1
|
Meesters C, Weldegergis BT, Dicke M, Jacquemyn H, Lievens B. Limited effects of plant-beneficial fungi on plant volatile composition and host-choice behavior of Nesidiocoris tenuis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322719. [PMID: 38235197 PMCID: PMC10791865 DOI: 10.3389/fpls.2023.1322719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Biological control using plant-beneficial fungi has gained considerable interest as a sustainable method for pest management, by priming the plant for enhanced defense against pathogens and insect herbivores. However, despite promising outcomes, little is known about how different fungal strains mediate these beneficial effects. In this study, we evaluated whether inoculation of tomato seeds with the plant-beneficial fungi Beauveria bassiana ARSEF 3097, Metarhizium brunneum ARSEF 1095 and Trichoderma harzianum T22 affected the plant's volatile organic compound (VOC) profile and the host-choice behavior of Nesidiocoris tenuis, an emerging pest species in NW-European tomato cultivation, and the related zoophytophagous biocontrol agent Macrolophus pygmaeus. Results indicated that fungal inoculation did not significantly alter the VOC composition of tomato plants. However, in a two-choice cage assay where female insects were given the option to select between control plants and fungus-inoculated plants, N. tenuis preferred control plants over M. brunneum-inoculated plants. Nearly 72% of all N. tenuis individuals tested chose the control treatment. In all other combinations tested, no significant differences were found for none of the insects. We conclude that inoculation of tomato with plant-beneficial fungi had limited effects on plant volatile composition and host-choice behavior of insects. However, the observation that N. tenuis was deterred from the crop when inoculated with M. brunneum and attracted to non-inoculated plants may provide new opportunities for future biocontrol based on a push-pull strategy.
Collapse
Affiliation(s)
- Caroline Meesters
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | | | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Silva DB, Hanel A, Franco FP, de Castro Silva-Filho M, Bento JMS. Two in one: the neotropical mirid predator Macrolophus basicornis increases pest control by feeding on plants. PEST MANAGEMENT SCIENCE 2022; 78:3314-3323. [PMID: 35485909 DOI: 10.1002/ps.6958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant defenses activated by European zoophytophagous predators trigger behavioral responses in arthropods, benefiting pest management. However, repellence or attraction of pests and beneficial insects seems to be species-specific. In the neotropical region, the mirid predator Macrolophus basicornis has proved to be a promising biological control agent of important tomato pests; nevertheless, the benefits of its phytophagous behavior have never been explored. Therefore, we investigated if M. basicornis phytophagy activates tomato plant defenses and the consequences for herbivores and natural enemies. RESULTS Regardless of the induction period of M. basicornis on tomato plants, Tuta absoluta females showed no preference for the odors emitted by induced or control plants. However, Tuta absoluta oviposited less on plants induced by M. basicornis for 72 h than on control plants. In contrast, induced plants repelled Bemisia tabaci females, and the number of eggs laid was reduced. Although females of Trichogramma pretiosum showed no preference between mirid-induced or control plants, we observed high attraction of the parasitoid Encarsia inaron and conspecifics to plants induced by M. basicornis. While the mirid-induced plants down-regulated the expression of genes involving the salicylic acid (SA) pathway over time, the genes related to the jasmonic acid (JA) pathway were up-regulated, increasing emissions of fatty-acid derivatives and terpenes, which might have influenced the arthropods' host/prey choices. CONCLUSION Based on both the molecular and behavioral findings, our results indicated that in addition to predation, M. basicornis benefits tomato plant resistance indirectly through its phytophagy. This study is a starting point to pave the way for a novel and sustainable pest-management strategy in the neotropical region. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Diego Bastos Silva
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Aldo Hanel
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Flavia Pereira Franco
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - José Mauricio Simões Bento
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
3
|
Half Friend, Half Enemy? Comparative Phytophagy between Two Dicyphini Species (Hemiptera: Miridae). INSECTS 2022; 13:insects13020175. [PMID: 35206748 PMCID: PMC8874493 DOI: 10.3390/insects13020175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/04/2022]
Abstract
Despite their importance as biological control agents, zoophytophagous dicyphine mirids can produce economically important damage. We evaluated the phytophagy and potential impact on tomato plants of Dicyphus cerastii and Nesidiocoris tenuis. We developed a study in three parts: (i) a semi-field trial to characterize the type of plant damage produced by these species on caged tomato plants; (ii) a laboratory experiment to assess the effect of fruit ripeness, mirid age, and prey availability on feeding injuries on fruit; and (iii) a laboratory assay to compare the position of both species on either fruit or plants, over time. Both species produced plant damage, however, although both species produced scar punctures on leaves and necrotic patches on petioles, only N. tenuis produced necrotic rings. Both species caused flower abortion at a similar level. Overall, N. tenuis females produced more damage to tomato fruit than D. cerastii. There was an increased frequency of D. cerastii females found on the plants over time, which did not happen with N. tenuis. Our results suggested that, although D. cerastii caused less damage to fruit than N. tenuis, it still fed on them and could cause floral abortion, which requires field evaluation and caution in its use in biological control strategies.
