1
|
Xing Y, Tang Y, Chen Q, Chen S, Li W, Mi S, Yu Y. The role of RNA epigenetic modification-related genes in the immune response of cattle to mastitis induced by Staphylococcus aureus. Anim Biosci 2024; 37:1141-1155. [PMID: 38271969 PMCID: PMC11222847 DOI: 10.5713/ab.23.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE RNA epigenetic modifications play an important role in regulating immune response of mammals. Bovine mastitis induced by Staphylococcus aureus (S. aureus) is a threat to the health of dairy cattle. There are numerous RNA modifications, and how these modification-associated enzymes systematically coordinate their immunomodulatory effects during bovine mastitis is not well reported. Therefore, the role of common RNA modificationrelated genes (RMRGs) in bovine S. aureus mastitis was investigated in this study. METHODS In total, 80 RMRGs were selected for this study. Four public RNA-seq data sets about bovine S. aureus mastitis were collected and one additional RNA-seq data set was generated by this study. Firstly, quantitative trait locus (QTL) database, transcriptome-wide association studies (TWAS) database and differential expression analyses were employed to characterize the potential functions of selected enzyme genes in bovine S. aureus mastitis. Correlation analysis and weighted gene co-expression network analysis (WGCNA) were used to further investigate the relationships of RMRGs from different types at the mRNA expression level. Interference experiments targeting the m6A demethylase FTO and utilizing public MeRIP-seq dataset from bovine Mac-T cells were used to investigate the potential interaction mechanisms among various RNA modifications. RESULTS Bovine QTL and TWAS database in cattle revealed associations between RMRGs and immune-related complex traits. S. aureus challenged and control groups were effectively distinguished by principal component analysis based on the expression of selected RMRGs. WGCNA and correlation analysis identified modules grouping different RMRGs, with highly correlated mRNA expression. The m6A modification gene FTO showed significant effects on the expression of m6A and other RMRGs (such as NSUN2, CPSF2, and METTLE), indicating complex co-expression relationships among different RNA modifications in the regulation of bovine S. aureus mastitis. CONCLUSION RNA epigenetic modification genes play important immunoregulatory roles in bovine S. aureus mastitis, and there are extensive interactions of mRNA expression among different RMRGs. It is necessary to investigate the interactions between RNA modification genes regulating complex traits in the future.
Collapse
Affiliation(s)
- Yue Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Quanzhen Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| |
Collapse
|
2
|
Zhang M, Guan J, Yu S, Zhang Y, Cheng L, Zhang Y. YTHDC1 inhibits osteoclast differentiation to alleviate osteoporosis by enhancing PTPN6 messenger RNA stability in an m6A-hUR-dependent manner. J Leukoc Biol 2024; 115:1154-1164. [PMID: 38289832 DOI: 10.1093/jleuko/qiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
YTHDC1 has been confirmed to mediate osteoporosis (OP) progression by regulating osteogenic differentiation. However, whether YTHDC1 mediates osteoclast differentiation and its molecular mechanism remains unclear. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the levels of YTHDC1, PTPN6, NFATc1, TRAP, RUNX2, alkaline phosphatase, and HUR. YTHDC1 knockout mice was constructed by CRISPR/Cas9 system, and the OP mice model was established by ovariectomy. Hematoxylin and eosin staining and micro-computed tomography were used to evaluate bone formation and bone mass. Mouse primary bone marrow macrophage cells were isolated and induced into osteoclasts. TRAP-positive cells were detected using TRAP staining. MeRIP-qPCR, RIP-qPCR assay, RNA affinity isolation assay, and co-immunoprecipitation assay were used to confirm the interactions among YTHDC1, PTPN6, and HUR. YTHDC1 expression was reduced and positively correlated with lumbar bone mineral density in OP patients. In the ovariectomy model of YTHDC1 knockout mice, bone formation was reduced, bone histomorphology was changed, and osteoclastic-related factor (NFATc1 and TRAP) levels were enhanced. Overexpression YTHDC1 inhibited osteoclast differentiation. YTHDC1 increased PTPN6 messenger RNA stability in an m6A-dependent manner. Moreover, YTHDC1 interacted with HUR to positively regulate PTPN6 expression. PTPN6 knockdown promoted osteoclast differentiation, and this effect was reversed by overexpressing HUR or YTHDC1. YTHDC1 was involved in regulating OP progression through inhibiting osteoclast differentiation by enhancing PTPN6 messenger RNA stability in an m6A-HUR-dependent manner.
