1
|
Mitchell MI, Khalil M, Ben-Dov IZ, Alverez-Perez J, Illsley NP, Zamudio S, Al-Khan A, Loudig O. Customizing EV-CATCHER to Purify Placental Extracellular Vesicles from Maternal Plasma to Detect Placental Pathologies. Int J Mol Sci 2024; 25:5102. [PMID: 38791142 PMCID: PMC11121217 DOI: 10.3390/ijms25105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Placenta Accreta Spectrum (PAS) is a life-threatening condition in which placental trophoblastic cells abnormally invade the uterus, often up to the uterine serosa and, in extreme cases, tissues beyond the uterine wall. Currently, there is no clinical assay for the non-invasive detection of PAS, and only ultrasound and MRI can be used for its diagnosis. Considering the subjectivity of visual assessment, the detection of PAS necessitates a high degree of expertise and, in some instances, can lead to its misdiagnosis. In clinical practice, up to 50% of pregnancies with PAS remain undiagnosed until delivery, and it is associated with increased risk of morbidity/mortality. Although many studies have evaluated the potential of fetal biomarkers circulating in maternal blood, very few studies have evaluated the potential of circulating placental extracellular vesicles (EVs) and their miRNA contents for molecular detection of PAS. Thus, to purify placental EVs from maternal blood, we customized our robust ultra-sensitive immuno-purification assay, termed EV-CATCHER, with a monoclonal antibody targeting the membrane Placental Alkaline Phosphatase (PLAP) protein, which is unique to the placenta and present on the surface of placental EVs. Then, as a pilot evaluation, we compared the miRNA expression profiles of placental EVs purified from the maternal plasma of women diagnosed with placenta previa (controls, n = 16); placenta lying low in uterus but not invasive) to those of placental EVs purified from the plasma of women with placenta percreta (cases, n = 16), PAS with the highest level of invasiveness. Our analyses reveal that miRNA profiling of PLAP+ EVs purified from maternal plasma identified 40 differentially expressed miRNAs when comparing these two placental pathologies. Preliminary miRNA pathway enrichment and gene ontology analysis of the top 14 upregulated and top nine downregulated miRNAs in PLAP+ EVs, purified from the plasma of women diagnosed with placenta percreta versus those diagnosed with placenta previa, suggests a potential role in control of cellular invasion and motility that will require further investigation.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
- Hackensack University Medical Center, Department of Pediatrics, Hackensack Meridian Health, Hackensack, NJ 07601, USA;
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
| | - Marwa Khalil
- Hackensack University Medical Center, Department of Pediatrics, Hackensack Meridian Health, Hackensack, NJ 07601, USA;
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Jesus Alverez-Perez
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Nicholas P. Illsley
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Stacy Zamudio
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Abdulla Al-Khan
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
- Hackensack University Medical Center, Department of Pediatrics, Hackensack Meridian Health, Hackensack, NJ 07601, USA;
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
| |
Collapse
|
2
|
Mitra T, Gulati R, Ramachandran K, Rajiv R, Enninga EAL, Pierret CK, Kumari R S, Janardhanan R. Endocrine disrupting chemicals: gestational diabetes and beyond. Diabetol Metab Syndr 2024; 16:95. [PMID: 38664841 PMCID: PMC11046910 DOI: 10.1186/s13098-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational Diabetes Mellitus (GDM) has been on the rise for the last two decades along with the growing incidence of obesity. The ubiquitous use of Endocrine-Disrupting Chemicals (EDCs) worldwide has been associated with this increase in GDM incidence. Epigenetic modifications such as DNA methylation, histone acetylation, and methylation have been associated with prenatal exposure to EDCs. EDC exposure can also drive a sustained disruption of the hypothalamus-pituitary-thyroid axis and various other signaling pathways such as thyroid signaling, PPARγ signaling, PI3K-AKT signaling. This disruption leads to impaired glucose metabolism, insulin resistance as well as β-cell dysfunction, which culminate into GDM. Persistent EDC exposure in pregnant women also increases adipogenesis, which results in gestational weight gain. Importantly, pregnant mothers transfer these EDCs to the fetus via the placenta, thus leading to other pregnancy-associated complications such as intrauterine growth restriction (IUGR), and large for gestational age neonates. Furthermore, this early EDC exposure of the fetus increases the susceptibility of the infant to metabolic diseases in early life. The transgenerational impact of EDCs is also associated with higher vascular tone, cognitive aberrations, and enhanced susceptibility to lifestyle disorders including reproductive health anomalies. The review focuses on the impact of environmental toxins in inducing epigenetic alterations and increasing the susceptibility to metabolic diseases during pregnancy needs to be extensively studied such that interventions can be developed to break this vicious cycle. Furthermore, the use of EDC-associated ExomiRs from the serum of patients can help in the early diagnosis of GDM, thereby leading to triaging of patients based on increasing risk factor of the clinicopathological condition.
Collapse
Affiliation(s)
- Tridip Mitra
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Richa Gulati
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Krithika Ramachandran
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rohan Rajiv
- Dietrich School of Arts and Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | - Chris K Pierret
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sajeetha Kumari R
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rajiv Janardhanan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
3
|
Ustianowski Ł, Udzik J, Szostak J, Gorący A, Ustianowska K, Pawlik A. Genetic and Epigenetic Factors in Gestational Diabetes Mellitus Pathology. Int J Mol Sci 2023; 24:16619. [PMID: 38068941 PMCID: PMC10706782 DOI: 10.3390/ijms242316619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Gestational diabetes (GDM) is the carbohydrate intolerance occurring during pregnancy. The risk factors of GDM include obesity, advanced maternal age, polycystic ovary syndrome, multigravidity, a sedentary lifestyle, and pre-existing hypertension. Additionally, complex genetic and epigenetic processes are also believed to play a crucial role in the development of GDM. In this narrative review, we discuss the role of genetic and epigenetic factors in gestational diabetes mellitus pathogenesis.
Collapse
Affiliation(s)
- Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
| | - Jakub Udzik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
- Department of Cardiac Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (J.U.); (K.U.)
| |
Collapse
|
4
|
Wang M, Zheng L, Ma S, Lin R, Li J, Yang S. Biogenesis and function of exosome lncRNAs and their role in female pathological pregnancy. Front Endocrinol (Lausanne) 2023; 14:1191721. [PMID: 37745705 PMCID: PMC10515720 DOI: 10.3389/fendo.2023.1191721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Preeclampsia, gestational diabetes mellitus, and recurrent spontaneous abortion are common maternal pregnancy complications that seriously endanger women's lives and health, and their occurrence is increasing year after year with a rejuvenation trend. In contrast to biomarkers found freely in tissues or body fluids, exosomes exist in a relatively independent environment and provide a higher level of stability. As backbone molecules, guidance molecules, and signaling molecules in the nucleus, lncRNAs can regulate gene expression. In the cytoplasm, lncRNAs can influence gene expression levels by modifying mRNA stability, acting as competitive endogenous RNAs to bind miRNAs, and so on. Exosomal lncRNAs can exist indefinitely and are important in intercellular communication and signal transduction. Changes in maternal serum exosome lncRNA expression can accurately and timely reflect the progression and regression of pregnancy-related diseases. The purpose of this paper is to provide a reference for clinical research on the pathogenesis, diagnosis, and treatment methods of pregnancy-related diseases by reviewing the role of exosome lncRNAs in female pathological pregnancy and related molecular mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|