Collapse
|
4
|
Zhang NX, Stephan JG, Björkman C, Puentes A. Global change calls for novel plant protection: reviewing the potential of omnivorous plant-inhabiting arthropods as predators and plant defence inducers. CURRENT OPINION IN INSECT SCIENCE 2021; 47:103-110. [PMID: 34146735 DOI: 10.1016/j.cois.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Global change poses new challenges for pest management. Omnivorous predatory arthropods play an important role in pest management, yet their potential has not been fully explored. Not only do they consume prey, but their plant-feeding induces plant defences that decrease herbivores' performance, and increases production of volatiles that attract natural enemies. Growing evidence from different plant-arthropod systems indicates the generality of plant defence induction following omnivore plant-feeding. Furthermore, these responses appear to affect other organisms (e.g. plant viruses), altering multi-trophic interactions. Here, we review the dual role of omnivores (as predators and plant inducers), identify knowledge gaps and provide future perspectives to increase our understanding of omnivores' multiple functions, and how this can be applied to advance plant protection strategies.
Collapse
Affiliation(s)
- Nina Xiaoning Zhang
- Swedish University of Agricultural Sciences, Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden
| | - Jörg G Stephan
- Swedish University of Agricultural Sciences, SLU Swedish Species Information Centre, Almas allé 8E, SE-756 51 Uppsala, Sweden
| | - Christer Björkman
- Swedish University of Agricultural Sciences, Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden
| | - Adriana Puentes
- Swedish University of Agricultural Sciences, Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
5
|
Ferguson KB, Visser S, Dalíková M, Provazníková I, Urbaneja A, Pérez‐Hedo M, Marec F, Werren JH, Zwaan BJ, Pannebakker BA, Verhulst EC. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. INSECT MOLECULAR BIOLOGY 2021; 30:188-209. [PMID: 33305885 PMCID: PMC8048687 DOI: 10.1111/imb.12688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 05/14/2023]
Abstract
Nesidiocoris tenuis (Reuter) is an efficient predatory biological control agent used throughout the Mediterranean Basin in tomato crops but regarded as a pest in northern European countries. From the family Miridae, it is an economically important insect yet very little is known in terms of genetic information and no genomic or transcriptomic studies have been published. Here, we use a linked-read sequencing strategy on a single female N. tenuis. From this, we assembled the 355 Mbp genome and delivered an ab initio, homology-based and evidence-based annotation. Along the way, the bacterial "contamination" was removed from the assembly. In addition, bacterial lateral gene transfer (LGT) candidates were detected in the N. tenuis genome. The complete gene set is composed of 24 688 genes; the associated proteins were compared to other hemipterans (Cimex lectularis, Halyomorpha halys and Acyrthosiphon pisum). We visualized the genome using various cytogenetic techniques, such as karyotyping, CGH and GISH, indicating a karyotype of 2n = 32. Additional analyses include the localization of 18S rDNA and unique satellite probes as well as pooled sequencing to assess nucleotide diversity and neutrality of the commercial population. This is one of the first mirid genomes to be released and the first of a mirid biological control agent.
