1
|
Ramírez-Pedraza I, Martínez LM, Aouraghe H, Rivals F, Tornero C, Haddoumi H, Estebaranz-Sánchez F, Rodríguez-Hidalgo A, van der Made J, Oujaa A, Ibáñez JJ, Mhamdi H, Souhir M, Aissa AM, Chacón MG, Sala-Ramos R. Multiproxy approach to reconstruct fossil primate feeding behavior: Case study for macaque from the Plio-Pleistocene site Guefaït-4.2 (eastern Morocco). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The genus Macaca belongs to Cercopithecidae (Old World monkeys), Cercopithecinae, Papionini. The presence of Macaca in North Africa is well known from the Late Miocene to the Late Pleistocene. However, the diet of fossil Macaca has been poorly described in the literature. In this study, we investigated the feeding habits of Macaca cf. sylvanus (n = 4) from the Plio-Pleistocene site Guefaït-4.2 in eastern Morocco through multiproxy analysis combining analyses of stable carbon and oxygen isotopes from tooth enamel, buccal microtexture, and low-magnification occlusal dental microwear. For both microwear analyses, we compared the macaques with a new reference collection of extant members of Cercopithecoidea. Our occlusal microwear results show for the fossil macaque a pattern similar to the extant Cercocebus atys and Lophocebus albigena, African forest-dwelling species that are characterized by a durophagous diet based mainly on hard fruit and seed intake. Buccal microtexture results also suggest the consumption of some grasses and the exploitation of more open habitats, similar to that observed in Theropithecus gelada. The δ13C of M. cf. sylvanus indicates a C3 based-diet without the presence of C4 plants typical of the savanna grassland in eastern Africa during this period. The high δ18O values of M. cf. sylvanus, compared with the contemporary ungulates recovered from Guefaït-4.2, could be associated with the consumption of a different resource by the primate such as leaves or fresh fruits from the upper part of trees. The complementarity of these methods allows for a dietary reconstruction covering a large part of the individual’s life.
Collapse
|
2
|
Molecular exploration of fossil eggshell uncovers hidden lineage of giant extinct bird. Nat Commun 2023; 14:914. [PMID: 36854679 PMCID: PMC9974994 DOI: 10.1038/s41467-023-36405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023] Open
Abstract
The systematics of Madagascar's extinct elephant birds remains controversial due to large gaps in the fossil record and poor biomolecular preservation of skeletal specimens. Here, a molecular analysis of 1000-year-old fossil eggshells provides the first description of elephant bird phylogeography and offers insight into the ecology and evolution of these flightless giants. Mitochondrial genomes from across Madagascar reveal genetic variation that is correlated with eggshell morphology, stable isotope composition, and geographic distribution. The elephant bird crown is dated to ca. 30 Mya, when Madagascar is estimated to have become less arid as it moved northward. High levels of between-clade genetic variation support reclassifying Mullerornis into a separate family. Low levels of within-clade genetic variation suggest there were only two elephant bird genera existing in southern Madagascar during the Holocene. However, we find an eggshell collection from Madagascar's far north that represents a unique lineage of Aepyornis. Furthermore, divergence within Aepyornis coincides with the aridification of Madagascar during the early Pleistocene ca. 1.5 Ma, and is consistent with the fragmentation of populations in the highlands driving diversification and the evolution of extreme gigantism over shorts timescales. We advocate for a revision of their taxonomy that integrates palaeogenomic and palaeoecological perspectives.
