1
|
Chen L, Zhang H, Shang C, Hong Y. The Role and Applied Value of Mitochondria in Glioma-Related Research. CNS Neurosci Ther 2024; 30:e70121. [PMID: 39639571 PMCID: PMC11621238 DOI: 10.1111/cns.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Mitochondria, known as the "energy factory" of cells, are essential organelles with a double membrane structure and genetic material found in most eukaryotic cells. They play a crucial role in tumorigenesis and development, with alterations in mitochondrial structure and function in tumor cells leading to characteristics such as rapid proliferation, invasion, and drug resistance. Glioma, the most common brain tumor with a high recurrence rate and limited treatment options, has been linked to changes in mitochondrial structure and function. This review focuses on the bioenergetics, dynamics, metastasis, and autophagy of mitochondria in relation to glioma proliferation, as well as the potential use of mitochondria-targeting drugs in glioma treatment.
Collapse
Affiliation(s)
- Liwen Chen
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Hui Zhang
- Department of Urology, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Chao Shang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
| | - Yang Hong
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|
2
|
Yubolphan R, Kobroob A, Kongkaew A, Chiranthanut N, Jinadang N, Wongmekiat O. Berberine Mitigates Sepsis-Associated Acute Kidney Injury in Aged Rats by Preserving Mitochondrial Integrity and Inhibiting TLR4/NF-κB and NLRP3 Inflammasome Activations. Antioxidants (Basel) 2024; 13:1398. [PMID: 39594541 PMCID: PMC11591266 DOI: 10.3390/antiox13111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) presents a severe challenge in the elderly due to increasing incidence, high mortality, and the lack of specific effective treatments. Exploring novel and secure preventive and/or therapeutic approaches is critical and urgent. Berberine (BBR), an isoquinoline alkaloid with anti-inflammatory, antioxidant, and immunomodulatory properties, has shown beneficial effects in various kidney diseases. This study examined whether BBR could protect against SA-AKI in aged rats. Sepsis was induced in 26-month-old male Wistar rats by cecal ligation and puncture (CLP), either with or without BBR pretreatment. CLP induction led to SA-AKI, as indicated by elevated serum levels of malondialdehyde, tumor necrosis factor-alpha, urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL), along with histopathological features of kidney damage. Key indicators of kidney oxidative stress, mitochondrial dysfunction, apoptosis, and activations of the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling, including the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome pathway, were also elevated following CLP induction. BBR pretreatment substantially mitigated these adverse effects, suggesting that it protects against SA-AKI in aged rats by reducing oxidative stress, preserving mitochondrial integrity, and inhibiting key inflammatory pathways. These findings highlight the potential of BBR as a therapeutic agent for managing SA-AKI in elderly populations.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (N.C.)
| | - Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Apisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (N.J.)
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (N.C.)
| | - Natthanicha Jinadang
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (N.J.)
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Shen Q, Yuan Y, Li Z, Ling Y, Wang J, Gao M, Wang P, Li M, Lai L, Jin J. Berberine ameliorates septic cardiomyopathy through protecting mitochondria and upregulating Notch1 signaling in cardiomyocytes. Front Pharmacol 2024; 15:1502354. [PMID: 39568588 PMCID: PMC11576164 DOI: 10.3389/fphar.2024.1502354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Septic cardiomyopathy (SCM) arises as a consequence of sepsis-associated cardiovascular dysfunction, for which there is currently no specific targeted therapy available. Previous studies have demonstrated the beneficial therapeutic effect of berberine (BBR) on SCM; however, the underlying mechanisms of action remain unclear. The objective of this is to elucidate how BBR alleviates SCM. Methods Septic cardiomyopathy rat model was established by performing cecal ligation and puncture (CLP), while a cardiomyocyte injury model was provoked in H9C2 cells using lipopolysaccharide (LPS). Cardiac function was assessed through echocardiography, and myocardial histopathology was examined with hematoxylin-eosin (HE) staining. Cardiomyocyte viability was determined through Cell Counting Kit-8 (CCK8) assay, and measurement of ATP levels was done with an ATP assay kit. Mitochondrial ultrastructure was observed using transmission electron microscopy. Real-time polymerase chain reaction (RT-PCR) and Western blotting were employed to analyze the expression of Notch1 signaling pathway components and downstream molecules in myocardial tissues and cells. Result In vivo, BBR markedly improved symptoms and cardiac function in SCM rats, leading to enhanced ATP content, and ameliorated mitochondrial structure. Additionally, BBR increased Notch1 protein expression in myocardial tissue of the rats. In vitro, BBR elevated the survival rates of H9C2 cell, improved mitochondrial morphology, and raised ATP levels. The mRNA expression of Notch1, Hes1, and Hes2, and Notch1 protein expression was upregulated by BBR. While these effects were reversed upon inhibiting the Notch1 signaling pathway. Conclusion BBR improves septic cardiomyopathy by modulating Notch1 signaling to protect myocardial mitochondria.
