• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4681075)   Today's Articles (5)
For: Liu XZ, Duan M, Huang HD, Zhang Y, Xiang TY, Niu WC, Zhou B, Wang HL, Zhang TT. Predicting diabetic kidney disease for type 2 diabetes mellitus by machine learning in the real world: a multicenter retrospective study. Front Endocrinol (Lausanne) 2023;14:1184190. [PMID: 37469989 PMCID: PMC10352831 DOI: 10.3389/fendo.2023.1184190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]  Open
Number Cited by Other Article(s)
1
Hassanzadeh A, Allahdadi M, Nayebirad S, Namazi N, Nasli-Esfahani E. Implementing novel complete blood count-derived inflammatory indices in the diabetic kidney diseases diagnostic models. J Diabetes Metab Disord 2025;24:44. [PMID: 39801691 PMCID: PMC11723874 DOI: 10.1007/s40200-024-01523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/12/2024] [Indexed: 01/16/2025]
2
Maeda-Gutiérrez V, Galván-Tejada CE, Galván-Tejada JI, Cruz M, Celaya-Padilla JM, Gamboa-Rosales H, García-Hernández A, Luna-García H, Villalba-Condori KO. Evaluating Feature Selection Methods for Accurate Diagnosis of Diabetic Kidney Disease. Biomedicines 2024;12:2858. [PMID: 39767765 PMCID: PMC11674021 DOI: 10.3390/biomedicines12122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]  Open
3
Khamis A, Abdul F, Dsouza S, Sulaiman F, Farooqi M, Al Awadi F, Hassanein M, Ahmed FS, Alsharhan M, AlOlama A, Ali N, Abdulaziz A, Rafie AM, Goswami N, Bayoumi R. Risk of Microvascular Complications in Newly Diagnosed Type 2 Diabetes Patients Using Automated Machine Learning Prediction Models. J Clin Med 2024;13:7422. [PMID: 39685880 DOI: 10.3390/jcm13237422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]  Open
4
Dholariya S, Dutta S, Sonagra A, Kaliya M, Singh R, Parchwani D, Motiani A. Unveiling the utility of artificial intelligence for prediction, diagnosis, and progression of diabetic kidney disease: an evidence-based systematic review and meta-analysis. Curr Med Res Opin 2024;40:2025-2055. [PMID: 39474800 DOI: 10.1080/03007995.2024.2423737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
5
Song S, Zhang Y, Qiao X, Duo Y, Xu J, Zhang J, Chen Y, Nie X, Sun Q, Yang X, Wang A, Lu Z, Sun W, Fu Y, Dong Y, Yuan T, Zhao W. Thyroid FT4-to-TSH ratio in the first trimester is associated with gestational diabetes mellitus in women carrying male fetus: a prospective bi-center cohort study. Front Endocrinol (Lausanne) 2024;15:1427925. [PMID: 39678197 PMCID: PMC11637856 DOI: 10.3389/fendo.2024.1427925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]  Open
6
Liu X, Xie Z, Zhang Y, Huang J, Kuang L, Li X, Li H, Zou Y, Xiang T, Yin N, Zhou X, Yu J. Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study. Cardiovasc Diabetol 2024;23:407. [PMID: 39548495 PMCID: PMC11568583 DOI: 10.1186/s12933-024-02503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]  Open
7
Yun C, Tang F, Lou Q. Construction of Risk Prediction Model of Type 2 Diabetic Kidney Disease Based on Deep Learning (Diabetes Metab J 2024;48:771-9). Diabetes Metab J 2024;48:1008-1011. [PMID: 39313234 PMCID: PMC11449815 DOI: 10.4093/dmj.2024.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]  Open
8
Seo BM, Choi JW. Construction of Risk Prediction Model of Type 2 Diabetic Kidney Disease Based on Deep Learning (Diabetes Metab J 2024;48:771-9). Diabetes Metab J 2024;48:1003-1004. [PMID: 39313232 PMCID: PMC11449817 DOI: 10.4093/dmj.2024.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]  Open
9
Xu W, Zhou Y, Jiang Q, Fang Y, Yang Q. Risk prediction models for diabetic nephropathy among type 2 diabetes patients in China: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024;15:1407348. [PMID: 39022345 PMCID: PMC11251916 DOI: 10.3389/fendo.2024.1407348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]  Open
10
Jiang X, Zhou R, Jiang F, Yan Y, Zhang Z, Wang J. Construction of diagnostic models for the progression of hepatocellular carcinoma using machine learning. Front Oncol 2024;14:1401496. [PMID: 38812780 PMCID: PMC11133637 DOI: 10.3389/fonc.2024.1401496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]  Open
11
Yang C, Ma Y, Yao M, Jiang Q, Xue J. Causal relationships between blood metabolites and diabetic retinopathy: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024;15:1383035. [PMID: 38752182 PMCID: PMC11094203 DOI: 10.3389/fendo.2024.1383035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024]  Open
12
Hu M, Li X, Lin H, Lu B, Wang Q, Tong L, Li H, Che N, Hung S, Han Y, Shi K, Li C, Zhang H, Liu Z, Zhang T. Easily applicable predictive score for MPR based on parameters before neoadjuvant chemoimmunotherapy in operable NSCLC: a single-center, ambispective, observational study. Int J Surg 2024;110:2275-2287. [PMID: 38265431 PMCID: PMC11020048 DOI: 10.1097/js9.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
13
Sammut-Powell C, Sisk R, Silva-Tinoco R, de la Pena G, Almeda-Valdes P, Juarez Comboni SC, Goncalves S, Cameron R. External validation of a minimal-resource model to predict reduced estimated glomerular filtration rate in people with type 2 diabetes without diagnosis of chronic kidney disease in Mexico: a comparison between country-level and regional performance. Front Endocrinol (Lausanne) 2024;15:1253492. [PMID: 38586458 PMCID: PMC10998449 DOI: 10.3389/fendo.2024.1253492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024]  Open
14
Ma J, An S, Cao M, Zhang L, Lu J. Integrated machine learning and deep learning for predicting diabetic nephropathy model construction, validation, and interpretability. Endocrine 2024:10.1007/s12020-024-03735-1. [PMID: 38393509 DOI: 10.1007/s12020-024-03735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA