers, warranting clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tony Lahoutte
- Precirix NV/SA, Brussels, Belgium
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Nuclear Medicine, UZ Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; and
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Nick Devoogdt
- Precirix NV/SA, Brussels, Belgium
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- Precirix NV/SA, Brussels, Belgium;
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Kos-Kudła B, Castaño JP, Denecke T, Grande E, Kjaer A, Koumarianou A, de Mestier L, Partelli S, Perren A, Stättner S, Valle JW, Fazio N. European Neuroendocrine Tumour Society (ENETS) 2023 guidance paper for nonfunctioning pancreatic neuroendocrine tumours. J Neuroendocrinol 2023; 35:e13343. [PMID: 37877341 DOI: 10.1111/jne.13343] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
This ENETS guidance paper for well-differentiated nonfunctioning pancreatic neuroendocrine tumours (NF-Pan-NET) has been developed by a multidisciplinary working group, and provides up-to-date and practical advice on the management of these tumours. Using the extensive experience of centres treating patients with NF-Pan-NEN, the authors of this guidance paper discuss 10 troublesome questions in everyday clinical practice. Our many years of experience in this field are still being verified in the light of the results of new clinical, which set new ways of proceeding in NEN. The treatment of NF-Pan-NEN still requires a decision of a multidisciplinary team of specialists in the field of neuroendocrine neoplasms.
Collapse
Affiliation(s)
- Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Hospital Universitario Reina Sofía, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, University Medical Centre Leipzig, Leipzig, Germany
| | - Enrique Grande
- Medical Oncology Department, MD Anderson Cancer Centre Madrid, Madrid, Spain
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Righospitalet and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Louis de Mestier
- Université Paris-Cité, Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord) and INSERM U1149, Paris, France
| | - Stefano Partelli
- Pancreatic Translational and Clinical Research Centre, Pancreatic and Transplant Surgery Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Stefan Stättner
- Department of General, Visceral and Vascular Surgery, Salzkammergut Klinikum, OÖG, Vöcklabruck, Austria
| | - Juan W Valle
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| |
Collapse
|
13
|
Al-Toubah T, Strosberg J, Hallanger-Johnson J, El-Haddad G. Targeted radionuclide therapy in endocrine-related cancers: advances in the last decade. Front Endocrinol (Lausanne) 2023; 14:1187870. [PMID: 38053729 PMCID: PMC10694449 DOI: 10.3389/fendo.2023.1187870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Targeted radionuclide therapy plays an increasingly important role in managing endocrine-related tumors and significantly advances the therapeutic landscape for patients with these diseases. With increasing FDA-approved therapies and advances in the field, come an increased knowledge of the potential for long-term toxicities associated with these therapies and the field must develop new strategies to increase potency and efficacy while individualizing the selection of patients to those most likely to respond to treatment. Novel agents and modalities of therapy are also being explored. This review will discuss the current landscape and describe the avenues for growth in the field currently being explored.
Collapse
Affiliation(s)
- Taymeyah Al-Toubah
- Department of GI Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Jonathan Strosberg
- Department of GI Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Julie Hallanger-Johnson
- Department of Head and Neck - Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Ghassan El-Haddad
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Nuclear Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
14
|
Gervasoni S, Öztürk I, Guccione C, Bosin A, Ruggerone P, Malloci G. Interaction of Radiopharmaceuticals with Somatostatin Receptor 2 Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:4924-4933. [PMID: 37466559 PMCID: PMC10428218 DOI: 10.1021/acs.jcim.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 07/20/2023]
Abstract
The development of drugs targeting somatostatin receptor 2 (SSTR2), generally overexpressed in neuroendocrine tumors, is focus of intense research. A few molecules in conjugation with radionuclides are in clinical use for both diagnostic and therapeutic purposes. These radiopharmaceuticals are composed of a somatostatin analogue biovector conjugated to a chelator moiety bearing the radionuclide. To date, despite valuable efforts, a detailed molecular-level description of the interaction of radiopharmaceuticals in complex with SSTR2 has not yet been accomplished. Therefore, in this work, we carefully analyzed the key dynamical features and detailed molecular interactions of SSTR2 in complex with six radiopharmaceutical compounds selected among the few already in use (64Cu/68Ga-DOTATATE, 68Ga-DOTATOC, 64Cu-SARTATE) and some in clinical development (68Ga-DOTANOC, 64Cu-TETATATE). Through molecular dynamics simulations and exploiting recently available structures of SSTR2, we explored the influence of the different portions of the compounds (peptide, radionuclide, and chelator) in the interaction with the receptor. We identified the most stable binding modes and found distinct interaction patterns characterizing the six compounds. We thus unveiled detailed molecular interactions crucial for the recognition of this class of radiopharmaceuticals. The microscopically well-founded analysis presented in this study provides guidelines for the design of new potent ligands targeting SSTR2.
