1
|
Yañez-Olvera AG, Gómez-Díaz AG, Sélem-Mojica N, Rodríguez-Orduña L, Lara-Ávila JP, Varni V, Alcoba F, Croce V, Legros T, Torres A, Torres Ruíz A, Tarrats F, Vermunt A, Looije T, Cibrian-Jaramillo A, Valenzuela M, Siri MI, Barona-Gomez F. A host shift as the origin of tomato bacterial canker caused by Clavibacter michiganensis. Microb Genom 2024; 10:001309. [PMID: 39471242 PMCID: PMC11521342 DOI: 10.1099/mgen.0.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
The Actinomycetota (formerly Actinobacteria) genus Clavibacter includes phytopathogens with devasting effects in several crops. Clavibacter michiganensis, the causal agent of tomato bacterial canker, is the most notorious species of the genus. Yet, its origin and natural reservoirs remain elusive, and its populations show pathogenicity profiles with unpredictable plant disease outcomes. Here, we generate and analyse a decade-long genomic dataset of Clavibacter from wild and commercial tomato cultivars, providing evolutionary insights that directed phenotypic characterization. Our phylogeny situates the last common ancestor of C. michiganensis next to Clavibacter isolates from grasses rather than to the sole strain we could isolate from wild tomatoes. Pathogenicity profiling of C. michiganensis isolates, together with C. phaseoli and C. californiensis as sister taxa and the wild tomato strain, was found to be congruent with the proposed phylogenetic relationships. We then identified gene enrichment after the evolutionary event, leading to the appearance of the C. michiganesis clade, including known pathogenicity factors but also hitherto unnoticed genes with the ability to encode adaptive traits for a pathogenic lifestyle. The holistic perspective provided by our evolutionary analyses hints towards a host shift event as the origin of C. michiganensis as a tomato pathogen and the existence of pathogenic genes that remain to be characterized.
Collapse
Affiliation(s)
- Alan Guillermo Yañez-Olvera
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ambar Grissel Gómez-Díaz
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Nelly Sélem-Mojica
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Lorena Rodríguez-Orduña
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - José Pablo Lara-Ávila
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Vanina Varni
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Florencia Alcoba
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Valentina Croce
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | | | - Alfonso Torres Ruíz
- Departamento de Investigación y Desarrollo, Koppert México, Querétaro, Mexico
| | - Félix Tarrats
- Centro Universitario CEICKOR, Bernal, Querétaro, Mexico
| | | | | | | | | | - María Inés Siri
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Martínez‐Ainsworth NE, Scheppler H, Moreno‐Letelier A, Bernau V, Kantar MB, Mercer KL, Jardón‐Barbolla L. Fluctuation of ecological niches and geographic range shifts along chile pepper's domestication gradient. Ecol Evol 2023; 13:e10731. [PMID: 38034338 PMCID: PMC10682905 DOI: 10.1002/ece3.10731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Domestication is an ongoing well-described process. However, while many have studied the changes domestication causes in plant genetics, few have explored its impact on the portion of the geographic landscape in which the plants exist. Therefore, the goal of this study was to understand how the process of domestication changed the geographic space suitable for chile pepper (Capsicum annuum) in its center of origin (domestication). C. annuum is a major crop species globally whose center of domestication, Mexico, has been well-studied. It provides a unique opportunity to explore the degree to which ranges of different domestication classes diverged and how these ranges might be altered by climate change. To this end, we created ecological niche models for four domestication classes (wild, semiwild, landrace, modern cultivar) based on present climate and future climate scenarios for 2050, 2070, and 2090. Considering present environment, we found substantial overlap in the geographic niches of all the domestication classes. Yet, environmental and geographic aspects of the current ranges did vary among classes. Wild and commercial varieties could grow in desert conditions, while landraces could not. With projections into the future, habitat was lost asymmetrically, with wild, semiwild, and landraces at greater risk of territorial declines than modern cultivars. Further, we identified areas where future suitability overlap between landraces and wilds is expected to be lost. While range expansion is widely associated with domestication, we found little support of a constant niche expansion (either in environmental or geographical space) throughout the domestication gradient in chile peppers in Mexico. Instead, particular domestication transitions resulted in loss, followed by capturing or recapturing environmental or geographic space. The differences in environmental characterization among domestication gradient classes and their future potential range shifts increase the need for conservation efforts to preserve landraces and semiwild genotypes.
Collapse
Affiliation(s)
- Natalia E. Martínez‐Ainsworth
- Centro de Investigaciones Interdisciplinarias en Ciencias y HumanidadesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Hannah Scheppler
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOhioUSA
| | - Alejandra Moreno‐Letelier
- Jardín Botánico del Instituto de BiologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Vivian Bernau
- Plant Introduction Research Unit, United States Department of Agriculture‐Agricultural Research Service (USDA‐ARS), and Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Michael B. Kantar
- Department of Tropical Plant and Soil SciencesUniversity of Hawai'iHonoluluHawaiiUSA
| | - Kristin L. Mercer
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOhioUSA
| | - Lev Jardón‐Barbolla
- Centro de Investigaciones Interdisciplinarias en Ciencias y HumanidadesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Benrey B. The effects of plant domestication on the foraging and performance of parasitoids. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101031. [PMID: 37028646 DOI: 10.1016/j.cois.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
Domestication-related changes in the chemical traits of crop plants affect parasitoid foraging success, development, and survival. For example, herbivore-induced changes in the production of volatiles by domesticated plants can enhance or reduce parasitoid attraction. While the trade-off between nutrient content and chemical defense in cultivated plants can increase the suitability of hosts for parasitoids, their increased health and size can positively affect their immune response against parasitoids. Overall, plant domestication is expected to significantly affect their relationship with parasitoids due to altered plant morphology, physical characteristics, chemical defenses, and new plant associations. This review highlights the need for research on the effects of plant domestication on host-parasitoid interactions in the interest of better controlling insect pests.
