1
|
He Q, Guo X, Lv W, Cui J, Meng J, Gao X, Ma J, Zhou N, Cao Y. Follicular fluid lipidomics analysis reveals altered lipid signatures in patients with polycystic ovary syndrome. J OBSTET GYNAECOL 2024; 44:2378489. [PMID: 39016329 DOI: 10.1080/01443615.2024.2378489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND This research investigates the metabolic profiles of follicular fluid (FF) samples from patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilisation and aims to identify diagnostic and therapeutic biomarkers for PCOS through lipidomic analysis. METHODS We performed non-targeted lipid analysis of FF samples from women with PCOS (n = 6) and normal controls (n = 6) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Differential lipids between the two groups were screened using multidimensional statistical analysis, followed by fold change analysis and t-tests to identify potential PCOS biomarkers. RESULTS Multivariate statistical analysis revealed significant differences in FF lipid levels between the PCOS and control groups. Five different lipids were selected as standards, with p < .05. Phosphatidylcholine (PC), the main differentially expressed lipid, was significantly increased in the FF of the POCS group and was closely related to other lipids. CONCLUSIONS Using ultra-high-performance liquid chromatography-tandem mass spectrometry, we investigated lipid biomarkers based on FF lipidomics to provide useful information for the discovery of diagnostic markers for PCOS. Our study identified five distinct lipids as potential markers of PCOS, with PC being the primary aberrant lipid found in the FF of patients with PCOS.
Collapse
Affiliation(s)
- Qing He
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
- Center for Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Xiaoli Guo
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wenqiang Lv
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Junchao Cui
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jing Meng
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Gao
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiachen Ma
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Nan Zhou
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yijuan Cao
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
- Center for Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
2
|
Zhang Y, He C, He Y, Zhu Z. Follicular Fluid Metabolomics: Tool for Predicting IVF Outcomes of Different Infertility Causes. Reprod Sci 2024:10.1007/s43032-024-01664-y. [PMID: 39090336 DOI: 10.1007/s43032-024-01664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Infertility affects approximately 15% of couples at child-bearing ages and assisted reproductive technologies (ART), especially in vitro fertilization and embryo transfer (IVF-ET), provided infertile patients with an effective solution. The current paradox is that multiple embryo transfer that may leads to severe obstetric and perinatal complications seems to be the most valid measure to secure high success rate in the majority of clinic centers. Therefore, to avoid multiple transfer of embryos, it is urgent to explore biomarkers for IVF prognosis to select high-quality oocytes and embryos. Follicular fluid (FF), a typical biofluid constituted of the plasma effusion and granulosa-cell secretion, provides essential intracellular substances for oocytes maturation and its variation in composition reflects oocyte developmental competence and embryo viability. With the advances in metabolomics methodology, metabolomics, as an accurate and sensitive analyzing method, has been utilized to explore predictors in FF for ART success. Although FF metabolomics has provided a great possibility for screening markers with diagnostic and predictive value, its effectiveness is still doubted by some researchers. This may be resulted from the ignorance of the impact of sterility causes on the FF metabolomic profiles and thus its predictive ability might not be rightly illustrated. Therefore, in this review, we categorically demonstrate the study of FF metabolomics according to specific infertility causes, expecting to reveal the predicting value of metabolomics for IVF outcomes.