Collapse
Affiliation(s)
- K. B. Ferguson
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - S. Visser
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - M. Dalíková
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - I. Provazníková
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- European Molecular Biology LaboratoryHeidelbergGermany
| | - A. Urbaneja
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
| | - M. Pérez‐Hedo
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
| | - F. Marec
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
| | - J. H. Werren
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - B. J. Zwaan
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - B. A. Pannebakker
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - E. C. Verhulst
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
6
|
Park YG, Lee JH. UV-LED lights enhance the establishment and biological control efficacy of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). PLoS One 2021; 16:e0245165. [PMID: 33411787 PMCID: PMC7790406 DOI: 10.1371/journal.pone.0245165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022] Open
Abstract
The zoophytophagous mirid Nesidiocoris tenuis (Hemiptera: Miridae) is one of the biological control agents against the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), a major pest of greenhouse crops. The successful establishment of a biological control agent and its co-occurrence with the target pests increases the efficacy of biological control programs in greenhouses. In this study, we explored the effects of different wavelengths of LED light on establishment of N. tenuis in laboratory condition, with the goal of enhancing the biological control of B. tabaci in greenhouse crops. Nesidiocoris tenuis was most strongly attracted by LED light at a wavelength of 385 nm. This same wavelength was also highly attractive to B. tabaci in Y-tube experiments with lights of specific wavelengths provided is each arm of the apparatus. In trials in growth chambers, we verified the attraction of N. tenuis to 385 nm wavelength. When LED light at a wavelength of 385 nm was used in a growth chamber for 6 hours out of 24 hours, it significantly increased the remaining number of N. tenuis in growth chamber and level of predation compared to treatment with white LED light or without LED light. In conclusion, UV-LED light at a wavelength of 385 nm attracts both B. tabaci and N. tenuis. Thus, it would be used for enhancing early establishment of this mirid bug, better spatial congruence of both mirid bug and whitefly, and better control of the whitefly.
Collapse
Affiliation(s)
- Young-gyun Park
- Department of Agricultural Biotechnology, Entomology Program, Seoul National University, Seoul, Republic of Korea
| | - Joon-Ho Lee
- Department of Agricultural Biotechnology, Entomology Program, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Pérez-Hedo M, Riahi C, Urbaneja A. Use of zoophytophagous mirid bugs in horticultural crops: Current challenges and future perspectives. PEST MANAGEMENT SCIENCE 2021; 77:33-42. [PMID: 32776672 DOI: 10.1002/ps.6043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
In recent years, the use of predatory mirid bugs (Hemiptera: Miridae) in horticultural crops has increased considerably. Mirid bugs are zoophytophagous predators, that is, they display omnivorous behavior and feed on both plants and arthropods. Mirid bugs feed effectively on a wide range of prey, such as whiteflies, lepidopteran eggs and mites. In addition, the phytophagous behavior of mirid bugs can activate defenses in the plants on which they feed. Despite the positive biological attributes, their use still presents some constraints. Their establishment and retention on the crop is not always easy and economic plant damage can be caused by some mirid species. In this review, the current strategies for using zoophytophagous mirid bugs in horticultural crops, mainly Nesidiocoris tenuis, Macrolophus pygmaeus and Dicyphus hesperus, are reviewed. We discuss six different approaches which, in our opinion, can optimize the efficacy of mirids as biocontrol agents and help expand their use into more areas worldwide. In this review we (i) highlight the large number of species and biotypes which are yet to be described and explore their applicability, (ii) present how it is possible to take advantage of the mirid-induced plant defenses to improve pest management, (iii) argue that genetic selection of improved mirid strains is feasible, (iv) explore the use of companion plants and the use of alternative foods to improve the mirid bug management, and finally (vi) discuss strategies for the expansion of mirid bugs as biological control agents to horticultural crops other than just tomatoes. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meritxell Pérez-Hedo
