1
|
Tang L, Ding K, Li M, Chao X, Sun T, Guo Y, Peng X, Jia W, Chen T, Xie G, Feng L. Differences in oral microbiota associated with type 2 diabetes mellitus between the Dai and Han populations. J Oral Microbiol 2025; 17. [DOI: 10.1080/20002297.2024.2442420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Lingtong Tang
- Department of Clinical Laboratory, The People’s Hospital of Gao County, Yibin, Sichuan, China
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Keke Ding
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowen Chao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Sun
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhuai Guo
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xufei Peng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoxiang Xie
- Human Metabolomics Institute Inc, Shenzhen, China
| | - Lei Feng
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
He L, Zuo Q, Ma S, Zhang G, Wang Z, Zhang T, Zhai J, Guo Y. Canagliflozin attenuates kidney injury, gut-derived toxins, and gut microbiota imbalance in high-salt diet-fed Dahl salt-sensitive rats. Ren Fail 2024; 46:2300314. [PMID: 38189082 PMCID: PMC10776083 DOI: 10.1080/0886022x.2023.2300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024] Open
Abstract
PURPOSE To investigate the effects of canagliflozin (20 mg/kg) on Dahl salt-sensitive (DSS) rat gut microbiota and salt-sensitive hypertension-induced kidney injury and further explore its possible mechanism. METHODS Rats were fed a high-salt diet to induce hypertension and kidney injury, and physical and physiological indicators were measured afterwards. This study employed 16S rRNA sequencing technology and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolic profiling combined with advanced differential and association analyses to investigate the correlation between the microbiome and the metabolome in male DSS rats. RESULTS A high-salt diet disrupted the balance of the intestinal flora and increased toxic metabolites (methyhistidines, creatinine, homocitrulline, and indoxyl sulfate), resulting in severe kidney damage. Canagliflozin contributed to reconstructing the intestinal flora of DSS rats by significantly increasing the abundance of Corynebacterium spp., Bifidobacterium spp., Facklamia spp., Lactobacillus spp., Ruminococcus spp., Blautia spp., Coprococcus spp., and Allobaculum spp. Moreover, the reconstruction of the intestinal microbiota led to significant changes in host amino acid metabolite concentrations. The concentration of uremic toxins, such as methyhistidines, creatinine, and homocitrulline, in the serum of rats was decreased by canagliflozin, which resulted in oxidative stress and renal injury alleviation. CONCLUSION Canagliflozin may change the production of metabolites and reduce the level of uremic toxins in the blood circulation by reconstructing the intestinal flora of DSS rats fed a high-salt diet, ultimately alleviating oxidative stress and renal injury.
Collapse
Affiliation(s)
- Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Sai Ma
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Guorui Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Yifang Guo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
3
|
Guan H, Zhao S, Tan Y, Fang X, Zhang Y, Zhang Y, Miao R, Yin R, Yao Y, Tian J. Microbiomic insights into the oral microbiome's role in type 2 diabetes mellitus: standardizing approaches for future advancements. Front Endocrinol (Lausanne) 2024; 15:1416611. [PMID: 39678196 PMCID: PMC11638674 DOI: 10.3389/fendo.2024.1416611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
The burgeoning field of microbiomics has unveiled significant insights into the role of the oral microbiome in the pathophysiology of Type 2 Diabetes Mellitus (T2DM), with this review focusing on recent advancements in diabetic oral microbiology, its clinical applications, and identifying factors that may affect study interpretations. A comprehensive review across various databases, including PubMed and Google Scholar, was conducted to collate original research data published in the past five years, specifically targeting studies exploring the impact of the oral microbiome on T2DM and emphasizing research that employs microbiomic approaches in clinical patient populations. The findings delineate the intricate interplay between T2DM and oral microbiome dysbiosis, highlighting significant microbial shifts following periodontal and antidiabetic treatments, and pointing to the complexity of the relationship between oral health and systemic disease. The observed oral microbial shifts in T2DM underscore the critical need for standardized research methodologies in microbiomic studies, suggesting that by adopting a unified approach, future research can more effectively elucidate the oral microbiome's role in T2DM. This could pave the way for innovative diagnostic and therapeutic strategies in managing T2DM and its oral health complications, thus making a pertinent overview of the work within the field.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuanfei Tan