Collapse
Affiliation(s)
- Yijing Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Chenyan He
- Sichuan Normal University, Chengdu, Sichuan, China
| | - Yuedong He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhongyi Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
3
|
Zhang M, Wang Y, Di J, Zhang X, Liu Y, Zhang Y, Li B, Qi S, Cao X, Liu L, Liu S, Xu F. High coverage of targeted lipidomics revealed lipid changes in the follicular fluid of patients with insulin-resistant polycystic ovary syndrome and a positive correlation between plasmalogens and oocyte quality. Front Endocrinol (Lausanne) 2024; 15:1414289. [PMID: 38904043 PMCID: PMC11187234 DOI: 10.3389/fendo.2024.1414289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Background Polycystic ovary syndrome with insulin resistance (PCOS-IR) is the most common endocrine and metabolic disease in women of reproductive age, and low fertility in PCOS patients may be associated with oocyte quality; however, the molecular mechanism through which PCOS-IR affects oocyte quality remains unknown. Methods A total of 22 women with PCOS-IR and 23 women without polycystic ovary syndrome (control) who underwent in vitro fertilization and embryo transfer were recruited, and clinical information pertaining to oocyte quality was analyzed. Lipid components of follicular fluid (FF) were detected using high-coverage targeted lipidomics, which identified 344 lipid species belonging to 19 lipid classes. The exact lipid species associated with oocyte quality were identified. Results The number (rate) of two pronuclear (2PN) zygotes, the number (rate) of 2PN cleaved embryos, and the number of high-quality embryos were significantly lower in the PCOS-IR group. A total of 19 individual lipid classes and 344 lipid species were identified and quantified. The concentrations of the 19 lipid species in the normal follicular fluid (control) ranged between 10-3 mol/L and 10-9 mol/L. In addition, 39 lipid species were significantly reduced in the PCOS-IR group, among which plasmalogens were positively correlated with oocyte quality. Conclusions This study measured the levels of various lipids in follicular fluid, identified a significantly altered lipid profile in the FF of PCOS-IR patients, and established a correlation between poor oocyte quality and plasmalogens in PCOS-IR patients. These findings have contributed to the development of plasmalogen replacement therapy to enhance oocyte quality and have improved culture medium formulations for oocyte in vitro maturation (IVM).
Collapse
Affiliation(s)
- Meizi Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yuanyuan Wang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Jianyong Di
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Xuanlin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Ye Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yixin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Bowen Li
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Simeng Qi
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Xiaomin Cao
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Li Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Shouzeng Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Fengqin Xu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Yamamoto-Mikami A, Tanaka Y, Tsutsumi T, Kuwahara A, Tokumura A. Altered ovarian tissue level of lysophosphatidic acid and mRNA expressions of its metabolic enzymes and receptors in rats received gonadotropin-hyperstimulation. Reprod Biol 2024; 24:100849. [PMID: 38306852 DOI: 10.1016/j.repbio.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/04/2024]
Abstract
Lysophosphatidic acid (LPA), a well-studied member of the lysophospholipid family, is known to exert an important bio-effect on oocyte maturation and ovulation in mammals. We attempted to determine how follicle maturation in the rat ovary affects the levels of LPA and its precursor lysophospholipids, as well as mRNA levels of LPA-producing and -degrading enzymes and LPA receptors in rats that received gonadotropin-hyper-stimulation. Tissue levels of lysophospholipids were quantified by LC-MS/MS, and relative mRNA expression levels of LPA-producing and -degrading enzymes, and LPA receptors were measured by RT-PCR. Tissue levels of n-6 polyunsaturated LPAs and LPCs were higher in the ovaries of rats after receiving human chorionic gonadotropin, unlike the distinct profiles of n-3 polyunsaturated LPAs, which had lower levels, and LPCs which had higher levels, after the gonadotropin treatment. The effects of different levels of other polyunsaturated lysophospholipids were variable: decreased levels of lysophosphatidylglycerol, and unaltered levels of lysophosphatidylethanolamine, lysophosphatidylinositol, and lysophosphatidylserine. The results indicate that expression of mRNA levels of autotaxin and acylglycerol kinase were reduced and expression of lipid phosphate phosphatase 3 was elevated, whereas expressions of two membrane phosphatidic acid phosphatases (A1α and A1β) and lipid phosphate phosphatase 1 were essentially unaltered in rat ovary at several stages after ovary hyperstimulation. After the gonadotropin treatment, the expression levels of all LPA receptors except LPA3 were decreased at various times. These results are discussed with respect to the physiological processes of the ovarian environment and development in rats.
Collapse
Affiliation(s)
- Aimi Yamamoto-Mikami
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Yu Tanaka
- Department of Obstetrics and Gynecology, Japanese Red Cross Tokushima Hospital, Komatsushima-shi, Tokushima 773-8502, Japan; Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiko Tsutsumi
- Department of Pharmaceutics, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka 882-8508, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Shomachi, Tokushima 770-8505, Japan; Department of Health Chemistry, Faculty of Pharmacy, Yasuda Women's University, Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan.