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| | - Chaymaa Riahi
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| | - Alberto Urbaneja
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| |
Collapse
|
8
|
Fatemi F, Abdollahi MR, Mirzaie-asl A, Dastan D, Papadopoulou K. Phytochemical, antioxidant, enzyme activity and antifungal properties of Satureja khuzistanica in vitro and in vivo explants stimulated by some chemical elicitors. PHARMACEUTICAL BIOLOGY 2020; 58:286-296. [PMID: 32255400 PMCID: PMC7178849 DOI: 10.1080/13880209.2020.1743324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/02/2020] [Accepted: 03/11/2020] [Indexed: 05/18/2023]
Abstract
Context: Satureja khuzistanica Jamzad. (Lamiaceae), is known for its antifungal and antioxidant compounds, especially rosmarinic acid (RA).Objective: The study examines the effect of elicitors on RA production and phytochemical properties of S. khuzistanica.Materials and methods: In vitro plants were treated with methyl jasmonate (MeJA) and multi-walled carbon nanotubes (MWCNTs). In vivo plants were treated with MWCNTs and salicylic acid (SA). RA was measured by HPLC. Catalase (CAT), guaiacol peroxidase (POD) and ascorbate peroxidase (APX) were quantified. DPPH and β-carotene were assayed in in vivo extracts. The antifungal effects of extracts were evaluated against Fusarium solani K (FsK).Results: The highest RA contents of in vitro plants were 50 mg/L MeJA (140.99 mg/g DW) and 250 mg/L MWCNTs (140.49 mg/g DW). The highest in vivo were 24 h MWCNTs (7.13 mg/g DW) and 72 h SA (9.12 mg/g DW). The maximum POD and APX activities were at 100 mg/L MeJA (5 and 4 mg protein, respectively). CAT had the highest activities at 50 mg/L MeJA (2 mg protein). DPPH and β-carotene showed 50% and 80% inhibition, respectively. The FsK aggregation was the lowest for in vitro extract in number of conidia [1.82 × 1010], fresh weight (6.51 g) and dry weight (0.21 g) that proved RA inhibitory effects. The callus reduces FsK growth diameter to 2.75 on the 5th day.Discussion and conclusions: Application of MeJA, SA, and MWCNTSs could increase RA in S. khuzistanica and highlighted potential characteristics in pharmaceutical and antifungal effects.
Collapse
Affiliation(s)
- Farzaneh Fatemi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Asghar Mirzaie-asl
- Department of Plant Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Dara Dastan
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kalliope Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
9
|
Cavalcanti AD, da Silva Santos AC, de Oliveira Ferro L, Bezerra JDP, Souza-Motta CM, Magalhães OMC. Fusarium massalimae sp. nov. (F. lateritium species complex) occurs endophytically in leaves of Handroanthus chrysotrichus. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Skiada V, Avramidou M, Bonfante P, Genre A, Papadopoulou KK. An endophytic Fusarium-legume association is partially dependent on the common symbiotic signalling pathway. THE NEW PHYTOLOGIST 2020; 226:1429-1444. [PMID: 31997356 DOI: 10.1111/nph.16457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Legumes interact with a wide range of microbes in their root systems, ranging from beneficial symbionts to pathogens. Symbiotic rhizobia and arbuscular mycorrhizal glomeromycetes trigger a so-called common symbiotic signalling pathway (CSSP), including the induction of nuclear calcium spiking in the root epidermis. By combining gene expression analysis, mutant phenotypic screening and analysis of nuclear calcium elevations, we demonstrate that recognition of an endophytic Fusarium solani strain K (FsK) in model legumes is initiated via perception of chitooligosaccharidic molecules and is, at least partially, CSSP-dependent. FsK induced the expression of Lysin-motif receptors for chitin-based molecules, CSSP members and CSSP-dependent genes in Lotus japonicus. In LysM and CSSP mutant/RNAi lines, root penetration and fungal intraradical progression was either stimulated or limited, whereas FsK exudates triggered CSSP-dependent nuclear calcium spiking, in epidermal cells of Medicago truncatula root organ cultures. Our results corroborate CSSP being involved in the perception of signals from other microbes beyond the restricted group of symbiotic interactions sensu stricto.