Collapse
Affiliation(s)
- Qi Shen
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufan Yuan
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zelin Li
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Ling
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jian Wang
- Department of Basic Research of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingjing Gao
- Department of Automation, Tsinghua University, Beijing, China
| | - Peng Wang
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mengli Li
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lizhong Lai
- Department of Pathology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinlan Jin
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
4
|
Zhao C, Rollo B, Shahid Javaid M, Huang Z, He W, Xu H, Kwan P, Zhang C. An integrated in vitro human iPSCs-derived neuron and in vivo animal approach for preclinical screening of anti-seizure compounds. J Adv Res 2024; 64:249-262. [PMID: 37995945 PMCID: PMC11464642 DOI: 10.1016/j.jare.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION One-third of people with epilepsy continue to experience seizures despite treatment with existing anti-seizure medications (ASMs). The failure of modern ASMs to substantially improve epilepsy prognosis has been partly attributed to overreliance on acute rodent models in preclinical drug development as they do not adequately recapitulate the mechanisms of human epilepsy, are labor-intensive and unsuitable for high-throughput screening (HTS). There is an urgent need to find human-relevant HTS models in preclinical drug development to identify novel anti-seizure compounds. OBJECTIVES This paper developed high-throughput preclinical screening models to identify new ASMs. METHODS 14 natural compounds (α-asarone, curcumin, vinpocetine, magnolol, ligustrazine, osthole, tanshinone IIA, piperine, gastrodin, quercetin, berberine, chrysin, schizandrin A and resveratrol) were assessed for their ability to suppress epileptiform activity as measured by multi-electrode arrays (MEA) in neural cultures derived from human induced pluripotent stem cells (iPSCs). In parallel, they were tested for anti-seizure effects in zebrafish and mouse models, which have been widely used in development of modern ASMs. The effects of the compounds in these models were compared. Two approved ASMs were used as positive controls. RESULTS Epileptiform activity could be induced in iPSCs-derived neurons following treatment with 4-aminopyridine (4-AP) and inhibited by standard ASMs, carbamazepine, and phenytoin. Eight of the 14 natural compounds significantly inhibited the epileptiform activity in iPSCs-derived neurons. Among them, piperine, magnolol, α-asarone, and osthole showed significant anti-seizure effects both in zebrafish and mice. Comparative analysis showed that compounds ineffective in the iPSCs-derived neural model also showed no anti-seizure effects in the zebrafish or mouse models. CONCLUSION Our findings support the use of iPSCs-derived human neurons for first-line high-throughput screening to identify compounds with anti-seizure properties and exclude ineffective compounds. Effective compounds may then be selected for animal evaluation before clinical testing. This integrated approach may improve the efficiency of developing novel ASMs.
Collapse
Affiliation(s)
- Chunfang Zhao
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Muhammad Shahid Javaid
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Ziyu Huang
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Wen He
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Hong Xu
- Institute of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, PR China; Departments of Neurology and Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia.
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China; Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia; Department of Pathology and Institute of Molecular Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
5
|
Zhang C, Zhao Y, Guo S, Li F, Gong X, Gao J, Jiang L, Tong J. Comparison of lipidome profiles in serum from lactating dairy cows supplemented with Acremonium terrestris culture based on UPLC-QTRAP-MS/MS. BMC Biotechnol 2024; 24:56. [PMID: 39135176 PMCID: PMC11318124 DOI: 10.1186/s12896-024-00881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
This study evaluated the effects of supplementing the diet of lactating cows with Acremonium terrestris culture (ATC) on milk production, serum antioxidant capacity, inflammatory indices, and serum lipid metabolomics. Over 90 days, 24 multiparous Chinese Holstein cows in mid-lactation (108 ± 10.4 days in milk, 637 ± 25 kg body weight, 30.23 ± 3.7 kg/d milk yield) were divided into either a control diet (CON) or a diet supplemented with 30 g of ATC daily. All the data were analyzed using Student's t test with SPSS 20.0 software. The results showed that compared with CON feeding, ATC feeding significantly increased milk yield, antioxidant capacity, and immune function. Lipidome screening identified 143 lipid metabolites that differed between the two groups. Further analysis using "random forest" machine learning revealed three glycerophospholipid serum metabolites that could serve as lipid markers with a predictive accuracy of 91.67%. This study suggests that ATC can be a useful dietary supplement for improving lactational performance in dairy cows and provides valuable insights into developing nutritional strategies to maintain metabolic homeostasis in ruminants.