Collapse
Affiliation(s)
| | | | - Camilla Guccione
- Department of Physics, University of Cagliari, Monserrato
(Cagliari) I-09042, Italy
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Monserrato
(Cagliari) I-09042, Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato
(Cagliari) I-09042, Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato
(Cagliari) I-09042, Italy
| |
Collapse
|
15
|
Hlongwa K, Kolade O, Alnabulsi A, Steyn R, Brink A, Prasad V, More S. Case report: Peptide receptor radioligand therapy in metastatic pediatric neuroendocrine tumors. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1193880. [PMID: 39355026 PMCID: PMC11440991 DOI: 10.3389/fnume.2023.1193880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/10/2023] [Indexed: 10/03/2024]
Abstract
Neuroendocrine tumors (NETs) are not commonly diagnosed in children. Metastatic NETs tend to have poor outcomes, and this is seen in adult and pediatric populations. The role of somatostatin receptor imaging using [68Ga]Ga-DOTA-TATE for imaging and peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-DOTA-TATE in children is currently not well established. The guidelines for treating pediatric neuroendocrine tumors are still lacking. Extensive trials have been conducted in adult patients and have demonstrated improved survival in metastatic NETs with PRRT using [177Lu]Lu-DOTA-TATE. We present two pediatric patients with metastatic NETs who were imaged with [68Ga]Ga-DOTA-TATE PET/CT and treated with [177Lu]Lu-DOTA-TATE therapy.
Collapse
Affiliation(s)
- Khanyisile Hlongwa
- Department of Nuclear Medicine, Red Cross Children's Hospital and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Olumayowa Kolade
- Department of Nuclear Medicine, Red Cross Children's Hospital and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Abdulilah Alnabulsi
- Department of Nuclear Medicine, Red Cross Children's Hospital and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Rachelle Steyn
- Department of Nuclear Medicine, Red Cross Children's Hospital and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Anita Brink
- Department of Nuclear Medicine, Red Cross Children's Hospital and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Vikas Prasad
- Department of Nuclear Medicine, Red Cross Children's Hospital and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Clinical Theranostics, Department of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, United States
| | - Stuart More
- Department of Nuclear Medicine, Red Cross Children's Hospital and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Diamantopoulos LN, Kalligeros M, Halfdanarson TR, Diamantis N, Toumpanakis C. Combination Systemic Therapies in Advanced Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs): A Comprehensive Review of Clinical Trials and Prospective Studies. BIOLOGY 2023; 12:1069. [PMID: 37626955 PMCID: PMC10452098 DOI: 10.3390/biology12081069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/27/2023]
Abstract
There is an evolving landscape of systemic combination regimens for patients with advanced well-differentiated gastroenteropancreatic neuroendocrine tumors (GEP-NETs). In this review, we provide a comprehensive outline of the existing clinical trials/prospective studies investigating these combinations. PubMed was searched using key relevant terms to identify articles referring to GEP-NETs and combination treatments. No systematic search of the literature or metanalysis of the data was performed, and we focused on the most recent literature results. Primarily, phase 1 and 2 clinical trials were available, with a smaller number of phase 3 trials, reporting results from combination treatments across a wide range of antiproliferative agents. We identified significant variability in the anti-tumor activity of the reported combinations, with occasional promising results, but only a very small number of practice-changing phase 3 clinical trials. Overall, the peptide receptor radionuclide therapy (PRRT)-based combinations (with chemotherapy, dual PPRT, and targeted agents) and anti-vascular endothelial growth factor (VEGF) agent combinations with standard chemotherapy were found to have favorable results and may be worth investigating in future, larger-scale trials. In contrast, the immune-checkpoint inhibitor-based combinations were found to have limited applicability in advanced, well-differentiated GEP-NETs.
Collapse
Affiliation(s)
- Leonidas N. Diamantopoulos
- Department of Medicine, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA;
| | - Markos Kalligeros
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | | | - Nikolaos Diamantis
- Department of Medical Oncology, Royal Free London NHS Foundation Trust and University College London, London WC1E 6BT, UK;
| | - Christos Toumpanakis
- Neuroendocrine Tumor Unit, Centre for Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust and University College London, London WC1E 6BT, UK
| |
Collapse
|
17
|
Piscopo L, Zampella E, Pellegrino S, Volpe F, Nappi C, Gaudieri V, Fonti R, Vecchio SD, Cuocolo A, Klain M. Diagnosis, Management and Theragnostic Approach of Gastro-Entero-Pancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:3483. [PMID: 37444593 DOI: 10.3390/cancers15133483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) constitute an ideal target for radiolabeled somatostatin analogs. The theragnostic approach is able to combine diagnosis and therapy by the identification of a molecular target that can be diagnosed and treated with the same radiolabeled compound. During the last years, advances in functional imaging with the introduction of somatostatin analogs and peptide receptor radionuclide therapy, have improved the diagnosis and treatment of GEP-NENs. Moreover, PET/CT imaging with 18F-FDG represents a complementary tool for prognostic evaluation of patients with GEP-NENs. In the field of personalized medicine, the theragnostic approach has emerged as a promising tool in diagnosis and management of patients with GEP-NENs. The aim of this review is to summarize the current evidence on diagnosis and management of patients with GEP-NENs, focusing on the theragnostic approach.