Collapse
Affiliation(s)
- Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
4
|
Rajpal VR, Singh A, Kathpalia R, Thakur RK, Khan MK, Pandey A, Hamurcu M, Raina SN. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1127239. [PMID: 36998696 PMCID: PMC10044020 DOI: 10.3389/fpls.2023.1127239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 05/31/2023]
Abstract
Crop wild relatives (CWRs), landraces and exotic germplasm are important sources of genetic variability, alien alleles, and useful crop traits that can help mitigate a plethora of abiotic and biotic stresses and crop yield reduction arising due to global climatic changes. In the pulse crop genus Lens, the cultivated varieties have a narrow genetic base due to recurrent selections, genetic bottleneck and linkage drag. The collection and characterization of wild Lens germplasm resources have offered new avenues for the genetic improvement and development of stress-tolerant, climate-resilient lentil varieties with sustainable yield gains to meet future food and nutritional requirements. Most of the lentil breeding traits such as high-yield, adaptation to abiotic stresses and resistance to diseases are quantitative and require the identification of quantitative trait loci (QTLs) for marker assisted selection and breeding. Advances in genetic diversity studies, genome mapping and advanced high-throughput sequencing technologies have helped identify many stress-responsive adaptive genes, quantitative trait loci (QTLs) and other useful crop traits in the CWRs. The recent integration of genomics technologies with plant breeding has resulted in the generation of dense genomic linkage maps, massive global genotyping, large transcriptomic datasets, single nucleotide polymorphisms (SNPs), expressed sequence tags (ESTs) that have advanced lentil genomic research substantially and allowed for the identification of QTLs for marker-assisted selection (MAS) and breeding. Assembly of lentil and its wild species genomes (~4Gbp) opens up newer possibilities for understanding genomic architecture and evolution of this important legume crop. This review highlights the recent strides in the characterization of wild genetic resources for useful alleles, development of high-density genetic maps, high-resolution QTL mapping, genome-wide studies, MAS, genomic selections, new databases and genome assemblies in traditionally bred genus Lens for future crop improvement amidst the impending global climate change.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Renu Kathpalia
- Department of Botany, Kirori Mal College, University of Delhi, Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| |
Collapse
|
5
|
May-Mutul CG, López-Garrido MA, O’Connor-Sánchez A, Peña-Ramírez YJ, Labrín-Sotomayor NY, Estrada-Medina H, Ferrer MM. Hidden Tenants: Microbiota of the Rhizosphere and Phyllosphere of Cordia dodecandra Trees in Mayan Forests and Homegardens. PLANTS (BASEL, SWITZERLAND) 2022; 11:3098. [PMID: 36432829 PMCID: PMC9699097 DOI: 10.3390/plants11223098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
During domestication, the selection of cultivated plants often reduces microbiota diversity compared with their wild ancestors. Microbiota in compartments such as the phyllosphere or rhizosphere can promote fruit tree health, growth, and development. Cordia dodecandra is a deciduous tree used by Maya people for its fruit and wood, growing, to date, in remnant forest fragments and homegardens (traditional agroforestry systems) in Yucatán. In this work, we evaluated the microbiota's alpha and beta diversity per compartment (phyllosphere and rhizosphere) and per population (forest and homegarden) in the Northeast and Southwest Yucatán regions. Eight composite DNA samples (per compartment/population/region combination) were amplified for 16S-RNA (bacteria) and ITS1-2 (fungi) and sequenced by Illumina MiSeq. Bioinformatic analyses were performed with QIIME and phyloseq. For bacteria and fungi, from 107,947 and 128,786 assembled sequences, 618 and 1092 operating taxonomic units (OTUs) were assigned, respectively. The alpha diversity of bacteria and fungi was highly variable among samples and was similar among compartments and populations. A significant species turnover among populations and regions was observed in the rhizosphere. The core microbiota from the phyllosphere was similar among populations and regions. Forests and homegarden populations are reservoirs of the C. dodecandra phyllosphere core microbiome and significant rhizosphere biodiversity.