Collapse
Affiliation(s)
- Chenmiao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Yiran Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Shijiao Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Feifei Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Xu Gong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Jiarui Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Linshu Jiang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P. R. China.
| |
Collapse
|
6
|
Owumi S, Chimezie J, Otunla M, Oluwawibe B, Agbarogi H, Anifowose M, Arunsi U, Owoeye O. Prepubertal Repeated Berberine Supplementation Enhances Cerebrocerebellar Functions by Modulating Neurochemical and Behavioural Changes in Wistar Rats. J Mol Neurosci 2024; 74:72. [PMID: 39042258 DOI: 10.1007/s12031-024-02250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Antioxidant-rich supplementation plays an essential role in the function of mammals' central nervous system. However, no research has documented the effect of berberine (BER) supplementation on the cerebrocerebellar function of prepubertal rats. The present study was designed to investigate the impact of BER supplementation on neurochemical and behavioural changes in prepubertal male rats. Five groups (90 ± 5 g, n = 7 each) of experimental rats were orally treated with corn oil or different doses of BER (25, 50, 100, and 200 mg/kg bw) from the 28th at 68 post-natal days. On the 69 days of life, animals underwent behavioural assessment in the open field, hanging wire, and negative geotaxis tests. The result revealed that BER administration improved locomotive and motor behaviour by increasing distance travelled, line crossings, average speed, time mobile, and absolute turn angle in open field test and decrease in time to re-orient on an incline plane, a decrease in immobility time relative to the untreated control. Furthermore, BER supplementation increased (p < 0.05) antioxidant enzyme activities such as SOD, CAT, GPx, GSH, and TSH and prevented increases (p < 0.05) in oxidative and inflammatory levels as indicated by decreases in RONS, LPO, XO, carbonyl protein, NO, MPO, and TNF-α compared to the untreated control. BER-treated animals a lessened number of dark-stained Nissl cells compared to the untreated control rats. Our findings revealed that BER minimised neuronal degeneration and lesions, improved animal behaviour, and suppressed oxidative and inflammatory mediators, which may probably occur through its agonistic effect on PPAR-α, PPAR-δ, and PPAR-γ - essential proteins known to resolve inflammation and modulate redox signalling towards antioxidant function.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria.
| | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Moses Otunla
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Bayode Oluwawibe
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Harieme Agbarogi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Mayowa Anifowose
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Uche Arunsi
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Olatunde Owoeye
- Neuroanatomy Research Laboratories, Department of Anatomy, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| |
Collapse
|
7
|
Vedunova M, Borysova O, Kozlov G, Zharova AM, Morgunov I, Moskalev A. Candidate molecular targets uncovered in mouse lifespan extension studies. Expert Opin Ther Targets 2024; 28:513-528. [PMID: 38656034 DOI: 10.1080/14728222.2024.2346597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Multiple interventions have demonstrated an increase in mouse lifespan. However, non-standardized controls, sex or strain-specific factors, and insufficient focus on targets, hinder the translation of these findings into clinical applications. AREAS COVERED We examined the effects of genetic and drug-based interventions on mice from databases DrugAge, GenAge, the Mouse Phenome Database, and publications from PubMed that led to a lifespan extension of more than 10%, identifying specific molecular targets that were manipulated to achieve the maximum lifespan in mice. Subsequently, we characterized 10 molecular targets influenced by these interventions, with particular attention given to clinical trials and potential indications for each. EXPERT OPINION To increase the translational potential of mice life-extension studies to clinical research several factors are crucial: standardization of mice lifespan research approaches, the development of clear criteria for control and experimental groups, the establishment of criteria for potential geroprotectors, and focusing on targets and their clinical application. Pinpointing the targets affected by geroprotectors helps in understanding species-specific differences and identifying potential side effects, ensuring the safety and effectiveness of clinical trials. Additionally, target review facilitates the optimization of treatment protocols and the evaluation of the clinical feasibility of translating research findings into practical therapies for humans.