Collapse
Affiliation(s)
- Meijie Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Jiaxin Guan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Simiao Yu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Yimeng Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Luyang Cheng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| | - Yina Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, Heilongjiang Province, 150001, P.R. China
| |
Collapse
|
3
|
Ali M, Kim YS. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. J Adv Res 2024:S2090-1232(24)00215-7. [PMID: 38810908 DOI: 10.1016/j.jare.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis (OP) on a global scale is significantly elevated that causes life threatening issues. The potential of groundbreaking biomolecular therapeutics in the field of OP is highly encouraging. The administration of biomolecular agents has the potential to mitigate the process of bone demineralization while concurrently augmenting the regenerative capacity of bone tissue, thereby facilitating a personalized therapeutic approach. Biomolecules-based therapies showed promising results in term of bone mass protection and restoration in OP. AIM OF REVIEW We summarized the recent biomolecular therapies with notable progress in clinical, demonstrating the potential to transform illness management. These treatments frequently utilize different biomolecule based strategies. Biomolecular therapeutics has a targeted character, which results in heightened specificity and less off-target effects, ultimately leading to increased patient outcomes. These aspects have the capacity to greatly enhance the management of OP, thus resulting in a major enhancement in the quality of life encountered by individuals affected by this condition.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
4
|
He J, Zhao Y, Zhang Y, Zhang Z, Li D, Xu Q. FTO regulates osteoclast development by modulating the proliferation and apoptosis of osteoclast precursors in inflammatory conditions. Cell Signal 2024; 117:111098. [PMID: 38365111 DOI: 10.1016/j.cellsig.2024.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Periodontitis is an oral inflammatory disease that causes alveolar bone destruction by activating osteoclast. FTO, a crucial demethylase of N6-methyladenosine(m6A), exerts essential function in maintaining bone homeostasis. However, the effects of FTO on periodontitis-related bone destruction remain unknown. To investigate its role in inflammatory osteoclastogenesis, we overexpressed FTO in osteoclast precursor cells; RNA-seq revealed that differentially expressed genes were mainly enriched in cell cycle, DNA replication, DNA damage response and apoptosis in FTO overexpression cells during RANKL and LPS-stimulated osteoclast differentiation. FTO overexpression upregulated the expression of S phase-related proteins (Cyclin A2, CDK2), and decreased the expression of DNA damage related proteins in osteoclast precursor cells. FTO promoted cell proliferation demonstrated by EdU and CCK8 assay, and reduced apoptotic rate and the expression of apoptosis-related proteins in osteoclast precursor cell. Conversely, FTO inhibitor FB23-2 produced the reverse effect. Mechanistically, FTO overexpression promoted the stability of CyclinA2 and CDK2 mRNA. These results were consistent in m6A binding protein YTHDF2 knockdown cells. Moreover, FB23-2 suppressed osteoclast-related gene expression, osteoclast formation and bone resorption ability. Treatment of FB23-2 reduced the alveolar bone loss in mice of experimental periodontitis. Collectively, our findings revealed that FTO enhanced the mRNA stability and expression of Cyclin A2, CDK2 in a YTHDF2-dependent manner in osteoclast precursor cells, promoted cell proliferation and inhibited cell apoptosis. FB23-2 reduced the formation of osteoclasts, resulted in alleviating the bone destruction in periodontitis mice. These findings indicated that FTO might be the potential target of the treatment of bone loss in periodontitis.
Collapse
Affiliation(s)
- Jinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiwen Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zhanqi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Di Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
5
|
Fang W, Peng P, Lin K, Xiao F, He W, He M, Wei Q. m6A methylation modification and immune infiltration analysis in osteonecrosis of the femoral head. J Orthop Surg Res 2024; 19:183. [PMID: 38491545 PMCID: PMC10943872 DOI: 10.1186/s13018-024-04590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/28/2024] [Indexed: 03/18/2024] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a elaborate hip disease characterized by collapse of femoral head and osteoarthritis. RNA N6-methyladenosine (m6A) plays a crucial role in a lot of biological processes within eukaryotic cells. However, the role of m6A in the regulation of ONFH remains unclear. In this study, we identified the m6A regulators in ONFH and performed subtype classification. We identified 7 significantly differentially expressed m6A regulators through the analysis of differences between ONFH and normal samples in the Gene Expression Omnibus (GEO) database. A random forest algorithm was employed to monitor these regulators to assess the risk of developing ONFH. We constructed a nomogram based on these 7 regulators. The decision curve analysis suggested that patients can benefit from the nomogram model. We classified the ONFH samples into two m6A models according to these 7 regulators through consensus clustering algorithm. After that, we evaluated those two m6A patterns using principal component analysis. We assessed the scores of those two m6A patterns and their relationship with immune infiltration. We observed a higher m6A score of type A than that of type B. Finally, we performed a cross-validation of crucial m6A regulatory factors in ONFH using external datasets and femoral head bone samples. In conclusion, we believed that the m6A pattern could provide a novel diagnostic strategy and offer new insights for molecularly targeted therapy of ONFH.
Collapse
Affiliation(s)
- Weihua Fang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangjun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mincong He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China.
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qiushi Wei
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China.