Collapse
Affiliation(s)
- Carla G. May-Mutul
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida 97313, Mexico
| | - Miguel A. López-Garrido
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida 97313, Mexico
| | - Aileen O’Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico
| | - Yuri J. Peña-Ramírez
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Campeche, Lerma 24500, Mexico
| | - Natalia Y. Labrín-Sotomayor
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Campeche, Lerma 24500, Mexico
| | - Héctor Estrada-Medina
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida 97313, Mexico
| | - Miriam M. Ferrer
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida 97313, Mexico
| |
Collapse
|
6
|
Serrano-Mejía C, Bello-Bedoy R, Arteaga MC, Castillo GR. Does Domestication Affect Structural and Functional Leaf Epidermal Traits? A Comparison between Wild and Cultivated Mexican Chili Peppers ( Capsicum annuum). PLANTS (BASEL, SWITZERLAND) 2022; 11:3062. [PMID: 36432791 PMCID: PMC9692241 DOI: 10.3390/plants11223062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
During domestication, lineages diverge phenotypically and genetically from wild relatives, particularly in preferred traits. In addition to evolutionary divergence in selected traits, other fitness-related traits that are unselected may change in concert. For instance, the selection of chili pepper fruits was not intended to change the structure and function of the leaf epidermis. Leaf stomata and trichome densities play a prominent role in regulating stomatal conductance and resistance to herbivores. Here, we assessed whether domestication affected leaf epidermis structure and function in Capsicum annuum. To do this, we compared leaf stomata and trichome densities in six cultivated varieties of Mexican Capsicum annuum and their wild relative. We measured stomatal conductance and resistance to herbivores. Resistance to (defense against) herbivores was measured as variation in the herbivory rate and larvae mortality of Spodoptera frugiperda fed with leaves of wild and cultivated plants. As expected, the different varieties displayed low divergence in stomatal density and conductance. Leaf trichome density was higher in the wild relative, but variation was not correlated with the herbivory rate. In contrast, a higher mortality rate of S. frugiperda larvae was recorded when fed with the wild relative and two varieties than larvae fed with four other varieties. Overall, although domestication did not aim at resistance to herbivores, this evolutionary process produced concerted changes in defensive traits.
Collapse
Affiliation(s)
- Carlos Serrano-Mejía
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, C.P. Ensenada 22860, Baja California, Mexico
| | - Rafael Bello-Bedoy
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, C.P. Ensenada 22860, Baja California, Mexico
| | - María Clara Arteaga
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| | - Guillermo R. Castillo
- Facultad de Negocios Sostenibles, Universidad del Medio Ambiente, San Mateo Acatitlán, Valle de Bravo 51200, Estado de Mexico, Mexico
| |
Collapse
|
7
|
Adachi-Fukunaga S, Nakabayashi Y, Tokuda M. Transgenerational changes in pod maturation phenology and seed traits of Glycine soja infested by the bean bug Riptortus pedestris. PLoS One 2022; 17:e0263904. [PMID: 35235584 PMCID: PMC8890626 DOI: 10.1371/journal.pone.0263904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022] Open
Abstract
Land plants have diverse defenses against herbivores. In some cases, plant response to insect herbivory may be chronological and even transgenerational. Feeding by various stink bugs, such as the bean bug Riptortus pedestris (Hemiptera: Alydidae), induce physiological changes in soybean, called as green stem syndrome, which are characterized by delayed senescence in stems, leaves, and pods. To investigate the plant response to the bean bug feeding in the infested generation and its offspring, we studied the effects of R. pedestris infestation on Glycine soja, the ancestral wild species of soybean. Field surveys revealed that the occurrence of the autumn R. pedestris generation coincided with G. soja pod maturation in both lowland and mountainous sites. Following infestation by R. pedestris, pod maturation was significantly delayed in G. soja. When G. soja seeds obtained from infested and non-infested plants were cultivated, the progeny of infested plants exhibited much earlier pod maturation and larger-sized seed production than that of control plants, indicating that R. pedestris feeding induced transgenerational changes. Because earlier seed maturity results in asynchrony with occurrence of R. pedestris, the transgenerational changes in plant phenology are considered to be an adaptive transgenerational and chronological defense for the plant against feeding by the stink bug.
Collapse
Affiliation(s)
- Shuhei Adachi-Fukunaga
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yui Nakabayashi
- Department of Biological Resource Science, Saga University, Saga, Japan
| | - Makoto Tokuda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Biological Resource Science, Saga University, Saga, Japan
| |
Collapse
|
8
|
Fernandez AR, Sáez A, Quintero C, Gleiser G, Aizen MA. Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. THE NEW PHYTOLOGIST 2021; 231:1586-1598. [PMID: 33977519 DOI: 10.1111/nph.17452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/23/2021] [Indexed: 05/19/2023]
Abstract
Greater susceptibility to herbivory can arise as an effect of crop domestication. One proposed explanation is that defenses decreased intentionally or unintentionally during the domestication process, but evidence for this remains elusive. An alternative but nonexclusive explanation is presumed selection for higher nutritional quality. We used a metaanalytical approach to examine susceptibility to herbivores in fruit and seed crops and their wild relatives. Our analyses provide novel insights into the mechanisms of increased susceptibility by evaluating whether it can be attributed to either a reduction in herbivore defensive traits, including direct/indirect and constitutive/inducible defenses, or an increase in the nutritional content of crops. The results confirm higher herbivory and lower levels of all types of defenses in crops compared to wild relatives, although indirect defenses were more affected than direct ones. Contrary to expectations, nutritional quality was lower in crops than in wild relatives, which may enhance biomass loss to herbivores if they increase consumption to meet nutritional requirements. Our findings represent an important advance in our understanding of how changes in defensive and nutritional traits following domestication could influence, in combination or individually, crop susceptibility to herbivore attacks.