| |
Collapse
|
5
|
Dai M, Hong L, Yin T, Liu S. Disturbed Follicular Microenvironment in Polycystic Ovary Syndrome: Relationship to Oocyte Quality and Infertility. Endocrinology 2024; 165:bqae023. [PMID: 38375912 DOI: 10.1210/endocr/bqae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with infertility and poor reproductive outcomes. The follicular fluid (FF) microenvironment plays a crucial role in oocyte development. This review summarizes evidence elucidating the alterations in FF composition in PCOS. Various studies demonstrated a pronounced proinflammatory milieu in PCOS FF, characterized by increased levels of cytokines, including but not limited to interleukin-6 (IL-6), tumor necrosis factor α, C-reactive protein, and IL-1β, concomitant with a reduction in anti-inflammatory IL-10. T lymphocytes and antigen-presenting cells are dysregulated in PCOS FF. PCOS FF exhibit heightened reactive oxygen species production and the accumulation of lipid peroxidation byproducts, and impaired antioxidant defenses. Multiple microRNAs are dysregulated in PCOS FF, disrupting signaling critical to granulosa cell function. Proteomic analysis reveals changes in pathways related to immune responses, metabolic perturbations, angiogenesis, and hormone regulation. Metabolomics identify disturbances in glucose metabolism, amino acids, lipid profiles, and steroid levels with PCOS FF. Collectively, these pathological alterations may adversely affect oocyte quality, embryo development, and fertility outcomes. Further research on larger cohorts is needed to validate these findings and to forge the development of prognostic biomarkers of oocyte developmental competence within FF. Characterizing the follicular environment in PCOS is key to elucidating the mechanisms underlying subfertility in this challenging disorder.
Collapse
Affiliation(s)
- Mengyang Dai
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| |
Collapse
|
6
|
Zhou J, Mo H, Feng Q, Li L, La J. ApoC3 is expressed in oocytes and increased expression is associated with PCOS progression. J Ovarian Res 2023; 16:188. [PMID: 37689737 PMCID: PMC10493025 DOI: 10.1186/s13048-023-01263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a lifelong metabolic disorder and the most common cause of anovulatory infertility affecting women in reproductive age. Our recent study reported that apolipoprotein C3 (ApoC3) could be a potential diagnostic serum marker for metabolism disturbance in PCOS patients, but whether it is present in the ovaries and what role it plays has not yet been described. OBJECTIVE Aimed to investigate ApoC3 expression in ovary of PCOS, and to discuss its potential role in PCOS progression. METHODS ApoC3 expression in ovarian tissue samples from 12 PCOS patients along with 12 healthy controls were measured via immunohistochemistry (IHC). Also, the level of ApoC3 in follicular fluid from 14 patients diagnosed with PCOS and 13 control subjects were detected by ELISA. The expression and location of ApoC3 in ovaries of PCOS mice were tested weekly for three consecutive weeks during PCOS formation using real time PCR, Western Blot, IHC and immunofluorescence. The relation of ApoC3 and sex hormones was analyzed in mouse plasma. Additionally, the dynamic changes of ApoC3 level in ovaries of healthy mice during postnatal development was also investigated. RESULTS ApoC3 levels in ovarian tissue and follicular fluid were significantly higher in PCOS patients than in controls (33.87 ± 4.11 vs. 27.71 ± 3.65, P < 0.01; 0.87 ± 0.09 vs. 0.51 ± 0.32 ng/mL, P < 0.05), respectively. In ovary, ApoC3 was found to be located in the cytoplasm of oocyte, and its expression gradually increased with PCOS progression (P < 0.05). Furthermore, correlation analysis showed that plasma ApoC3 level was closely associated with luteinizing hormone (r = 0.709, P = 0.001), testosterone (r = 0.627, P = 0.005) and anti-mullerian hormone (r = 0.680, P = 0.002) in PCOS mice. In addition, ApoC3 level in oocyte was physiologically increased and peaked on postnatal age 21 (P21), then decreased following P21 in healthy mice. CONCLUSIONS We identified ApoC3 expression in oocyte. It may be involved in PCOS progression and possibly participate in the regulation of oocyte development.
Collapse
Affiliation(s)
- Jiahe Zhou
- Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui Mo
- Faculty of Chinese Medicines, Macau University of Science and Technology, Macao, 000853, China
| | - Qian Feng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Li Li
- Guangdong Women and Children Hospital, Guangzhou, 511442, China.
- Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jiahui La
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|