Collapse
|
3
|
Lüdecke T, Leichliter JN, Aldeias V, Bamford MK, Biro D, Braun DR, Capelli C, Cybulski JD, Duprey NN, Ferreira da Silva MJ, Foreman AD, Habermann JM, Haug GH, Martínez FI, Mathe J, Mulch A, Sigman DM, Vonhof H, Bobe R, Carvalho S, Martínez-García A. Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: A case study from Gorongosa National Park, central Mozambique. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.958032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The analyses of the stable isotope ratios of carbon (δ13C), nitrogen (δ15N), and oxygen (δ18O) in animal tissues are powerful tools for reconstructing the feeding behavior of individual animals and characterizing trophic interactions in food webs. Of these biomaterials, tooth enamel is the hardest, most mineralized vertebrate tissue and therefore least likely to be affected by chemical alteration (i.e., its isotopic composition can be preserved over millions of years), making it an important and widely available archive for biologists and paleontologists. Here, we present the first combined measurements of δ13C, δ15N, and δ18O in enamel from the teeth of modern fauna (herbivores, carnivores, and omnivores) from the well-studied ecosystem of Gorongosa National Park (GNP) in central Mozambique. We use two novel methods to produce high-precision stable isotope enamel data: (i) the “oxidation-denitrification method,” which permits the measurement of mineral-bound organic nitrogen in tooth enamel (δ15Nenamel), which until now, has not been possible due to enamel’s low organic content, and (ii) the “cold trap method,” which greatly reduces the sample size required for traditional measurements of inorganic δ13Cenamel and δ18Oenamel (from ≥0.5 to ≤0.1 mg), permitting analysis of small or valuable teeth and high-resolution serial sampling of enamel. The stable isotope results for GNP fauna reveal important ecological information about the trophic level, dietary niche, and resource consumption. δ15Nenamel values clearly differentiate trophic level (i.e., carnivore δ15Nenamel values are 4.0‰ higher, on average, than herbivores), δ13Cenamel values distinguish C3 and/or C4 biomass consumption, and δ18Oenamel values reflect local meteoric water (δ18Owater) in the park. Analysis of combined carbon, nitrogen, and oxygen stable isotope data permits geochemical separation of grazers, browsers, omnivores, and carnivores according to their isotopic niche, while mixed-feeding herbivores cannot be clearly distinguished from other dietary groups. These results confirm that combined C, N, and O isotope analyses of a single aliquot of tooth enamel can be used to reconstruct diet and trophic niches. Given its resistance to chemical alteration, the analysis of these three isotopes in tooth enamel has a high potential to open new avenues of research in (paleo)ecology and paleontology.
Collapse
|
4
|
Lowry BE, Wittig RM, Pittermann J, Oelze VM. Stratigraphy of stable isotope ratios and leaf structure within an African rainforest canopy with implications for primate isotope ecology. Sci Rep 2021; 11:14222. [PMID: 34244559 PMCID: PMC8270916 DOI: 10.1038/s41598-021-93589-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/25/2021] [Indexed: 11/09/2022] Open
Abstract
The canopy effect describes vertical variation in the isotope ratios of carbon (δ13C), oxygen (δ18O) and partially nitrogen (δ15N) within plants throughout a closed canopy forest, and may facilitate the study of canopy feeding niches in arboreal primates. However, the nuanced relationship between leaf height, sunlight exposure and the resulting variation in isotope ratios and leaf mass per area (LMA) has not been documented for an African rainforest. Here, we present δ13C, δ18O and δ15N values of leaves (n = 321) systematically collected from 58 primate food plants throughout the canopy (0.3 to 42 m) in Côte d'Ivoire, West Africa. Besides leaf sample height and light availability, we measured leaf nitrogen and carbon content (%N, %C), as well as LMA (n = 214) to address the plants' vertical resource allocations. We found significant variation in δ13C, δ18O and δ15N, as well as LMA in response to height in combination with light availability and tree species, with low canopy leaves depleted in 13C, 18O and 15N and slightly higher in %N compared to higher canopy strata. While this vertical isotopic variation was not well reflected in the δ13C and δ15N of arboreal primates from this forest, it did correspond well to primate δ18O values.