Collapse
Affiliation(s)
- Anahí R Fernandez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- IRNAD, CONICET, Universidad Nacional de Río Negro, Mitre 630, Bariloche, 8400, Argentina
| | - Agustín Sáez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Carolina Quintero
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Gabriela Gleiser
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Marcelo A Aizen
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- Wissenschaftskolleg zu Berlin, Berlin, 14193, Germany
| |
Collapse
|
9
|
Guerra-García A, Gioia T, von Wettberg E, Logozzo G, Papa R, Bitocchi E, Bett KE. Intelligent Characterization of Lentil Genetic Resources: Evolutionary History, Genetic Diversity of Germplasm, and the Need for Well-Represented Collections. Curr Protoc 2021; 1:e134. [PMID: 34004055 DOI: 10.1002/cpz1.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genetic and phenotypic characterization of crops allows us to elucidate their evolutionary and domestication history, the genetic basis of important traits, and the use of variation present in landraces and wild relatives to enhance resilience. In this context, we aim to provide an overview of the main genetic resources developed for lentil and their main outcomes, and to suggest protocols for continued work on this important crop. Lens culinaris is the third-most-important cool-season grain and its use is increasing as a quick-cooking, nutritious, plant-based source of protein. L. culinaris was domesticated in the Fertile Crescent, and six additional wild taxa (L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans) are recognized. Numerous genetic diversity studies have shown that wild relatives present high levels of genetic variation and provide a reservoir of alleles that can be used for breeding programs. Furthermore, the integration of genetics/genomics and breeding techniques has resulted in identification of quantitative trait loci and genes related to attributes of interest. Genetic maps, massive genotyping, marker-assisted selection, and genomic selection are some of the genetic resources generated and applied in lentil. In addition, despite its size (∼4 Gbp) and complexity, the L. culinaris genome has been assembled, allowing a deeper understanding of its architecture. Still, major knowledge gaps exist in lentil, and a deeper understanding and characterization of germplasm resources, including wild relatives, is critical to lentil breeding and improvement. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Recording of lentil seed descriptors Basic Protocol 2: Lentil seed imaging Basic Protocol 3: Lentil seed increase Basic Protocol 4: Recording of primary lentil seed INCREASE descriptors.
Collapse
Affiliation(s)
- Azalea Guerra-García
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tania Gioia
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Eric von Wettberg
- Department of Plant and Soil Sciences and Gund Institute for the Environment, University of Vermont, Burlington, Vermont
| | - Giuseppina Logozzo
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Guera OGM, Castrejón-Ayala F, Robledo N, Jiménez-Pérez A, Sánchez-Rivera G, Salazar-Marcial L, Flores Moctezuma HE. Effectiveness of Push-Pull Systems to Fall Armyworm ( Spodoptera frugiperda) Management in Maize Crops in Morelos, Mexico. INSECTS 2021; 12:298. [PMID: 33805400 PMCID: PMC8067049 DOI: 10.3390/insects12040298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022]
Abstract
Chemical control is the main method used to combat fall armyworm in maize crops. However, its indiscriminate use usually leads to a more complex scenario characterized by loss of its effectiveness due to the development of resistance of the insect pest, emergence of secondary pests, and reduction of the populations of natural enemies. For this reason, efforts to develop strategies for agroecological pest management such as Push-Pull are increasingly growing. In this context, the present study was carried out to evaluate field effectiveness of Push-Pull systems for S. frugiperda management in maize crops in Morelos, Mexico. In a randomized block experiment, the incidence and severity of S. frugiperda, the development and yield of maize were evaluated in nine Push-Pull systems and a maize monoculture. The Push-Pull systems presented incidence/severity values lower than those of the monoculture. Morphological development and maize yield in the latter were lower than those of most Push-Pull systems. Mombasa-D. ambrosioides, Mulato II-T. erecta, Mulato II-C. juncea, Tanzania-T. erecta and Tanzania-D. ambrosioides systems presented higher yields than those of monocultures.
Collapse
Affiliation(s)
- Ouorou Ganni Mariel Guera
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle CeProBi No. 8, San Isidro, 62739 Yautepec, Mexico; (A.J.-P.); (G.S.-R.); (L.S.-M.); (H.E.F.M.)
| | - Federico Castrejón-Ayala
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle CeProBi No. 8, San Isidro, 62739 Yautepec, Mexico; (A.J.-P.); (G.S.-R.); (L.S.-M.); (H.E.F.M.)
| | - Norma Robledo
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle CeProBi No. 8, San Isidro, 62739 Yautepec, Mexico; (A.J.-P.); (G.S.-R.); (L.S.-M.); (H.E.F.M.)
| | | | | | | | | |
Collapse
|
11
|
Pacheco-Huh J, Carmona D, Dzib G, Chávez-Pesqueira M. Mutualistic and antagonistic interactions differ in wild and domesticated papaya (Carica papaya) in its centre of origin. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:250-258. [PMID: 33188722 DOI: 10.1111/plb.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Shifts in phenotypes derived from the domestication syndromes impact plant performance but may also affect interactions with other species in the community (e.g. mutualists and antagonists). Moreover, plantations often differ from the natural conditions experienced by the wild relatives of cultivated plants, potentially altering the nature of ecological interactions. However, apart from herbivory, little is known about how domestication and cultivation practices (e.g. insecticide application) can modify multiple ecological interactions simultaneously in wild and domesticated plants. In four sites on the Yucatan Peninsula, we compared the diversity of mutualists (e.g. moths) and antagonists (e.g. viruses) in wild and domesticated plants of papaya. For each individual, we recorded floral visitors and rates of visitation at three time periods during the day. We recorded type and percentage of damage by antagonists in three leaves of all individuals. Finally, we explored if plant sex had an effect on the interaction with floral visitors. The main floral visitors were ants and Trigona species, whereas viruses caused the main type of foliar damage. Wild individuals had a higher diversity and visitation rate of floral visitors, and less foliar damage from antagonists. Wild male individuals were more visited, but we observed a similar amount and diversity of damage in both sexes. The time of day did not have an effect on diversity of floral visitors. Together, cultivation practices and domestication appear to have an effect on the reduction in diversity of floral visitors in domesticated papaya, as well as an increase in foliar damage.