Collapse
Affiliation(s)
- Maria Vedunova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Grigory Kozlov
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | - Anna-Maria Zharova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Alexey Moskalev
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Longaevus Technologies LTD, London, United Kingdom
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Yadawa AK, Srivastava P, Singh A, Kumar R, Arya JK, Rizvi SI. Berberine attenuates brain aging via stabilizing redox homeostasis and inflammation in an accelerated senescence model of Wistar rats. Metab Brain Dis 2024; 39:649-659. [PMID: 38727934 DOI: 10.1007/s11011-024-01350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Aging is a multifaceted and progressive physiological change of the organism categorized by the accumulation of deteriorating processes, which ultimately compromise the biological functions. The objective of this study was to investigate the anti-aging potential of berberine (BBR) in D-galactose (D-Gal) induced aging in rat models. In this study, male Wistar rats were divided into four groups: The control group was given only vehicle, the BBR group was treated with berberine orally, the D-Gal group was treated with D-galactose subcutaneously and the BBR + D-Gal group was treated with D-galactose and berberine simultaneously. D-galactose exposure elevated the pro-oxidants such as malondialdehyde (MDA) level, protein carbonyl and advanced oxidation protein products (AOPP) in the brain. It decreased the anti-oxidants such as reduced glutathione (GSH) and ferric reducing antioxidant potential (FRAP) in the brain. D-galactose treatment also reduced the mitochondrial complexes (I, II, III and IV) activities and elevated the inflammatory markers such as interleukine-6 (IL-6), tumor necrosis factor- α (TNF-α) and C-reactive protein (CRP). The mRNA expressions of IL-6 and TNF-α in the brain were upregulated following D-galactose exposure. Berberine co-treatment in D-galactose induced aging rat model prevented the alteration of pro-oxidant and anti-oxidant in the brain. Berberine treatment restored the mitochondrial complex activities in the brain and also normalized the inflammatory markers. Based on these findings we conclude that berberine treatment has the potential to mitigate brain aging in rats via stabilizing the redox equilibrium and neuroinflammation.
Collapse
Affiliation(s)
- Arun Kumar Yadawa
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Parisha Srivastava
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Jitendra Kumar Arya
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, 211002, Allahabad, India.
| |
Collapse
|
9
|
Hu F, Hu T, Qiao Y, Huang H, Zhang Z, Huang W, Liu J, Lai S. Berberine inhibits excessive autophagy and protects myocardium against ischemia/reperfusion injury via the RhoE/AMPK pathway. Int J Mol Med 2024; 53:49. [PMID: 38577949 PMCID: PMC10999226 DOI: 10.3892/ijmm.2024.5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia‑reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells. BBR pretreatment significantly improved the decrease of cell viability, P62 protein, Rho Family GTPase 3 (RhoE) protein, ubiquinone subunit B8 protein, ubiquinol‑cytochrome c reductase core protein U, the Bcl‑2‑associated X protein/B‑cell lymphoma 2 ratio, glutathione (GSH) and the GSH/glutathione disulphide (GSSG) ratio induced by H/R, while reducing the increase in lactate dehydrogenase, microtubule‑associated protein 1 light 3 protein, caspase‑3 activity, reactive oxygen species, GSSG and malonaldehyde caused by H/R. Transmission electron microscopy and LysoTracker Red DND‑99 staining results showed that BBR pretreatment inhibited H/R‑induced excessive autophagy by mediating RhoE. BBR also inhibited mitochondrial permeability transition, maintained the stability of the mitochondrial membrane potential, reduced the apoptotic rate, and increased the level of caspase‑3. However, the protective effects of BBR were attenuated by pAD/RhoE‑small hairpin RNA, rapamycin (an autophagy activator) and compound C (an AMP‑activated protein kinase inhibitor). These new findings suggested that BBR protects the myocardium from MI/RI by inhibiting excessive autophagy, maintaining mitochondrial function, improving the energy supply and redox homeostasis, and attenuating apoptosis through the RhoE/AMP‑activated protein kinase pathway.
