1
|
Zhai X, Dang L, Wang S, Sun C. The SIRT5-Mediated Upregulation of C/EBPβ Promotes White Adipose Tissue Browning by Enhancing UCP1 Signaling. Int J Mol Sci 2024; 25:10514. [PMID: 39408844 PMCID: PMC11476608 DOI: 10.3390/ijms251910514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Sirtuin 5 (SIRT5) plays an important role in the maintenance of lipid metabolism and in white adipose tissue browning. In this study, we established a mouse model for diet-induced obesity and the browning of white fat; combined with gene expression intervention, transcriptome sequencing, and cell molecular biology methods, the regulation and molecular mechanisms of SIRT5 on fat deposition and beige fat formation were studied. The results showed that the loss of SIRT5 in obese mice exacerbated white adipose tissue deposition and metabolic inflexibility. Furthermore, the deletion of SIRT5 in a white-fat-browning mouse increased the succinylation of uncoupling protein 1 (UCP1), resulting in a loss of the beiging capacity of the subcutaneous white adipose tissue and impaired cold tolerance. Mechanistically, the inhibition of SIRT5 results in impaired CCAAT/enhancer binding protein beta (C/EBPβ) expression in brown adipocytes, which in turn reduces the UCP1 transcriptional pathway. Thus, the transcription of UCP1 mediated by the SIRT5-C/EBPβ axis is critical in regulating energy balance and obesity-related metabolism.
Collapse
Affiliation(s)
| | | | | | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.Z.); (L.D.); (S.W.)
| |
Collapse
|
2
|
Ye Y, Wang H, Chen W, Chen Z, Wu D, Zhang F, Hu F. Dynamic changes of immunocyte subpopulations in thermogenic activation of adipose tissues. Front Immunol 2024; 15:1375138. [PMID: 38812501 PMCID: PMC11133676 DOI: 10.3389/fimmu.2024.1375138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Objectives The effects of cold exposure on whole-body metabolism in humans have gained increasing attention. Brown or beige adipose tissues are crucial in cold-induced thermogenesis to dissipate energy and thus have the potential to combat metabolic disorders. Despite the immune regulation of thermogenic adipose tissues, the overall changes in vital immune cells during distinct cold periods remain elusive. This study aimed to discuss the overall changes in immune cells under different cold exposure periods and to screen several potential immune cell subpopulations on thermogenic regulation. Methods Cibersort and mMCP-counter algorithms were employed to analyze immune infiltration in two (brown and beige) thermogenic adipose tissues under distinct cold periods. Changes in some crucial immune cell populations were validated by reanalyzing the single-cell sequencing dataset (GSE207706). Flow cytometry, immunofluorescence, and quantitative real-time PCR assays were performed to detect the proportion or expression changes in mouse immune cells of thermogenic adipose tissues under cold challenge. Results The proportion of monocytes, naïve, and memory T cells increased, while the proportion of NK cells decreased under cold exposure in brown adipose tissues. Conclusion Our study revealed dynamic changes in immune cell profiles in thermogenic adipose tissues and identified several novel immune cell subpopulations, which may contribute to thermogenic activation of adipose tissues under cold exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Gambaro SE, Zubiría MG, Giordano AP, Castro PF, Garraza C, Harnichar AE, Alzamendi A, Spinedi E, Giovambattista A. Role of Spexin in White Adipose Tissue Thermogenesis under Basal and Cold-Stimulated Conditions. Int J Mol Sci 2024; 25:1767. [PMID: 38339044 PMCID: PMC10855774 DOI: 10.3390/ijms25031767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Spexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis. Therefore, the aim of the present study was to evaluate the role of SPX in this process. C57BL/6J male mice were treated or not with SPX for ten days. On day 3, mice were randomly divided into two groups: one kept at room temperature and the other kept at cold temperature (4 °C). Caloric intake and body weight were recorded daily. At the end of the protocol, plasma, abdominal (epididymal), subcutaneous (inguinal), and brown AT (EAT, IAT, and BAT, respectively) depots were collected for measurements. We found that SPX treatment reduced Uncoupling protein 1 levels in WAT under both basal and cold conditions. SPX also reduced cox8b and pgc1α mRNA levels and mitochondrial DNA, principally in IAT. SPX did not modulate the number of beige precursors. SPX decreased spx levels in IAT depots and galr2 in WAT depots. No differences were observed in the BAT depots. In conclusion, we showed, for the first time, that SPX treatment in vivo reduced the thermogenic process in subcutaneous and abdominal AT, being more evident under cold stimulation.
Collapse
Affiliation(s)
- Sabrina E. Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - María G. Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Alejandra P. Giordano
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Patricia F. Castro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Carolina Garraza
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Alejandro E. Harnichar
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Ana Alzamendi
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Eduardo Spinedi
- CENEXA (UNLP-CONICET), La Plata Medical School-UNLP, Calles 60 y 120, La Plata 1900, Argentina;
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| |
Collapse
|
4
|
Bae IS, Lee JA, Cho SH, Kim HW, Kim Y, Seo K, Cho HW, Lee MY, Chun JL, Kim KH. Rabbit Meat Extract Induces Browning in 3T3-L1 Adipocytes via the AMP-Activated Protein Kinase Pathway. Foods 2023; 12:3671. [PMID: 37835324 PMCID: PMC10572372 DOI: 10.3390/foods12193671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The browning of white adipocytes may be an innovative approach to address obesity. This study investigated the effects of rabbit meat extract on 3T3-L1 adipocytes, with a specific emphasis on inducing browning. The browning effects of rabbit meat extract were evaluated by analyzing genes specifically expressed in 3T3-L1 adipocytes using quantitative PCR and immunoblotting. Rabbit meat extract increased the expression of brown adipocyte-specific markers, UCP1 and PGC1α, and mitochondrial biogenesis factors, TFAM and NRF1, without affecting cell viability in fully differentiated 3T3-L1 adipocytes. Moreover, adipocyte differentiation and the triglyceride content were decreased; hormone-sensitive lipase activity was promoted. Rabbit meat extract activated the AMPK pathway in the differentiated 3T3-L1 cells. However, in adipocytes treated with rabbit meat extract, the expression of genes related to browning was reduced by the AMP-activated protein kinase (AMPK) inhibitor, dorsomorphin dihydrochloride. To the best of our knowledge, this is the first study to demonstrate that rabbit meat extract induces the browning of white adipocytes via the activation of the AMPK pathway, thereby demonstrating its therapeutic potential in preventing obesity.
Collapse
Affiliation(s)
- In-Seon Bae
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Jeong Ah Lee
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Hyoun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Yunseok Kim
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Kangmin Seo
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Min Young Lee
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| |
Collapse
|