Collapse
Affiliation(s)
| | - D Carmona
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Yucatán, México
| | - G Dzib
- Centro de Investigación Científica de Yucatán AC, Unidad de Recursos Naturales, Yucatán, México
| | - M Chávez-Pesqueira
- Centro de Investigación Científica de Yucatán AC, Unidad de Recursos Naturales, Yucatán, México
| |
Collapse
|
12
|
Khoury CK, Carver D, Greene SL, Williams KA, Achicanoy HA, Schori M, León B, Wiersema JH, Frances A. Crop wild relatives of the United States require urgent conservation action. Proc Natl Acad Sci U S A 2020; 117:33351-33357. [PMID: 33318205 PMCID: PMC7776777 DOI: 10.1073/pnas.2007029117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The contributions of crop wild relatives (CWR) to food security depend on their conservation and accessibility for use. The United States contains a diverse native flora of CWR, including those of important cereal, fruit, nut, oil, pulse, root and tuber, and vegetable crops, which may be threatened in their natural habitats and underrepresented in plant conservation repositories. To determine conservation priorities for these plants, we developed a national inventory, compiled occurrence information, modeled potential distributions, and conducted threat assessments and conservation gap analyses for 600 native taxa. We found that 7.1% of the taxa may be critically endangered in their natural habitats, 50% may be endangered, and 28% may be vulnerable. We categorized 58.8% of the taxa as of urgent priority for further action, 37% as high priority, and 4.2% as medium priority. Major ex situ conservation gaps were identified for 93.3% of the wild relatives (categorized as urgent or high priority), with 83 taxa absent from conservation repositories, while 93.1% of the plants were equivalently prioritized for further habitat protection. Various taxonomic richness hotspots across the US represent focal regions for further conservation action. Related needs include facilitating greater access to and characterization of these cultural-genetic-natural resources and raising public awareness of their existence, value, and plight.
Collapse
Affiliation(s)
- Colin K Khoury
- National Laboratory for Genetic Resources Preservation, US Department of Agriculture, Agricultural Research Service, Fort Collins, CO 80521;
- International Center for Tropical Agriculture, 763537 Cali, Colombia
- Department of Biology, Saint Louis University, St. Louis, MO 63103
| | - Daniel Carver
- National Laboratory for Genetic Resources Preservation, US Department of Agriculture, Agricultural Research Service, Fort Collins, CO 80521
- Geospatial Centroid, Colorado State University, Fort Collins, CO 80523-1019
| | - Stephanie L Greene
- National Laboratory for Genetic Resources Preservation, US Department of Agriculture, Agricultural Research Service, Fort Collins, CO 80521
| | - Karen A Williams
- National Germplasm Resources Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705-2350
| | | | - Melanie Schori
- National Germplasm Resources Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705-2350
| | - Blanca León
- Museo de Historia Natural Universidad Nacional Mayor de San Marcos, Lima 14, Peru
- Department of Geography and the Environment, The University of Texas at Austin, Austin, TX 78712
| | - John H Wiersema
- Smithsonian National Museum of Natural History, Washington, DC 20560
| | | |
Collapse
|
13
|
Gastélum G, Rocha J. La milpa como modelo para el estudio de la microbiodiversidad e interacciones planta-bacteria. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
La microbiología agrícola busca reemplazar a los agroquímicos por microorganismos o sus productos como agentes de control biológico, debido a que el uso de tecnologías de la revolución verde tiene efectos negativos sobre el ambiente, los productores y sus familias, los consumidores y la salud de los cultivos. Sin embargo, el conocimiento actual acerca de las interacciones benéficas planta-bacteria en ambientes complejos es limitado e insuficiente, para lograr el éxito esperado de los productos biológicos. Las milpas son agroecosistemas tradicionales donde se cultivan diversas variedades de maíz nativo con otras especies asociadas; no se utiliza riego, ni labranza y aunque su aplicación va en aumento, comúnmente no se utilizan agroquímicos; por esto, la milpa representa una fuente de conocimiento sobre prácticas sustentables. Recientemente, se han descrito cambios en las comunidades microbianas de los sistemas agrícolas a causa de la modernización y a la domesticación de las plantas. En la milpa, también se han identificado interacciones benéficas planta-bacteria que parecen haberse perdido en los cultivos modernos. En esta revisión, discutimos las estrategias clásicas y modernas de la microbiología agrícola que pueden ser aplicadas en el estudio de la milpa. El establecimiento de la milpa como modelo de estudio de las interacciones planta-bacteria puede resultar en la generación del conocimiento necesario para disminuir el uso de agroquímicos en los sistemas agrícolas modernos, así como evitar su creciente uso en las milpas.
Collapse
|
14
|
Solís-Montero V, Martínez-Natarén DA, Parra-Tabla V, Ibarra-Cerdeña C, Munguía-Rosas MA. Herbivory and anti-herbivore defences in wild and cultivated Cnidoscolus aconitifolius: disentangling domestication and environmental effects. AOB PLANTS 2020; 12:plaa023. [PMID: 32607138 PMCID: PMC7306974 DOI: 10.1093/aobpla/plaa023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/29/2020] [Indexed: 05/20/2023]
Abstract
Phenotypic changes in plants during domestication may disrupt plant-herbivore interactions. Because wild and cultivated plants have different habitats and some anti-herbivore defences exhibit some plasticity, their defences may be also influenced by the environment. Our goal was to assess the effects of domestication and the environment on herbivory and some anti-herbivore defences in chaya (Cnidoscolus aconitifolius) in its centre of domestication. Herbivores, herbivory, and direct and indirect anti-herbivore defences were assessed in wild and cultivated plants. The same variables were measured in the field and in a common garden to assess environmental effects. Our results show that domestication increased herbivory and herbivore abundance, but reduced direct and some indirect defences (ants). The environment also affected the herbivore guild (herbivore abundance and richness) and some direct and indirect defences (trichome number and ants). There was also an interaction effect of domestication and the environment on the number of trichomes. We conclude that domestication and the environment influence herbivory and anti-herbivore defences in an additive and interactive manner in chaya.
Collapse
Affiliation(s)
- Virginia Solís-Montero
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Merida C.P., México
| | - Daniela A Martínez-Natarén
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Merida C.P., México
- Consejo Nacional de Ciencia y Tecnología (Conacyt), Insurgentes Sur, Ciudad de México C.P., México
| | - Víctor Parra-Tabla
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Merida C.P., México
| | - Carlos Ibarra-Cerdeña
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Merida C.P., México
| | - Miguel A Munguía-Rosas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Merida C.P., México
| |
Collapse
|
15
|
Cabrera-Toledo D, Vargas-Ponce O, Ascencio-Ramírez S, Valadez-Sandoval LM, Pérez-Alquicira J, Morales-Saavedra J, Huerta-Galván OF. Morphological and Genetic Variation in Monocultures, Forestry Systems and Wild Populations of Agave maximiliana of Western Mexico: Implications for Its Conservation. FRONTIERS IN PLANT SCIENCE 2020; 11:817. [PMID: 32625225 PMCID: PMC7313679 DOI: 10.3389/fpls.2020.00817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/20/2020] [Indexed: 05/04/2023]
Abstract
Forestry systems in Mexico are examples of traditional management of land and biodiversity that integrates the use, conservation and restoration of forest elements. Current in situ management practices of Agave maximiliana in western Mexico include the tolerance of many forest elements, reintroduction of young Agave plants and germination of seeds. More intense forms of management include monocultures, which are agroindustrialized systems developed in more recent times and characterized by the establishment of high densities of A. maximiliana plants in deforested areas and abandoned agricultural lands. We compared monocultures, forestry systems and wild populations (i.e., non/slightly-exploited forests) in order to evaluate whether these practices have had an effect on intraspecific morphological and genetic variation and divergence. We also tested whether divergence has a positive relationship with environmental and geographic distance. We analyzed 16 phenotypic traits in 17 populations of A. maximiliana, and 14 populations were further examined by amplifying 9 SSR loci. We employed multivariate methods and analyses of variance in phenotypic and genetic traits to test whether clusters and the percentage of variation contained in the managed and wild categories can be identified. Tests of isolation by environment (IBE) and distance (IBD) were performed to detect the magnitude of divergence explained by climatic and geographic variables. We found that forestry systems are effective as reservoirs of morphological and genetic diversity, since they maintain levels similar to those of wild populations. Moreover, the monocultures showed similar levels, reflecting their recent emergence. While the species showed high morphological diversity (IMD = 0.638, SE ± 0.07), it had low to intermediate genetic diversity (A = 2.37, H E = 0.418). Similar morphological and genetic divergences were found among populations, but these were not correlated with each other in population pairs. Non-significant morphological differentiation was found among categories. Only IBE was significant in the genetic structure (β = 0.32, p = 0.007), while neither IBE nor IBD was detected in the morphological differentiation. We discuss the implications of these results in the context of the weaknesses and strengths of A. maximiliana in the face of the socio-ecological changes predicted for the study area in the short term.
Collapse
Affiliation(s)
- Dánae Cabrera-Toledo
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg-CONACYT), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
- *Correspondence: Dánae Cabrera-Toledo,
| | - Ofelia Vargas-Ponce
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg-CONACYT), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Sabina Ascencio-Ramírez
- Maestría en Ciencias en Recursos Naturales y Desarrollo Rural, Colegio de la Frontera Sur, Tapachula, Mexico
| | - Luis Mario Valadez-Sandoval
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg-CONACYT), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Jessica Pérez-Alquicira
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg-CONACYT), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
- Cátedras CONACYT-Universidad de Guadalajara, Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Judith Morales-Saavedra
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg-CONACYT), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Oassis F. Huerta-Galván
- Maestría en Biosistemática y Manejo de Recursos Forestales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| |
Collapse
|
16
|
Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (chia). Sci Rep 2019; 9:9761. [PMID: 31278279 PMCID: PMC6611817 DOI: 10.1038/s41598-019-45895-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Salvia hispanica (chia) constituted an important crop for pre-Columbian civilizations and is considered a superfood for its rich content of essential fatty acids and proteins. In this study, we performed the first comprehensive comparative transcriptome analysis between seeds from cultivated varieties and from accessions collected from native wild populations in Mexico. From the 69,873 annotated transcripts assembled de novo, enriched functional categories and pathways revealed that the lipid metabolism was one of the most activated processes. Expression changes were detected among wild and cultivated groups and among growth conditions in transcripts responsible for triacylglycerol and fatty acid synthesis and degradation. We also quantified storage protein fractions that revealed variation concerning nutraceutical proteins such as albumin and glutelin. Genetic diversity estimated with 23,641 single nucleotide polymorphisms (SNPs) revealed that most of the variation remains in the wild populations, and that a wild-type cultivated variety is genetically related to wild accessions. Additionally, we reported 202 simple sequence repeat (SSRs) markers useful for population genetic studies. Overall, we provided transcript variation that can be used for breeding programs to further develop chia varieties with enhanced nutraceutical traits and tools to explore the genetic diversity and history of this rediscovered plant.