Collapse
Affiliation(s)
- Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zeyu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenxiong Huang
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Songqing Lai
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
10
|
Shobnam N, Saksena S, Ratley G, Yadav M, Chaudhary PP, Sun AA, Howe KN, Gadkari M, Franco LM, Ganesan S, McCann KJ, Hsu AP, Kanakabandi K, Ricklefs S, Lack J, Yu W, Similuk M, Walkiewicz MA, Gardner DD, Barta K, Tullos K, Myles IA. Topical Steroid Withdrawal is a Targetable Excess of Mitochondrial NAD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305846. [PMID: 38712043 PMCID: PMC11071640 DOI: 10.1101/2024.04.17.24305846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Topical corticosteroids (TCS) are first-line therapies for numerous skin conditions. Topical Steroid Withdrawal (TSW) is a controversial diagnosis advocated by patients with prolonged TCS exposure who report severe systemic reactions upon treatment cessation. However, to date there have been no systematic clinical or mechanistic studies to distinguish TSW from other eczematous disorders. Methods A re-analysis of a previous survey with eczematous skin disease was performed to evaluate potential TSW distinguishing symptoms. We subsequently conducted a pilot study of 16 patients fitting the proposed diagnostic criteria. We then performed: tissue metabolomics, transcriptomics, and immunostaining on skin biopsies; serum metabolomics and cytokine assessments; shotgun metagenomics on microbiome skin swabs; genome sequencing; followed by functional, mechanistic studies using human skin cell lines and mice. Results Clinically distinct TSW symptoms included burning, flushing, and thermodysregulation. Metabolomics and transcriptomics both implicated elevated NAD+ oxidation stemming from increased expression of mitochondrial complex I and conversion of tryptophan into kynurenine metabolites. These abnormalities were induced by glucocorticoid exposure both in vitro and in a cohort of healthy controls (N=19) exposed to TCS. Targeting complex I via either metformin or the herbal compound berberine improved outcomes in both cell culture and in an open-label case series for patients with TSW. Conclusion Taken together, our results suggest that TSW has a distinct dermatopathology. While future studies are needed to validate these results in larger cohorts, this work provides the first mechanistic evaluation into TSW pathology, and offers insights into clinical identification, pharmacogenomic candidates, and directed therapeutic strategies.
Collapse
|
11
|
Ionita-Radu F, Patoni C, Nancoff AS, Marin FS, Gaman L, Bucurica A, Socol C, Jinga M, Dutu M, Bucurica S. Berberine Effects in Pre-Fibrotic Stages of Non-Alcoholic Fatty Liver Disease-Clinical and Pre-Clinical Overview and Systematic Review of the Literature. Int J Mol Sci 2024; 25:4201. [PMID: 38673787 PMCID: PMC11050387 DOI: 10.3390/ijms25084201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the predominant cause of chronic liver conditions, and its progression is marked by evolution to non-alcoholic steatosis, steatohepatitis, cirrhosis related to non-alcoholic steatohepatitis, and the potential occurrence of hepatocellular carcinoma. In our systematic review, we searched two databases, Medline (via Pubmed Central) and Scopus, from inception to 5 February 2024, and included 73 types of research (nine clinical studies and 64 pre-clinical studies) from 2854 published papers. Our extensive research highlights the impact of Berberine on NAFLD pathophysiology mechanisms, such as Adenosine Monophosphate-Activated Protein Kinase (AMPK), gut dysbiosis, peroxisome proliferator-activated receptor (PPAR), Sirtuins, and inflammasome. Studies involving human subjects showed a measurable reduction of liver fat in addition to improved profiles of serum lipids and hepatic enzymes. While current drugs for NAFLD treatment are either scarce or still in development or launch phases, Berberine presents a promising profile. However, improvements in its formulation are necessary to enhance the bioavailability of this natural substance.
Collapse
Affiliation(s)
- Florentina Ionita-Radu
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Cristina Patoni
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Andreea Simona Nancoff
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Flavius-Stefan Marin
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Laura Gaman
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Ana Bucurica
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Calin Socol
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Mariana Jinga
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Madalina Dutu
- Department of Anesthesiology and Intensive Care, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Sandica Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| |
Collapse
|
12
|
Metwally AA, Ganguly S, Biomi N, Yao M, Elbayoumi T. Cationic Vitamin E-TPGS Mixed Micelles of Berberine to Neutralize Doxorubicin-Induced Cardiotoxicity via Amelioration of Mitochondrial Dysfunction and Impeding Apoptosis. Molecules 2024; 29:1155. [PMID: 38474668 DOI: 10.3390/molecules29051155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Anthracycline antibiotics, namely, doxorubicin (DOX) and daunorubicin, are among the most widely used anticancer therapies, yet are notoriously associated with severe myocardial damage due to oxidative stress and mitochondrial damage. Studies have indicated the strong pharmacological properties of Berberine (Brb) alkaloid, predominantly mediated via mitochondrial functions and nuclear networks. Despite the recent emphasis on Brb in clinical cardioprotective studies, pharmaceutical limitations hamper its clinical use. A nanoformulation for Brb was developed (mMic), incorporating a cationic lipid, oleylamine (OA), into the TPGS-mixed corona of PEGylated-phosphatidylethanolamine (PEG-PE) micelles. Cationic TPGS/PEG-PE mMic with superior Brb loading and stability markedly enhanced both intracellular and mitochondria-tropic Brb activities in cardiovascular muscle cells. Sub-lethal doses of Brb via cationic OA/TPGS mMic, as a DOX co-treatment, resulted in significant mitochondrial apoptosis suppression. In combination with an intense DOX challenge (up to ~50 µM), mitochondria-protective Brb-OA/TPGS mMic showed a significant 24 h recovery of cell viability (p ≤ 0.05-0.01). Mechanistically, the significant relative reduction in apoptotic caspase-9 and elevation of antiapoptotic Bcl-2 seem to mediate the cardioprotective role of Brb-OA/TPGS mMic against DOX. Our report aims to demonstrate the great potential of cationic OA/TPGS-mMic to selectively enhance the protective mitohormetic effect of Brb to mitigate DOX cardiotoxicity.
Collapse
Affiliation(s)
- Abdelkader A Metwally
- Department of Pharmaceutics, College of Pharmacy, Health Science Center (HSC), Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbasseya, Cairo 11566, Egypt
| | - Samayita Ganguly
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Dignity Health/St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ 85013, USA
| | - Nora Biomi
- Pharmacology and Toxicology Program, New College of Interdisciplinary Arts and Sciences, West Valley Campus, Arizona State University, N. 47th Ave & University Way, Glendale, AZ 85306, USA
| | - Mingyi Yao
- Department of Pharmaceutical Sciences, Glendale Campus (CPG), College of Pharmacy, Midwestern University, 218-Cholla Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- College of Graduate Studies, Midwestern University, Dr. Arthur G. Dobbelaere Science Hall 350D, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - Tamer Elbayoumi
- Department of Pharmaceutical Sciences, Glendale Campus (CPG), College of Pharmacy, Midwestern University, 218-Cholla Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- College of Graduate Studies, Midwestern University, Dr. Arthur G. Dobbelaere Science Hall 350D, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| |
Collapse
|
13
|
Ma L, Han T, Zhan YA. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov 2024; 10:88. [PMID: 38374038 PMCID: PMC10876966 DOI: 10.1038/s41420-024-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy, as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe infection. We highlight critical role of normal mitophagy in preventing severe infection.
Collapse
Affiliation(s)
- Lixiu Ma
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-An Zhan
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
14
|
Zhang Y, Guo Z, Wang J, Yue Y, Yang Y, Wen Y, Luo Y, Zhang X. Qinlian hongqu decoction ameliorates hyperlipidemia via the IRE1-α/IKKB-β/NF-κb signaling pathway: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116856. [PMID: 37406747 DOI: 10.1016/j.jep.2023.116856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qinlian Hongqu decoction (QLHQD) is a traditional Chinese medicine (TCM) formula. It has previously been found to mitigate hyperlipidemia, although its mechanism requires further clarification. AIM OF THE STUDY This study explored QLHQD's mechanism in treating hyperlipidemia based on network pharmacology and experimental validation. MATERIALS AND METHODS The components of QLHQD were analyzed by means of ultrahigh performanceliquid chromatography-quadrupole/orbitrapmass spectrometry (UHPLC-Q-Orbitrap-HRMS) and the targets of hyperlipidemia were predicted using the Swiss ADME, GeneCards, OMIM, DrugBank, TTD, and PharmGKB databases. A drug-component-target-disease network was constructed using Cytoscape v3.7.1. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed using the Bioinformatics platform. Based on the KEGG results, the non-alcoholic fatty liver disease signaling pathways were selected for experimental validation in an animal model. RESULTS We identified 34 components of QLHQD, 94 targets of hyperlipidemia, and 18 lipid metabolism-related pathways from the KEGG analysis. The results of the animal experiment revealed that QLHQD alleviated lipid metabolism disorders, obesity, insulin resistance, and inflammation in rats with hyperlipidemia induced by high-fat diets. Additionally, it reduced the expression of IRE1-α, TRAF2, IKKB-β, and NF-κB proteins in the liver of hyperlipidemic rats. CONCLUSION QLHQD is able to significantly mitigate hyperlipidemia induced via high-fat diets in rats. The mechanism of action in this regard might involve regulating the IRE1-α/IKKB-β/NF-κB signaling pathway in the liver, thereby attenuating inflammatory responses and insulin resistance.