Collapse
Affiliation(s)
- B E Lowry
- Department of Anthropology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95060, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95060, USA
| | - R M Wittig
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, B.P. 1303, Abidjan 01, Côte d'Ivoire
| | - J Pittermann
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95060, USA
| | - V M Oelze
- Department of Anthropology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
5
|
Wommack EA, Marrack LC, Mambelli S, Hull JM, Dawson TE. Using oxygen and hydrogen stable isotopes to track the migratory movement of Sharp-shinned Hawks (Accipiter striatus) along Western Flyways of North America. PLoS One 2020; 15:e0226318. [PMID: 33201878 PMCID: PMC7671529 DOI: 10.1371/journal.pone.0226318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/30/2020] [Indexed: 11/18/2022] Open
Abstract
The large-scale patterns of movement for the Sharp-shinned Hawk (Accipiter striatus), a small forest hawk found throughout western North America, are largely unknown. However, based on field observations we set out to test the hypothesis that juvenile migratory A. striatus caught along two distinct migration routes on opposite sides of the Sierra Nevada Mountains of North America (Pacific Coast and Intermountain Migratory Flyways) come from geographically different natal populations. We applied stable isotope analysis of hydrogen (H) and oxygen (O) of feathers, and large scale models of spatial isotopic variation (isoscapes) to formulate spatially explicit predictions of the origin of the migrant birds. Novel relationships were assessed between the measured hydrogen and oxygen isotope values of feathers from A. striatus museum specimens of known origin and the isoscape modeled hydrogen and oxygen isotope values of precipitation at those known locations. We used these relationships to predict the origin regions for birds migrating along the two flyways from the measured isotope values of migrant’s feathers and the associated hydrogen and oxygen isotopic composition of precipitation where these feathers were formed. The birds from the two migration routes had overlap in their natal/breeding origins and did not differentiate into fully separate migratory populations, with birds from the Pacific Coast Migratory Flyway showing broader natal geographic origins than those from the Intermountain Flyway. The methodology based on oxygen isotopes had, in general, less predictive power than the one based on hydrogen. There was broad agreement between the two isotope approaches in the geographic assignment of the origins of birds migrating along the Pacific Coast Flyway, but not for those migrating along the Intermountain Migratory Flyway. These results are discussed in terms of their implications for conservation efforts of A. striatus in western North America, and the use of combined hydrogen and oxygen stable isotope analysis to track the movement of birds of prey on continental scales.
Collapse
Affiliation(s)
- Elizabeth A. Wommack
- Department of Zoology & Physiology, University of Wyoming Museum of Vertebrates, University of Wyoming, Laramie, Wyoming, United States of America
- Golden Gate Raptor Observatory, Sausalito, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Lisa C. Marrack
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, United States of America
| | - Stefania Mambelli
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Center for Stable Isotope Biogeochemistry, University of California, Berkeley, California, United States of America
| | - Joshua M. Hull
- Golden Gate Raptor Observatory, Sausalito, California, United States of America
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Todd E. Dawson
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, United States of America
- Center for Stable Isotope Biogeochemistry, University of California, Berkeley, California, United States of America
| |
Collapse
|
6
|
Cullen TM, Longstaffe FJ, Wortmann UG, Goodwin MB, Huang L, Evans DC. Stable isotopic characterization of a coastal floodplain forest community: a case study for isotopic reconstruction of Mesozoic vertebrate assemblages. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181210. [PMID: 30891263 PMCID: PMC6408390 DOI: 10.1098/rsos.181210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Stable isotopes are powerful tools for elucidating ecological trends in extant vertebrate communities, though their application to Mesozoic ecosystems is complicated by a lack of extant isotope data from comparable environments/ecosystems (e.g. coastal floodplain forest environments, lacking significant C4 plant components). We sampled 20 taxa across a broad phylogenetic, body size, and physiological scope from the Atchafalaya River Basin of Louisiana as an environmental analogue to the Late Cretaceous coastal floodplains of North America. Samples were analysed for stable carbon, oxygen and nitrogen isotope compositions from bioapatite and keratin tissues to test the degree of ecological resolution that can be determined in a system with similar environmental conditions, and using similar constraints, as those in many Mesozoic assemblages. Isotopic results suggest a broad overlap in resource use among taxa and considerable terrestrial-aquatic interchange, highlighting the challenges of ecological interpretation in C3 systems, particularly when lacking observational data for comparison. We also propose a modified oxygen isotope-temperature equation that uses mean endotherm and mean ectotherm isotope data to more precisely predict temperature when compared with measured Atchafalaya River water data. These results provide a critical isotopic baseline for coastal floodplain forests, and act as a framework for future studies of Mesozoic palaeoecology.