Collapse
Affiliation(s)
- Vasiliki Skiada
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Marianna Avramidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| |
Collapse
|
11
|
Bouagga S, Urbaneja A, Depalo L, Rubio L, Pérez-Hedo M. Zoophytophagous predator-induced defences restrict accumulation of the tomato spotted wilt virus. PEST MANAGEMENT SCIENCE 2020; 76:561-567. [PMID: 31283098 DOI: 10.1002/ps.5547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The use of zoophytophagous predators in protected crops has been widely adopted to manage pests in southern Europe. We hypothesized that plant defence responses would be induced by zoophytophagous predators and this induction could affect plant virus occurrence; the phytophagy of these predators induces plant defences similarly to that of viral infection. Therefore, we evaluated whether or not mirid predator-activated plant defences limited the accumulation of Tomato Spotted Wilt Virus (TSWV) in mechanically infected sweet pepper. RESULTS Our results revealed TSWV accumulation in mirid-punctured plants to be significantly lower than in intact plants. This is most likely associated with the upregulation of the jasmonate acid pathway triggered by mirid phytophagy. CONCLUSION Activation of induced defences by mirid predators has been demonstrated for the first time to limit the accumulation of TSWV in sweet pepper. This novel approach can offer new control strategies for the management of plant diseases. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sarra Bouagga
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), Moncada, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), Moncada, Spain
| | - Laura Depalo
- DISTAL Department of Agricultural and Food Sciences, Alma Mater Studiorum. Università di Bologna, Bologna, Italy
| | - Luís Rubio
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), Moncada, Spain
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), Moncada, Spain
| |
Collapse
|
12
|
Pappas ML, Broufas GD, Pozzebon A, Duso C, Wäckers F. Editorial: Ecosystem Services and Disservices Provided by Plant-Feeding Predatory Arthropods. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Toghueo RMK. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 2019; 11:1-21. [PMID: 32128278 PMCID: PMC7033707 DOI: 10.1080/21501203.2019.1645053] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
Endophytic fungi became an attractive source for the discovery of new leads, because of the complexity and the structural diversity of their secondary metabolites. The genus Fusarium comprising about 70 species is extremely variable in terms of genetics, biology, ecology, and consequently, secondary metabolism and have been isolated from countless plants genera from diverse habitats. These endophytic microbes may provide protection and survival strategies in their host plants with production of a repertoire of chemically diverse and structurally unprecedented secondary metabolites reported to exhibit an incredible array of biological activities including antimicrobial, anticancer, antiviral, antioxidants, antiparasitics, immunosuppressants, immunomodulatory, antithrombotic, and biocontrol ability against plants pathogens and nematodes. This review comprehensively highlights over the period 1981-2019, the bioactive potential of metabolites produced by endophytes from Fusarium genus. Abbreviations: AIDS: Acquired immune deficiency syndrome; BAPT: C-13 phenylpropanoid side chain-CoA acyltransferase; CaBr2: Calcium bromide; DBAT: 10-deacetylbaccatin III-10-O-acetyl transferase; DNA: Deoxyribonucleic acid; EI-MS: Electron ionization mass spectrometer; EN: Enniatin; ERK: Extracellular regulated protein kinase; EtOAc: Ethyl acetate; FDA: Food and Drug Administration; GAE/g: Gallic acid equivalent per gram; GC-MS: Gas chromatography-mass spectrometry; HA: Hyperactivation; HCV: Hepatitis C Virus; HCVPR: Hepatitis C Virus protease; HeLa: Human cervical cancer cell line; HIV: Human immunodeficiency viruses; HPLC: High Performance Liquid