1
|
Hung YT, Yu TH, Alizargar J. Insulin Resistance and Bone Mineral Density: A Comprehensive Examination Using UK Biobank Data. Healthcare (Basel) 2024; 12:2502. [PMID: 39765929 PMCID: PMC11727659 DOI: 10.3390/healthcare12242502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/15/2025] Open
Abstract
Purpose: The association between insulin resistance (IR) and bone mineral density (BMD) remains contentious. The aim of this study is to assess the predictive capability of the Triglyceride and Glucose (TyG) index concerning changes in bone mineral density, encompassing both deterioration and improvement. Methods: This study analyzed data from the UK Biobank, encompassing 2527 participants after exclusions. Logistic models and ANOVA were employed, with propensity score matching addressing the effects of age, BMI, and sex. The TyG index was calculated using this formula: Ln (triglyceride [mg/dL] × glucose [mg/dL]/2). Results: Initially, a positive correlation was observed between the TyG index and BMD measures. However, upon adjustment for age, sex, and BMI, this association lost significance. Propensity score matching further indicated no inverse relationship between the TyG index and osteoporosis development. Conclusions: Although the TyG index demonstrated a positive correlation with BMD, caution is warranted due to potential confounding by age, sex, and BMI. Notably, the TyG index alone did not predict changes in T-score or osteoporosis status.
Collapse
Affiliation(s)
- Yu-Tun Hung
- Department of Orthopedics Surgery, Department of Medicine, Hualien Armed Forces General Hospital, Hualien 971, Taiwan;
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Tsong-Han Yu
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Javad Alizargar
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei City 112, Taiwan
| |
Collapse
|
2
|
Tian C, Liu J, Ma M, Wang S, Zhang Y, Feng Z, Peng B, Xiang D, Wang B, Geng B. Association between surrogate marker of insulin resistance and bone mineral density in US adults without diabetes. Arch Osteoporos 2024; 19:42. [PMID: 38796579 DOI: 10.1007/s11657-024-01395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/28/2024] [Indexed: 05/28/2024]
Abstract
This study examines the relationship between TyG-BMI, an indicator of insulin resistance, and bone mineral density in US adults without diabetes, revealing a positive association. The findings suggest that higher TyG-BMI levels may be linked to a lower risk of osteoporosis, providing a basis for future research in this area. OBJECTIVE Patients with osteoporosis are often diagnosed with type 2 diabetes or prediabetes. Insulin resistance is a prediabetic state, and triglyceride glucose-body mass index (TyG-BMI) has been recognized as a potential predictor of it, valuable in assessing prediabetes, atherosclerosis, and other diseases. However, the validity of TyG-BMI in osteoporosis studies remains inadequate. PURPOSE The purpose of this study was to evaluate the relationship between TyG-BMI and BMD as well as the effect of TyG-BMI on the odds of developing osteoporosis in US adults without diabetes. METHODS National Health and Nutrition Examination Survey data were obtained. The relationship between TyG-BMI and BMD was evaluated via multivariate linear regression models. Smoothed curve fitting and threshold effect analysis explored potential non-linear relationships, and age, gender, and race subgroup analyses were performed. In addition, multivariate logistic regression models were employed to analyze its potential role in the development of osteoporosis. RESULTS In a study of 6501 participants, we observed a significant positive correlation between the TyG-BMI index and BMD, even after adjusting for covariates and categorizing TyG-BMI. The study identified specific TyG-BMI folding points-112.476 for the total femur BMD, 100.66 for the femoral neck BMD, 107.291 for the intertrochanter BMD, and 116.58 for the trochanter BMD-indicating shifts in the relationship's strength at these thresholds. While the association's strength slightly decreased after the folding points, it remained significant. Subgroup analyses further confirmed the positive TyG-BMI and BMD correlation. Multivariate linear regression analyses indicated a lower osteoporosis risk in participants with higher TyG-BMI levels, particularly in menopausal women over 40 and men over 60. CONCLUSION This study suggests a positive correlation between BMD and TyG-BMI in US adults without diabetes. Individuals with higher levels of TyG-BMI may have a lower risk of osteoporosis.
Collapse
Affiliation(s)
- Cong Tian
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
| | - Jinmin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
| | - Ming Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
| | - Shenghong Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
| | - Yuji Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
| | - Zhiwei Feng
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
| | - Bo Peng
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
| | - Dejian Xiang
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
| | - Bo Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China.
- Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Greere D, Grigorescu F, Manda D, Lautier C, Poianã C. INSULIN RESISTANCE AND PATHOGENESIS OF POSTMENOPAUSAL OSTEOPOROSIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:349-363. [PMID: 38356971 PMCID: PMC10863952 DOI: 10.4183/aeb.2023.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Osteoporosis (OP) is a disease predisposing postmenopausal women to fractures, and often accompanied by insulin resistance (IR) and metabolic syndrome (MetS). Previous studies provided contradictory results concerning prevalence of MetS in postmenopausal OP. To better understand the pathogenesis of IR, we reviewed cellular and molecular aspects and systematically reviewed studies providing homeostasis model assessment (HOMA) index. Bone is an active endocrine organ maintaining its integrity by orchestrated balance between bone formation and resorption. Both osteoblasts and osteoclasts contain receptors for insulin and insulin-like growth factor-1 (IGF-1) operating in skeletal development and in the adult life. Defects in this system generate systemic IR and bone-specific IR, which in turn regulates glucose homeostasis and energy metabolism through osteocalcin. Examination of genetic syndromes of extreme IR revealed intriguing features namely high bone mineral density (BMD) or accelerated growth. Studies of moderate forms of IR in postmenopausal women reveal positive correlations between HOMA index and BMD while correlations with osteocalcin were rather negative. The relation with obesity remains complex involving regulatory factors such as leptin and adiponectin to which the contribution of potential genetic factors and in particular, the correlation with the degree of obesity or body composition should be added.
Collapse
Affiliation(s)
- D.I.I. Greere
- “C.I. Parhon” National Institute of Endocrinology - Clinical Endocrinology, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy - Endocrinology, Bucharest, Romania
| | - F. Grigorescu
- Institut Convergences Migrations - Molecular - Endocrinology, Montpellier, France
| | - D. Manda
- “C.I. Parhon” National Institute of Endocrinology - Molecular Cellular and Structural Endocrinology Laboratory, Bucharest, Romania
| | - C. Lautier
- Université de Montpellier, Montpellier, France
| | - C. Poianã
- “C.I. Parhon” National Institute of Endocrinology - Clinical Endocrinology, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy - Endocrinology, Bucharest, Romania
| |
Collapse
|