Collapse
|
17
|
Role of Traditional Ecological Knowledge and Seasonal Calendars in the Context of Climate Change: A Case Study from China. SUSTAINABILITY 2019. [DOI: 10.3390/su11123243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A seasonal calendar, based on traditional knowledge of ecological indicators, seasonal variations and associated activities, can provide a baseline for understanding the practices of indigenous along with climatic variation. This paper investigates the ethno-ecological knowledge of indigenous people in Taxkorgan regarding the use of ecological cues to conduct seasonal activities that harmonize with climatic variations. Meteorological data from the nearest station was used to understand climatic variations and develop indices. The results revealed that indigenous elders still adopt traditional methods to decide the time of various annual activities observing and using seasonal cues, such as the height and color of grass, the arriving of migratory birds and phenological observations. Moreover, same or diverse indicators were used at settlements located in different elevations. The analysis revealed that the region was recently getting warmer and wetter compared to previous decades, and local perceptions were matched with climatic recordings. Local inhabitants already practiced earlier plantation of crops (e.g., wheat) in recent years. Climatic indices calculated revealed and validated recent weather condition can support earlier plantation of crops. Hence, the strong forecasting system using meteorological evidence to support existing local knowledge on ecological indicators and adjust seasonal calendars can improve indigenous people’s abilities to cope with climate risks. Furthermore, this can support in developing adaptation schemes that respond to community needs. The approaches and findings can be used to facilitate the management of these natural resource based on the adaptive framework and to create data that can be tested in subsequent studies.
Collapse
|
18
|
Mechanisms of Resistance to Insect Herbivores in Isolated Breeding Lineages of Cucurbita pepo. J Chem Ecol 2019; 45:313-325. [DOI: 10.1007/s10886-019-01046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/05/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
19
|
Nock CJ, Hardner CM, Montenegro JD, Ahmad Termizi AA, Hayashi S, Playford J, Edwards D, Batley J. Wild Origins of Macadamia Domestication Identified Through Intraspecific Chloroplast Genome Sequencing. FRONTIERS IN PLANT SCIENCE 2019; 10:334. [PMID: 30949191 PMCID: PMC6438079 DOI: 10.3389/fpls.2019.00334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/04/2019] [Indexed: 05/13/2023]
Abstract
Identifying the geographic origins of crops is important for the conservation and utilization of novel genetic variation. Even so, the origins of many food crops remain elusive. The tree nut crop macadamia has a remarkable domestication history, from subtropical rain forests in Australia through Hawaii to global cultivation all within the last century. The industry is based primarily on Macadamia integrifolia and M. integrifolia-M. tetraphylla hybrid cultivars with Hawaiian cultivars the main contributors to world production. Sequence data from the chloroplast genome assembled using a genome skimming strategy was used to determine population structure among remnant populations of the main progenitor species, M. integrifolia. Phylogenetic analysis of a 506 bp chloroplast SNP alignment from 64 wild and cultivated accessions identified phylogeographic structure and deep divergences between clades providing evidence for historical barriers to seed dispersal. High levels of variation were detected among wild accessions. Most Hawaiian cultivars, however, shared a single chlorotype that was also present at two wild sites at Mooloo and Mt Bauple from the northernmost distribution of the species in south-east Queensland. Our results provide evidence for a maternal genetic bottleneck during early macadamia domestication, and pinpoint the likely source of seed used to develop the Hawaiian cultivars. The extensive variability and structuring of M. integrifolia chloroplast genomic variation detected in this study suggests much unexploited genetic diversity is available for improvement of this recently domesticated crop.