Collapse
Affiliation(s)
- Yong Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zhiqing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jin Wang
- College of Computer Science, Chengdu University, Chengdu, Sichuan Province, China
| | - Yuanyuan Yue
- Department of Ultrasound, Chengdu First People's Hospital, Chengdu, Sichuan Province, China
| | - Yang Yang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan Province, China
| | - Yueqiang Wen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yaqi Luo
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan Province, China.
| | - Xiaobo Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| |
Collapse
|
15
|
Um JH, Lee KM, Kim YY, Lee DY, Kim E, Kim DH, Yun J. Berberine Induces Mitophagy through Adenosine Monophosphate-Activated Protein Kinase and Ameliorates Mitochondrial Dysfunction in PINK1 Knockout Mouse Embryonic Fibroblasts. Int J Mol Sci 2023; 25:219. [PMID: 38203389 PMCID: PMC10779002 DOI: 10.3390/ijms25010219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Mitophagy stimulation has been shown to have a therapeutic effect on various neurodegenerative diseases. However, nontoxic mitophagy inducers are still very limited. In this study, we found that the natural alkaloid berberine exhibited mitophagy stimulation activity in various human cells. Berberine did not interfere with mitochondrial function, unlike the well-known mitophagy inducer carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and subsequently induced mitochondrial biogenesis. Berberine treatment induced the activation of adenosine monophosphate-activated protein kinase (AMPK), and the AMPK inhibitor compound C abolished berberine-induced mitophagy, suggesting that AMPK activation is essential for berberine-induced mitophagy. Notably, berberine treatment reversed mitochondrial dysfunction in PINK1 knockout mouse embryonic fibroblasts. Our results suggest that berberine is a mitophagy-specific inducer and can be used as a therapeutic treatment for neurodegenerative diseases, including Parkinson's disease, and that natural alkaloids are potential sources of mitophagy inducers.
Collapse
Affiliation(s)
- Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Kang-Min Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Young-Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Da-Ye Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Eunmi Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| |
Collapse
|
16
|
Lazzeri G, Biagioni F, Ferrucci M, Puglisi-Allegra S, Lenzi P, Busceti CL, Giannessi F, Fornai F. The Relevance of Autophagy within Inner Ear in Baseline Conditions and Tinnitus-Related Syndromes. Int J Mol Sci 2023; 24:16664. [PMID: 38068993 PMCID: PMC10706730 DOI: 10.3390/ijms242316664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Stefano Puglisi-Allegra
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Francesco Giannessi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| |
Collapse
|
17
|
Cao F, Xia W, Dai S, Wang C, Shi R, Yang Y, Guo C, Xu XL, Luo J. Berberine: An inspiring resource for the treatment of colorectal diseases. Biomed Pharmacother 2023; 167:115571. [PMID: 37757496 DOI: 10.1016/j.biopha.2023.115571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer is a prevalent malignant tumor with a complex and diverse pathogenesis. In recent years, natural products have shown promising application prospects as sources of anticancer drugs. BBR, a class of benzoquinoline alkaloids extracted from various plants, is widely used in disease treatments owing to its pharmacological activities, including antibacterial, anti-inflammatory, antioxidant, anticancer, and anti-angiogenesis properties. Research has demonstrated that BBR exerts an anti-Salmonella and -Escherichia coli infection effect, attenuating inflammatory reactions by inhibiting harmful bacteria. During the stage of colorectal precancerous lesions, BBR inhibits the activity of cell cyclin by regulating the PI3K/AKT, MAPK, and Wnt signaling pathways, thereby decelerating the cell cycle progression of polyp or adenoma cells. Moreover, the inhibitory effect of BBR on colorectal cancer primarily occurs through the regulation of the cancer cell cycle, anti-angiogenesis, gut microbiota, and antioxidant pathways. The specific involved pathways include the MPK/ERK, NF-kB, and EGFR signaling pathways, encompassing the regulation of Bcl-2 family proteins, vascular endothelial growth factor, and superoxide dismutase. This study reviews and summarizes, for the first time, the specific mechanisms of action of BBR in the carcinogenesis process of colorectal cancer, providing novel insights for its clinical application in intestinal diseases.