- Department of Tuina, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqi Yao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Piperis C, Marathonitis A, Anastasiou A, Theofilis P, Mourouzis K, Giannakodimos A, Tryfou E, Oikonomou E, Siasos G, Tousoulis D. Multifaceted Impact of SGLT2 Inhibitors in Heart Failure Patients: Exploring Diverse Mechanisms of Action. Biomedicines 2024; 12:2314. [PMID: 39457625 PMCID: PMC11504660 DOI: 10.3390/biomedicines12102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heart failure (HF) is a growing concern due to the aging population and increasing prevalence of comorbidities. Despite advances in treatment, HF remains a significant burden, necessitating novel therapeutic approaches. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have emerged as a promising treatment option, demonstrating benefits across the entire spectrum of HF, regardless of left ventricular ejection fraction (LVEF). This review explores the multifaceted mechanisms through which SGLT2is exert cardioprotective effects, including modulation of energy metabolism, reduction of oxidative stress, attenuation of inflammation, and promotion of autophagy. SGLT2is shift myocardial energy substrate utilization from carbohydrates to more efficient fatty acids and ketone bodies, enhancing mitochondrial function and reducing insulin resistance. These inhibitors also mitigate oxidative stress by improving mitochondrial biogenesis, reducing reactive oxygen species (ROS) production, and regulating calcium-signaling pathways. Inflammation, a key driver of HF progression, is alleviated through the suppression of proinflammatory cytokines and modulation of immune cell activity. Additionally, SGLT2is promote autophagy, facilitating the clearance of damaged cellular components and preserving myocardial structure and function. Beyond their glucose-lowering effects, SGLT2is provide significant benefits in patients with chronic kidney disease (CKD) and HF, reducing the progression of CKD and improving overall survival. The pleiotropic actions of SGLT2is highlight their potential as a cornerstone in HF management. Further research is needed to fully elucidate their mechanisms and optimize their use in clinical practice.
Collapse
Affiliation(s)
- Christos Piperis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Anastasios Marathonitis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Panagiotis Theofilis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Mourouzis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Alexios Giannakodimos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Elsi Tryfou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
5
|
Afsar B, Afsar RE, Lentine KL. The impact of sodium-glucose cotransporter inhibitors on gut microbiota: a scoping review. J Diabetes Metab Disord 2024; 23:497-508. [PMID: 38932911 PMCID: PMC11196485 DOI: 10.1007/s40200-024-01435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 06/28/2024]
Abstract
Studies consistently showed that sodium-glucose cotransporter inhibitors (SGLTi) have cardiovascular and renal benefits, independent of their glucose lowering effects. Recent studies showed that SGLTi might influence gut microbiota. We performed a narrative review of publications focusing on use of SGLTi and changes in gut microbiota. Most studies showed that use of SGLTi re-shapes gut microbiota. These studies are heterogeneous regarding in study designs, doses and types of drugs used (SGLT1i vs. SGLT2i, or SGLT1/2i in combination) and the methods used to determine gut microbiota. However, existing data showed that SGLTi might alter food fermentation and gut permeability, which might translate into clinical outcomes. Thus the objective of this review is to summarize and discuss the updated data regarding SGLTi and changes in gut microbiota for the first time and suggest further study points that needs to be discovered. Graphical Abstract
Collapse
Affiliation(s)
- Baris Afsar
- Suleyman Demirel University, School of Medicine, Department of Nephrology, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Suleyman Demirel University, School of Medicine, Department of Nephrology, Isparta, Turkey
- Saint Louis University, School of Medicine, Division of Nephrology, St. Louis, MO USA
| | - Krista L. Lentine
- Saint Louis University, School of Medicine, Division of Nephrology, St. Louis, MO USA
| |
Collapse
|