Collapse
Affiliation(s)
- Catherine J. Nock
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- *Correspondence: Catherine J. Nock,
| | - Craig M. Hardner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | | | - Ainnatul A. Ahmad Termizi
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Satomi Hayashi
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julia Playford
- Queensland Department of Environment and Science, Brisbane, QLD, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
20
|
Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem. PLoS One 2018; 13:e0208852. [PMID: 30571782 PMCID: PMC6301694 DOI: 10.1371/journal.pone.0208852] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023] Open
Abstract
Milpas are rain-fed agroecosystems involving domesticated, semi-domesticated and tolerated plant species that combine maize with a large variety of other crop, tree or shrub species. Milpas are low input and low-tillage, yet highly productive agroecosystems, which have been maintained over millennia in indigenous communities in Mexico and other countries in Central America. Thus, milpas may retain ancient plant-microorganisms interactions, which could have been lost in modern high-tillage monocultures with large agrochemical input. In this work, we performed high-throughput 16S ribosomal DNA sequencing of soil adjacent to maize roots and bulk soil sampled at 30 cm from the base of the plants. We found that the bacterial communities of maize root soil had a lower alpha diversity, suggesting selection of microorganisms by maize-roots from the bulk-soil community. Beta diversity analysis confirmed that these environments harbor two distinct microbial communities; differences were driven by members of phyla Verrucomicrobia and Actinobacteria, as well as the order Burkholderiales (Betaproteobacteria), all of which had higher relative abundance in soil adjacent to the roots. Numerous studies have shown the influence of maize plants on bacterial communities found in soil attached tightly to the roots; here we further show that the influence of maize roots at milpas on bacterial communities is detectable even in plant-free soil collected nearby. We propose that members of Verrucomicrobia and other phyla found in the rhizosphere may establish beneficial plant-microbe interactions with maize roots in milpas, and propose to address their cultivation for future studies on ecology and potential use.
Collapse
|
21
|
Chen YH, Ruiz-Arocho J, von Wettberg EJ. Crop domestication: anthropogenic effects on insect-plant interactions in agroecosystems. CURRENT OPINION IN INSECT SCIENCE 2018; 29:56-63. [PMID: 30551826 DOI: 10.1016/j.cois.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 05/14/2023]
Abstract
Although crop domestication is considered a model system for understanding evolution, the eco-evolutionary effects of domesticated crops on higher trophic levels have rarely been discussed. Changes in size, shape, quality, or timing of plant traits during domestication can influence entire arthropod communities. The plant traits specific to crop plants can be rare in nature. In the face of such novelty, it is important to understand how species and trophic levels vary in their responses. Although the evidence is still limited, crop domestication can influence the ecology, genetics, and evolution of plants, insect herbivores, natural enemies, and pollinators. We call for more study on how eco-evolutionary processes operate under domestication to provide new insight on the sustainability of species interactions within agroecosystems.
Collapse
Affiliation(s)
- Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA.
| | - Jorge Ruiz-Arocho
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - Eric Jb von Wettberg
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
22
|
Shlichta JG, Cuny MA, Hernandez-Cumplido J, Traine J, Benrey B. Contrasting consequences of plant domestication for the chemical defenses of leaves and seeds in lima bean plants. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Abstract
Humans have domesticated hundreds of plant and animal species as sources of food, fiber, forage, and tools over the past 12,000 years, with manifold effects on both human society and the genetic structure of the domesticated species. The outcomes of crop domestication were shaped by selection driven by human preferences, cultivation practices, and agricultural environments, as well as other population genetic processes flowing from the ensuing reduction in effective population size. It is obvious that any selection imposes a reduction of diversity, favoring preferred genotypes, such as nonshattering seeds or increased palatability. Furthermore, agricultural practices greatly reduced effective population sizes of crops, allowing genetic drift to alter genotype frequencies. Current advances in molecular technologies, particularly of genome sequencing, provide evidence of human selection acting on numerous loci during and after crop domestication. Population-level molecular analyses also enable us to clarify the demographic histories of the domestication process itself, which, together with expanded archaeological studies, can illuminate the origins of crops. Domesticated plant species are found in 160 taxonomic families. Approximately 2500 species have undergone some degree of domestication, and 250 species are considered to be fully domesticated. The evolutionary trajectory from wild to crop species is a complex process. Archaeological records suggest that there was a period of predomestication cultivation while humans first began the deliberate planting of wild stands that had favorable traits. Later, crops likely diversified as they were grown in new areas, sometimes beyond the climatic niche of their wild relatives. However, the speed and level of human intentionality during domestication remains a topic of active discussion. These processes led to the so-called domestication syndrome, that is, a group of traits that can arise through human preferences for ease of harvest and growth advantages under human propagation. These traits included reduced dispersal ability of seeds and fruits, changes to plant structure, and changes to plant defensive characteristics and palatability. Domestication implies the action of selective sweeps on standing genetic variation, as well as new genetic variation introduced via mutation or introgression. Furthermore, genetic bottlenecks during domestication or during founding events as crops moved away from their centers of origin may have further altered gene pools. To date, a few hundred genes and loci have been identified by classical genetic and association mapping as targets of domestication and postdomestication divergence. However, only a few of these have been characterized, and for even fewer is the role of the wild-type allele in natural populations understood. After domestication, only favorable haplotypes are retained around selected genes, which creates a genetic valley with extremely low genetic diversity. These “selective sweeps” can allow mildly deleterious alleles to come to fixation and may create a genetic load in the cultivated gene pool. Although the population-wide genomic consequences of domestication offer several predictions for levels of the genetic diversity in crops, our understanding of how this diversity corresponds to nutritional aspects of crops is not well understood. Many studies have found that modern cultivars have lower levels of key micronutrients and vitamins. We suspect that selection for palatability and increased yield at domestication and during postdomestication divergence exacerbated the low nutrient levels of many crops, although relatively little work has examined this question. Lack of diversity in modern germplasm may further limit our capacity to breed for higher nutrient levels, although little effort has gone into this beyond a handful of staple crops. This is an area where an understanding of domestication across many crop taxa may provide the necessary insight for breeding more nutritious crops in a rapidly changing world.
Collapse
|