1
|
Tong C, Avilés L, Rayor LS, Mikheyev AS, Linksvayer TA. Genomic signatures of recent convergent transitions to social life in spiders. Nat Commun 2022; 13:6967. [PMID: 36414623 PMCID: PMC9681848 DOI: 10.1038/s41467-022-34446-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The transition from solitary to social life is a major phenotypic innovation, but its genetic underpinnings are largely unknown. To identify genomic changes associated with this transition, we compare the genomes of 22 spider species representing eight recent and independent origins of sociality. Hundreds of genes tend to experience shifts in selection during the repeated transition to social life. These genes are associated with several key functions, such as neurogenesis, behavior, and metabolism, and include genes that previously have been implicated in animal social behavior and human behavioral disorders. In addition, social species have elevated genome-wide rates of molecular evolution associated with relaxed selection caused by reduced effective population size. Altogether, our study provides unprecedented insights into the genomic signatures of social evolution and the specific genetic changes that repeatedly underpin the evolution of sociality. Our study also highlights the heretofore unappreciated potential of transcriptomics using ethanol-preserved specimens for comparative genomics and phylotranscriptomics.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Linda S Rayor
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander S Mikheyev
- Evolutionary Genomics Group, Research School of Biology, Australian National University, Canberra, 0200, Australia
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
2
|
Eyer PA, Vargo EL. Short and long-term costs of inbreeding in the lifelong-partnership in a termite. Commun Biol 2022; 5:389. [PMID: 35469055 PMCID: PMC9038770 DOI: 10.1038/s42003-022-03317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Social life and lifelong partner commitments are expected to favor thorough partner choice, as an ill-suited partnership may have long-term consequences, adversely affecting the parents and spanning several cohorts of offspring. Here, we used ~1400 termite incipient colonies to estimate the short- and long-term costs of inbreeding upon the survival of the parents over a 15-month period, their productivity, and the resistance of their offspring toward pathogen pressure. We observed that foundation success was not influenced by the relatedness of partners, but by their levels of microbial load. We showed faster growth in inbred colonies with low levels of microbial load, revealing a potential tradeoff between pathogen defense and offspring production. Yet, inbreeding takes its toll later in colony development when offspring from incipient colonies face pathogen pressure. Although the success of a lifetime partnership is initially determined by the partner’s health, the cost of inbreeding in incipient colonies favors outbred colonies reaching maturity. Studies of termite colonies over 15 months show that inbred colonies exhibit faster initial growth with low levels of microbial load, but higher mortality toward pathogens later in colony development.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA.
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| |
Collapse
|
3
|
He S, Sieksmeyer T, Che Y, Mora MAE, Stiblik P, Banasiak R, Harrison MC, Šobotník J, Wang Z, Johnston PR, McMahon DP. Evidence for reduced immune gene diversity and activity during the evolution of termites. Proc Biol Sci 2021; 288:20203168. [PMID: 33593190 PMCID: PMC7934958 DOI: 10.1098/rspb.2020.3168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The evolution of biological complexity is associated with the emergence of bespoke immune systems that maintain and protect organism integrity. Unlike the well-studied immune systems of cells and individuals, little is known about the origins of immunity during the transition to eusociality, a major evolutionary transition comparable to the evolution of multicellular organisms from single-celled ancestors. We aimed to tackle this by characterizing the immune gene repertoire of 18 cockroach and termite species, spanning the spectrum of solitary, subsocial and eusocial lifestyles. We find that key transitions in termite sociality are correlated with immune gene family contractions. In cross-species comparisons of immune gene expression, we find evidence for a caste-specific social defence system in termites, which appears to operate at the expense of individual immune protection. Our study indicates that a major transition in organismal complexity may have entailed a fundamental reshaping of the immune system optimized for group over individual defence.
Collapse
Affiliation(s)
- Shulin He
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195 Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.,Faculty of Forestry and Wood Science, Czech University of Life Science Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Thorben Sieksmeyer
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195 Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
| | - Yanli Che
- College of Plant Protection, Southwest University, Tiansheng 2, 400715 Chongqing, People's Republic of China
| | - M Alejandra Esparza Mora
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195 Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
| | - Petr Stiblik
- Faculty of Forestry and Wood Science, Czech University of Life Science Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Ronald Banasiak
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Science Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Zongqing Wang
- College of Plant Protection, Southwest University, Tiansheng 2, 400715 Chongqing, People's Republic of China
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195 Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, 14195 Berlin, Germany
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195 Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
4
|
Bratburd JR, Arango RA, Horn HA. Defensive Symbioses in Social Insects Can Inform Human Health and Agriculture. Front Microbiol 2020; 11:76. [PMID: 32117113 PMCID: PMC7020198 DOI: 10.3389/fmicb.2020.00076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
Social animals are among the most successful organisms on the planet and derive many benefits from living in groups, including facilitating the evolution of agriculture. However, living in groups increases the risk of disease transmission in social animals themselves and the cultivated crops upon which they obligately depend. Social insects offer an interesting model to compare to human societies, in terms of how insects manage disease within their societies and with their agricultural symbionts. As living in large groups can help the spread of beneficial microbes as well as pathogens, we examine the role of defensive microbial symbionts in protecting the host from pathogens. We further explore how beneficial microbes may influence other pathogen defenses including behavioral and immune responses, and how we can use insect systems as models to inform on issues relating to human health and agriculture.