Collapse
Affiliation(s)
- T M Cullen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
| | - F J Longstaffe
- Department of Earth Sciences, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - U G Wortmann
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
| | - M B Goodwin
- University of California Museum of Paleontology, 1101 Valley Life Sciences, Berkeley, CA 94720-4780, USA
| | - L Huang
- Department of Earth Sciences, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - D C Evans
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
| |
Collapse
|
7
|
Crowley BE, Slater PA, Arrigo-Nelson SJ, Baden AL, Karpanty SM. Strontium isotopes are consistent with low-elevation foraging limits for Henst's goshawk. WILDLIFE SOC B 2017. [DOI: 10.1002/wsb.840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brooke E. Crowley
- University of Cincinnati; Departments of Geology and Anthropology; 500 Geology Physics Building Cincinnati OH 45221 USA
| | - Philip A. Slater
- University of Illinois at Urbana-Champaign; Department of Anthropology; 607 S Mathews Avenue, M/C 148 Urbana IL 61801 USA
| | - Summer J. Arrigo-Nelson
- California University of Pennsylvania; Department of Biological and Environmental Sciences; 250 University Avenue − Box 45 California PA 15419 USA
| | - Andrea L. Baden
- Hunter College, of the City University of New York; Department of Anthropology; 695 Park Avenue New York NY 10065 USA
| | - Sarah M. Karpanty
- Virginia Tech; Department of Fish and Wildlife Conservation; 310 W Campus Drive, Cheatham Hall, Room 106 (MC 0321) Blacksburg VA 24061 USA
| |
Collapse
|
8
|
Multidimensional metrics of niche space for use with diverse analytical techniques. Sci Rep 2017; 7:41599. [PMID: 28145524 PMCID: PMC5286414 DOI: 10.1038/srep41599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/21/2016] [Indexed: 11/29/2022] Open
Abstract
Multidimensional data are integral to many community-ecological studies and come in various forms, such as stable isotopes, compound specific analyses (e.g., amino acids and fatty acids), and both biodiversity and life history traits. Scientists employing such data often lack standardized metrics to evaluate communities in niche space where more than 2 dimensions are involved. To alleviate this problem, we developed a graphing and analytical approach for use with more than two variables, based on previously established stable isotope bi-plot metrics. We introduce here our community metrics as R scripts. By extending the original metrics to multiple dimensions, we created n-dimensional plots and metrics to characterize any set of quantitative measurements of a community. We demonstrate the utility of these metrics using stable isotope data; however, the approaches are applicable to many types of data. The resulting metrics provide more and better information compared to traditional analytic frameworks. The approach can be applied in many branches of community ecology, and it offers accessible metrics to quantitatively analyze the structure of communities across ecosystems and through time.
Collapse
|
9
|
Vander Zanden HB, Soto DX, Bowen GJ, Hobson KA. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00020] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Crowley BE, Reitsema LJ, Oelze VM, Sponheimer M. Advances in primate stable isotope ecology-Achievements and future prospects. Am J Primatol 2015; 78:995-1003. [PMID: 26683892 DOI: 10.1002/ajp.22510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022]
Abstract
Stable isotope biogeochemistry has been used to investigate foraging ecology in non-human primates for nearly 30 years. Whereas early studies focused on diet, more recently, isotopic analysis has been used to address a diversity of ecological questions ranging from niche partitioning to nutritional status to variability in life history traits. With this increasing array of applications, stable isotope analysis stands to make major contributions to our understanding of primate behavior and biology. Most notably, isotopic data provide novel insights into primate feeding behaviors that may not otherwise be detectable. This special issue brings together some of the recent advances in this relatively new field. In this introduction to the special issue, we review the state of isotopic applications in primatology and its origins and describe some developing methodological issues, including techniques for analyzing different tissue types, statistical approaches, and isotopic baselines. We then discuss the future directions we envision for the field of primate isotope ecology. Am. J. Primatol. 78:995-1003, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brooke E Crowley
- Departments of Geology and Anthropology, University of Cincinnati, Cincinnati, Ohio.
| | | | - Vicky M Oelze
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matt Sponheimer
- Department of Anthropology, University of Colorado, Boulder, Colorado
| |
Collapse
|