1
|
Levi-D'Ancona E, Walker EM, Zhu J, Deng Y, Sidarala V, Stendahl AM, Reck EC, Henry-Kanarek BA, Lietzke AC, Pasmooij MB, Hubers DL, Basrur V, Ghosh S, Stiles L, Nesvizhskii AI, Shirihai OS, Soleimanpour SA. TRAF6 integrates innate immune signals to regulate glucose homeostasis via Parkin-dependent and -independent mitophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635900. [PMID: 39974969 PMCID: PMC11838480 DOI: 10.1101/2025.01.31.635900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Activation of innate immune signaling occurs during the progression of immunometabolic diseases, including type 2 diabetes (T2D), yet the impact of innate immune signaling on glucose homeostasis is controversial. Here, we report that the E3 ubiquitin ligase TRAF6 integrates innate immune signals following diet-induced obesity to promote glucose homeostasis through the induction of mitophagy. Whereas TRAF6 was dispensable for glucose homeostasis and pancreatic β-cell function under basal conditions, TRAF6 was pivotal for insulin secretion, mitochondrial respiration, and increases in mitophagy following metabolic stress in both mouse and human islets. Indeed, TRAF6 was critical for the recruitment and function of machinery within both the ubiquitin-mediated (Parkin-dependent) and receptor-mediated (Parkin-independent) mitophagy pathways upon metabolic stress. Intriguingly, the effect of TRAF6 deficiency on glucose homeostasis and mitophagy was fully reversed by concomitant Parkin deficiency. Thus, our results implicate a role for TRAF6 in the cross-regulation of both ubiquitin- and receptor- mediated mitophagy through the restriction of Parkin. Together, we illustrate that β-cells engage innate immune signaling to adaptively respond to a diabetogenic environment.
Collapse
|
2
|
Zhou J, Shi Y, Zhao L, Wang R, Luo L, Yin Z. γ-Glutamylcysteine restores glucolipotoxicity-induced islet β-cell apoptosis and dysfunction via inhibiting endoplasmic reticulum stress. Toxicol Appl Pharmacol 2025; 495:117206. [PMID: 39701215 DOI: 10.1016/j.taap.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE The impaired function of islet β-cell is associated with the pathogenesis of type 2 diabetes mellitus (T2DM). γ-glutamylcysteine (γ-GC), an immediate precursor of glutathione (GSH), has antioxidant and neuroprotective functions. Its level has been reported to be down-regulated in hyperglycemia. However, whether γ-GC has a protective effect on islet β-cell dysfunction remains elusive. Recently, we explore the molecular mechanism by which γ-GC protects islet β-cell from glucolipotoxicity-induced dysfunction. METHODS In vivo mice models and in vitro cell models were established to examine the therapeutic effects and molecular mechanisms of γ-GC. RESULTS db mice develop impaired glucose-stimulated insulin secretion (GSIS) due to reduced islet number and damaged islet microstructure. Serious oxidative damage, apoptosis and lipid accumulation are also observed in β-cell stimulated by glucolipotoxicity. Mechanistic studies suggest that glucolipotoxicity inhibits PDX-1 nuclear translocation by inducing endoplasmic reticulum (ER) stress, which leads to impaired insulin (INS) secretion in β-cell. Nevertheless, γ-GC as an inhibitor of ER stress can alleviate the damage of islet microstructure in db mice. Importantly, γ-GC promotes INS gene expression and GSIS through driving nuclear translocation of PDX-1, thereby enhancing intracellular INS content. Moreover, treatment with γ-GC can also mitigate oxidative damage, apoptosis and lipid accumulation of β-cell, resulting in ameliorating islet β-cell dysfunction induced by glucolipotoxicity. CONCLUSION Our results support the use of γ-GC as an inhibitor of ER stress for prevention and treatment of T2DM in the future.
Collapse
Affiliation(s)
- Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yingying Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lishuang Zhao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
3
|
Liu W, Zhu M, Liu J, Su S, Zeng X, Fu F, Lu Y, Rao Z, Chen Y. Comparison of the effects of monounsaturated fatty acids and polyunsaturated fatty acids on the lipotoxicity of islets. Front Endocrinol (Lausanne) 2024; 15:1368853. [PMID: 38501107 PMCID: PMC10945794 DOI: 10.3389/fendo.2024.1368853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Background Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) have been reported to combat saturated fatty acid (SFA)-induced cellular damage, however, their clinical effects on patients with metabolic diseases such as diabetes and hyperlipidemia are still controversial. Since comparative studies of the effects of these two types of unsaturated fatty acids (UFAs) are still limited. In this study, we aimed to compare the protective effects of various UFAs on pancreatic islets under the stress of SFA-induced metabolic disorder and lipotoxicity. Methods Rat insulinoma cell line INS-1E were treated with palmitic acid (PA) with or without UFAs including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and oleic acid (OA) to determine cell viability, apoptosis, endoplasmic reticulum (ER) stress, and inflammatory. In vivo, male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 w. Then the lard in HFD was partially replaced with fish oil (FO) and olive oil (OO) at low or high proportions of energy (5% or 20%) to observe the ameliorative effects of the UFA supplement. Results All UFAs significantly improved PA-induced cell viability impairment in INS-1E cells, and their alleviation on PA induced apoptosis, ER stress and inflammation were confirmed. Particularly, OA had better effects than EPA, DHA, and AA on attenuating cellular ER stress. In vivo, the diets with a low proportion of UFAs (5% of energy) had limited effects on HFD induced metabolic disorder, except for a slight improved intraperitoneal glucose tolerance in obese mice. However, when fed diets containing a high proportion of UFAs (20% of energy), both the FO and OO groups exhibited substantially improved glucose and lipid metabolism, such as decrease in total cholesterol (TC), low-density lipoprotein (LDL), fasting blood glucose (FBG), and fasting blood insulin (FBI)) and improvement of insulin sensitivity evidenced by intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT). Unexpectedly, FO resulted in abnormal elevation of the liver function index aspartate aminotransferase (AST) in serum. Pathologically, OO attenuated HFD-induced compensatory hyperplasia of pancreatic islets, while this effect was not obvious in the FO group. Conclusions Both MUFAs and PUFAs can effectively protect islet β cells from SFA-induced cellular lipotoxicity. In particular, both OA in vitro and OO in vivo showed superior activities on protecting islets function and enhance insulin sensitivity, suggesting that MUFAs might have greater potential for nutritional intervention on diabetes.
Collapse
Affiliation(s)
- Wen Liu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyi Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Su
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zeng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|