Collapse
Affiliation(s)
- Fang Cao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Shengcheng Dai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changkang Wang
- Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rui Shi
- Tong Ren People's Hospital, Chongqing, China
| | - Yujie Yang
- Chongqing Xinqiao Community Health Service Center, Chongqing, China
| | - Cui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xue Liang Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jian Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
18
|
Ling Q, Fang J, Zhai C, Huang W, Chen Y, Zhou T, Liu Y, Fang X. Berberine induces SOCS1 pathway to reprogram the M1 polarization of macrophages via miR-155-5p in colitis-associated colorectal cancer. Eur J Pharmacol 2023; 949:175724. [PMID: 37059377 DOI: 10.1016/j.ejphar.2023.175724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Berberine is approved for the treatment of intestinal infections and diarrhea and has been shown to have anti-inflammatory and anti-tumor effects in pathological intestinal tissues. However, it is unclear whether the anti-inflammatory effect of berberine contributes to its anti-tumor effect on colitis-associated colorectal cancer (CAC). In this study, we found that berberine effectively inhibited tumorigenesis and protected against colon shortening in CAC mouse model. Immunohistochemistry results showed a reduction in the number of macrophage infiltrations in the colon following berberine treatment. Further analysis revealed that most of the infiltrated macrophages were pro-inflammatory M1 type, which berberine effectively limited. However, in another CRC model without chronic colitis, berberine had no significant effect on tumor number or colon length. In vitro studies demonstrated that berberine treatment significantly reduced the percentage of M1 type and levels of Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Additionally, miR-155-5p level was down-regulated, and suppressor of cytokine signaling 1 (SOCS1) expression was up-regulated in berberine-treated cells. Notably, the miR-155-5p inhibitor attenuated the regulatory effects of berberine on SOCS1 signaling and macrophage polarization. Altogether, our findings suggest that the inhibitory effect of berberine on CAC development is dependent on its anti-inflammatory activity. Moreover, miR-155-5p may be involved in the pathogenesis of CAC by regulating M1 macrophage polarization, and berberine could be a promising protective agent against miR-155-5p-mediated CAC. This study provides new insights into pharmacologic mechanisms of berberine and supports the possibility that other anti-miR-155-5p drugs may be beneficial in the treatment of CAC.
Collapse
Affiliation(s)
- Qiaoyun Ling
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Jing Fang
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chi Zhai
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Wan Huang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Yu Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Ting Zhou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Yunxin Liu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Xianjun Fang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China.
| |
Collapse
|
19
|
He T, Lin X, Su A, Zhang Y, Xing Z, Mi L, Wei T, Li Z, Wu W. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson's disease. Front Pharmacol 2023; 14:1117337. [PMID: 37234707 PMCID: PMC10206024 DOI: 10.3389/fphar.2023.1117337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis of PD is complex and includes mitochondrial dysfunction, and oxidative stress. Recently, natural products with multiple structures and their bioactive components have become one of the most important resources for small molecule PD drug research targeting mitochondrial dysfunction. Multiple lines of studies have proven that natural products display ameliorative benefits in PD treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive search of recent published articles between 2012 and 2022 in PubMed, Web of Science, Elesvier, Wliey and Springer was carried out, focusing on original publications related to natural products against PD by restoring mitochondrial dysfunction. This paper presented the mechanisms of various kinds of natural products on PD-related mitochondrial dysfunction regulation and provided evidence that natural products are promising to be developed as drugs for PD therapeutics.
Collapse
|
20
|
Wang S, Ma Y, Huang Y, Hu Y, Huang Y, Wu Y. Potential bioactive compounds and mechanisms of Fibraurea recisa Pierre for the treatment of Alzheimer's disease analyzed by network pharmacology and molecular docking prediction. Front Aging Neurosci 2022; 14:1052249. [PMID: 36570530 PMCID: PMC9772884 DOI: 10.3389/fnagi.2022.1052249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Heat-clearing and detoxifying Chinese medicines have been documented to have anti-Alzheimer's disease (AD) activities according to the accumulated clinical experience and pharmacological research results in recent decades. In this study, Fibraurea recisa Pierre (FRP), the classic type of Heat-clearing and detoxifying Chinese medicine, was selected as the object of research. Methods 12 components with anti-AD activities were identified in FRP by a variety of methods, including silica gel column chromatography, multiple databases, and literature searches. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Consequently, it was found that these 12 compounds could act on 235 anti-AD targets, of which AKT and other targets were the core targets. Meanwhile, among these 235 targets, 71 targets were identified to be significantly correlated with the pathology of amyloid beta (Aβ) and Tau. Results and discussion In view of the analysis results of the network of active ingredients and targets, it was observed that palmatine, berberine, and other alkaloids in FRP were the key active ingredients for the treatment of AD. Further, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed that the neuroactive ligand-receptor interaction pathway and PI3K-Akt signaling pathway were the most significant signaling pathways for FRP to play an anti-AD role. Findings in our study suggest that multiple primary active ingredients in FRP can play a multitarget anti-AD effect by regulating key physiological processes such as neurotransmitter transmission and anti-inflammation. Besides, key ingredients such as palmatine and berberine in FRP are expected to be excellent leading compounds of multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Shishuai Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Yuhui Hu
- Medical College, Jinggangshan University, Ji’an, China,*Correspondence: Yuhui Hu,
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,Yushan Huang,
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China,Yi Wu,
| |
Collapse
|