Collapse
Affiliation(s)
- Jennifer R. Bratburd
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Rachel A. Arango
- Forest Products Laboratory, United States Forest Service, United States Department of Agriculture, Madison, WI, United States
| | - Heidi A. Horn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Rosa E, Minard G, Lindholm J, Saastamoinen M. Moderate plant water stress improves larval development, and impacts immunity and gut microbiota of a specialist herbivore. PLoS One 2019; 14:e0204292. [PMID: 30785875 PMCID: PMC6382165 DOI: 10.1371/journal.pone.0204292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
While host plant drought is generally viewed as a negative phenomenon, its impact on insect herbivores can vary largely depending on the species involved and on the intensity of the drought. Extreme drought killing host plants can clearly reduce herbivore fitness, but the impact of moderate host plant water stress on insect herbivores can vary, and may even be beneficial. The populations of the Finnish Glanville fritillary butterfly (Melitaea cinxia) have faced reduced precipitation in recent years, with impacts even on population dynamics. Whether the negative effects of low precipitation are solely due to extreme desiccation killing the host plant or whether moderate drought reduces plant quality for the larvae remains unknown. We assessed the performance of larvae fed on moderately water-stressed Plantago lanceolata in terms of growth, survival, and immune response, and additionally were interested to assess whether the gut microbial composition of the larvae changed due to modification of the host plant. We found that larvae fed on water-stressed plants had increased growth, with no impact on survival, up-regulated the expression of one candidate immune gene (pelle), and had a more heterogeneous bacterial community and a shifted fungal community in the gut. Most of the measured traits showed considerable variation due to family structure. Our data suggest that in temperate regions moderate host plant water stress can positively shape resource acquisition of this specialized insect herbivore, potentially by increasing nutrient accessibility or concentration. Potentially, the better larval performance may be mediated by a shift of the microbiota on water-stressed plants, calling for further research especially on the understudied gut fungal community.
Collapse
Affiliation(s)
- Elena Rosa
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Dept. of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Guillaume Minard
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- University of Lyon, Lyon, France, University Claude Bernard Lyon 1, CNRS UMR 5557, Laboratory of Microbial Ecology, INRA UMR1418, Villeurbanne, France
| | - Johanna Lindholm
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Sackton TB. Comparative genomics and transcriptomics of host-pathogen interactions in insects: evolutionary insights and future directions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:106-113. [PMID: 31109663 DOI: 10.1016/j.cois.2018.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Classical evolutionary studies of protein-coding genes have established that genes in the canonical immune system are often among the most rapidly evolving within and between species. As more genomes and transcriptomes across insects are sequenced, it is becoming clear that duplications and losses of immune genes are also a likely consequence of host-pathogen interactions. Furthermore, particular species respond to diverse pathogenic challenges with a wide range of challenge-specific responses that are still poorly understood. Transcriptional studies, using RNA-seq to characterize the infection-regulated transcriptome of diverse insects, are crucial for additional progress in understanding the ecology and evolution of the full complexity of the host response.
Collapse
Affiliation(s)
- Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
7
|
Van Meyel S, Körner M, Meunier J. Social immunity: why we should study its nature, evolution and functions across all social systems. CURRENT OPINION IN INSECT SCIENCE 2018; 28:1-7. [PMID: 30551759 DOI: 10.1016/j.cois.2018.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 06/09/2023]
Abstract
Mounting defences against pathogens is a necessity for all animals. Although these defences have long been known to rely on individual processes such as the immune system, recent studies have emphasized the importance of social defences for group-living hosts. These defences, called social immunity, have been mostly studied in eusocial insects such as bees, termites and ants, and include, for instance, mutual cleaning and waste management. Over the last few years, however, a growing number of works called for a broader exploration of social immunity in non-eusocial species. In this review, we summarize the rationales of this call and examine why it may provide major insights into our current understanding of the role of pathogens in social evolution. We start by presenting the original conceptual framework of social immunity developed in eusocial insects and shed light on its importance in highly derived social systems. We then clarify three major misconceptions possibly fostered by this original framework and demonstrate why they made necessary the shift towards a broader definition of social immunity. Because a broader definition still needs boundaries, we finally present three criteria to discriminate what is a form of social immunity, from what is not. Overall, we argue that studying social immunity across social systems does not only provide novel insights into how pathogens affect the evolution of eusociality, but also of the emergence and maintenance of social life from a solitary state. Moreover, this broader approach offers new scopes to disentangle the common and specific anti-pathogen defences developed by eusocial and non-eusocial hosts, and to better understand the dependent and independent evolutionary drivers of social and individual immunity.
Collapse
Affiliation(s)
- Sophie Van Meyel
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Maximilian Körner
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| |
Collapse
|