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
7
|
Gao P, Yao F, Pang J, Yin K, Zhu X. m 6A methylation in cellular senescence of age-associated diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1168-1183. [PMID: 37394885 PMCID: PMC10449638 DOI: 10.3724/abbs.2023107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Cellular senescence is a state of irreversible cellular growth arrest that occurs in response to various stresses. In addition to exiting the cell cycle, senescent cells undergo many phenotypic alterations, including metabolic reprogramming, chromatin rearrangement, and senescence-associated secretory phenotype (SASP) development. Furthermore, senescent cells can affect most physiological and pathological processes, such as physiological development; tissue homeostasis; tumour regression; and age-associated disease progression, including diabetes, atherosclerosis, Alzheimer's disease, and hypertension. Although corresponding anti-senescence therapies are actively being explored for the treatment of age-associated diseases, the specific regulatory mechanisms of senescence remain unclear. N 6-methyladenosine (m 6A), a chemical modification commonly distributed in eukaryotic RNA, plays an important role in biological processes such as translation, shearing, and RNA transcription. Numerous studies have shown that m 6A plays an important regulatory role in cellular senescence and aging-related disease. In this review, we systematically summarize the role of m 6A modifications in cellular senescence with regard to oxidative stress, DNA damage, telomere alterations, and SASP development. Additionally, diabetes, atherosclerosis, and Alzheimer's disease regulation via m 6A-mediated cellular senescence is discussed. We further discuss the challenges and prospects of m 6A in cellular senescence and age-associated diseases with the aim of providing rational strategies for the treatment of these age-associated diseases.
Collapse
Affiliation(s)
- Pan Gao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Feng Yao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Jin Pang
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Kai Yin
- The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| |
Collapse
|
8
|
Yang J, Wu J. Discovery of potential biomarkers for osteoporosis diagnosis by individual omics and multi-omics technologies. Expert Rev Mol Diagn 2023:1-16. [PMID: 37140363 DOI: 10.1080/14737159.2023.2208750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Global aging has made osteoporosis an increasingly serious public health problem. Osteoporotic fractures seriously affect the quality of life of patients and increase disability and mortality rates. Early diagnosis is important for timely intervention. The continuous development of individual- and multi-omics methods is helpful for the exploration and discovery of biomarkers for the diagnosis of osteoporosis. AREAS COVERED In this review, we first introduce the epidemiological status of osteoporosis and then describe the pathogenesis of osteoporosis. Furthermore, the latest progress in individual- and multi-omics technologies for exploring biomarkers for osteoporosis diagnosis is summarized. Moreover, we clarify the advantages and disadvantages of the application of osteoporosis biomarkers obtained using the omics method. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of osteoporosis. EXPERT OPINION Omics methods undoubtedly provide greatly contribute to the exploration of diagnostic biomarkers of osteoporosis; however, in the future, the clinical validity and clinical utility of the obtained potential biomarkers should be thoroughly examined. In addition, the improvement and optimization of the detection methods for different types of biomarkers and standardization of the detection process guarantee the reliability and accuracy of the detection results.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Jun Wu
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| |
Collapse
|
9
|
Lu Z, Cao H, Hu X. Circulating miR-340-5p and miR-506-3p as Two Osteo-miRNAs for Predicting Osteoporosis in a Cohort of Postmenopausal Women. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2023; 2023:7571696. [PMID: 36761245 PMCID: PMC9904902 DOI: 10.1155/2023/7571696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 02/04/2023]
Abstract
Objective An increasing risk of developing osteoporosis which is characterized by bone production weakness and microarchitectural deterioration is found among postmenopausal women. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues in response to local disease severity including bone diseases. Herein, we set out to identify candidate miRNAs predictable for osteoporosis incidence in postmenopausal elderly women. Methods The circulating miRNA expression profiles deposited in the dataset accessioned as GSE201543 were downloaded from the GEO database. The study included 176 postmenopausal women who underwent BMD testing, including 96 women reporting osteoporosis and 70 women reporting normal BMD. All subjects were submitted their serum samples for measurements of bone metabolism markers. Results The miRNA expression profiles of the GSE201543 dataset were differentially analyzed and found 97 miRNAs being upregulated concomitantly with 31 miRNAs being downregulated in the serum samples between osteoporotic postmenopausal women and postmenopausal women with normal BMD. Osteoporotic postmenopausal women were demonstrated with elevated serum levels of miR-340-5p and miR-506-3p when compared to normal postmenopausal women. Pearson correlation analysis demonstrated that circulating miR-340-5p and miR-506-3p expressions were increased as BAP, β-CTx, and PINP levels increased, but osteocalcin and 25-(OH)VitD levels are declined in osteoporotic postmenopausal women. Results of the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) showed circulating miR-340-5p and miR-506-3p expressions alone or combined together produced 0.843 AUC, 0.851 AUC, and 0.935 AUC, respectively, when used to predict the incidence of osteoporosis in postmenopausal women. Conclusion Our work suggested that circulating miR-340-5p and miR-506-3p function as osteo-miRNAs in postmenopausal women and may serve as potential noninvasive biomarkers for the incidence of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Zifeng Lu
- Department of Orthopedics (No. 1), Heilongjiang Beidahuang Group General Hospital, Harbin, Heilongjiang 150088, China
| | - Haiou Cao
- Department of Oncology (No. 6), Heilongjiang Beidahuang Group General Hospital, Harbin, Heilongjiang 150088, China
| | - Xiaoyin Hu
- Department of Orthopedics, Shanghai LiQun Hospital, Shanghai, China
| |
Collapse
|