Collapse
Affiliation(s)
- Leandra Piscopo
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Sara Pellegrino
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Fabio Volpe
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Rosa Fonti
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| |
Collapse
|
18
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
19
|
Cankaya A, Balzer M, Amthauer H, Brenner W, Spreckelmeyer S. Optimization of 177Lu-labelling of DOTA-TOC, PSMA-I&T and FAPI-46 for clinical application. EJNMMI Radiopharm Chem 2023; 8:10. [PMID: 37233924 DOI: 10.1186/s41181-023-00196-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND 177Lu-radiopharmaceuticals are routinely used for the treatment of various tumor entities. The productions of radiopharmaceuticals follow strict good-manufacturing practice guidelines and synthesis optimizations thereof have a strong impact on e.g. the quality of the product, radiation safety and costs. The purpose of this study is to optimize the precursor load of three radiopharmaceuticals. For that, different precursor loads were evaluated and compared to previously reported findings. RESULTS All three radiopharmaceuticals were successfully synthesized in high radiochemical purities and yields on the ML Eazy. The precursor load was optimized for [177Lu]Lu-FAPI-46 from 27.0 to 9.7 µg/GBq, for [177Lu]Lu-DOTATOC from 11 to 10 µg/GBq and for [177Lu]Lu-PSMA-I&T from 16.3 to 11.6 µg/GBq. CONCLUSIONS We successfully reduced the precursor load for all three radiopharmaceuticals while maintaining their quality.
Collapse
Affiliation(s)
- Aylin Cankaya
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Matthias Balzer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Holger Amthauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Winfried Brenner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sarah Spreckelmeyer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
20
|
Wharton L, McNeil SW, Merkens H, Yuan Z, Van de Voorde M, Engudar G, Ingham A, Koniar H, Rodríguez-Rodríguez C, Radchenko V, Ooms M, Kunz P, Bénard F, Schaffer P, Yang H. Preclinical Evaluation of [155/161Tb]Tb-Crown-TATE—A Novel SPECT Imaging Theranostic Agent Targeting Neuroendocrine Tumours. Molecules 2023; 28:molecules28073155. [PMID: 37049918 PMCID: PMC10095901 DOI: 10.3390/molecules28073155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Terbium radioisotopes (149Tb, 152Tb, 155Tb, 161Tb) offer a unique class of radionuclides which encompass all four medicinally relevant nuclear decay modalities (α, β+, γ, β−/e−), and show high potential for the development of element-matched theranostic radiopharmaceuticals. The goal of this study was to design, synthesise, and evaluate the suitability of crown-TATE as a new peptide-conjugate for radiolabelling of [155Tb]Tb3+ and [161Tb]Tb3+, and to assess the imaging and pharmacokinetic properties of each radiotracer in tumour-bearing mice. [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE were prepared efficiently under mild conditions, and exhibited excellent stability in human serum (>99.5% RCP over 7 days). Longitudinal SPECT/CT images were acquired for 155Tb- and 161Tb- labelled crown-TATE in male NRG mice bearing AR42J tumours. The radiotracers, [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE, showed high tumour targeting (32.6 and 30.0 %ID/g, respectively) and minimal retention in non-target organs at 2.5 h post-administration. Biodistribution studies confirmed the SPECT/CT results, showing high tumour uptake (38.7 ± 8.0 %ID/g and 38.5 ± 3.5 %ID/g, respectively) and favourable tumour-to-background ratios. Blocking studies further confirmed SSTR2-specific tumour accumulation. Overall, these findings suggest that crown-TATE has great potential for element-matched molecular imaging and radionuclide therapy using 155Tb and 161Tb.
Collapse
Affiliation(s)
- Luke Wharton
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Scott W. McNeil
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Zheliang Yuan
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Michiel Van de Voorde
- Nuclear Medicine Applications, Belgium Nuclear Research Center (SCK CEN), Boeretang, 200, 2400 Mol, Belgium
| | - Gokce Engudar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Aidan Ingham
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Helena Koniar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, BC V6T 1Z1, Canada
| | - Cristina Rodríguez-Rodríguez
- Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, BC V6T 1Z1, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Maarten Ooms
- Nuclear Medicine Applications, Belgium Nuclear Research Center (SCK CEN), Boeretang, 200, 2400 Mol, Belgium
| | - Peter Kunz
- Accelerator Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|