Chromatography; IAA: Indole-3-acetic acid; IARC: International Agency for Research on Cancer; IC50: Half maximal inhibitory concentration; LC50: Concentration of the compound that is lethal for 50% of exposed population; LC-MS: Liquid chromatography-mass spectrometry; MCF-7: Human breast cancer cell line; MDR: Multidrug-resistant; MDRSA: Multidrug-resistant S. aureus; MFC: Minimum fungicidal concentration; MIC: Minimum inhibitory concentration; MRSA: Multidrug-resistant S. aureus; MTCC: Microbial type culture collection; PBMCs: Peripheral blood mononuclear cells; PCR: Polymerase chain reaction; TB: Tuberculosis; TLC: Thin layer chromatography; TNF: Tumor necrosis factor; WHO: World Health Organization http://www.zoobank.org/urn:lsid:zoobank.org:pub:D0A7B2D8-5952-436D-85C8-C79EAAD1013C.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
14
|
Eschweiler J, van Holstein-Saj R, Kruidhof HM, Schouten A, Messelink GJ. Tomato Inoculation With a Non-pathogenic Strain of Fusarium oxysporum Enhances Pest Control by Changing the Feeding Preference of an Omnivorous Predator. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Dumont F, Aubry O, Lucas E. From Evolutionary Aspects of Zoophytophagy to Biological Control. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Malandrakis A, Daskalaki ER, Skiada V, Papadopoulou KK, Kavroulakis N. A Fusarium solani endophyte vs fungicides: Compatibility in a Fusarium oxysporum f.sp. radicis-lycopersici – tomato pathosystem. Fungal Biol 2018; 122:1215-1221. [DOI: 10.1016/j.funbio.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/07/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023]
|
17
|
Pappas ML, Liapoura M, Papantoniou D, Avramidou M, Kavroulakis N, Weinhold A, Broufas GD, Papadopoulou KK. The Beneficial Endophytic Fungus Fusarium solani Strain K Alters Tomato Responses Against Spider Mites to the Benefit of the Plant. FRONTIERS IN PLANT SCIENCE 2018; 9:1603. [PMID: 30459791 PMCID: PMC6232530 DOI: 10.3389/fpls.2018.01603] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/17/2018] [Indexed: 05/23/2023]
Abstract
Beneficial microorganisms are known to promote plant growth and confer resistance to biotic and abiotic stressors. Soil-borne beneficial microbes in particular have shown potential in protecting plants against pathogens and herbivores via the elicitation of plant responses. In this study, we evaluated the role of Fusarium solani strain K (FsK) in altering plant responses to the two spotted spider mite Tetranychus urticae in tomato. We found evidence that FsK, a beneficial endophytic fungal strain isolated from the roots of tomato plants grown on suppressive compost, affects both direct and indirect tomato defenses against spider mites. Defense-related genes were differentially expressed on FsK-colonized plants after spider mite infestation compared to clean or spider mite-infested un-colonized plants. In accordance, spider mite performance was negatively affected on FsK-colonized plants and feeding damage was lower on these compared to control plants. Notably, FsK-colonization led to increased plant biomass to both spider mite-infested and un-infested plants. FsK was shown to enhance indirect tomato defense as FsK-colonized plants attracted more predators than un-colonized plants. In accordance, headspace volatile analysis revealed significant differences between the volatiles emitted by FsK-colonized plants in response to attack by spider mites. Our results highlight the role of endophytic fungi in shaping plant-mite interactions and may offer the opportunity for the development of a novel tool for spider mite control.
Collapse
Affiliation(s)
- Maria L. Pappas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Maria L. Pappas,
| | - Maria Liapoura
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Dimitra Papantoniou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Marianna Avramidou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nektarios Kavroulakis
- Laboratory of Phytopathology, Institute of Olive Tree, Subtropical Plants & Viticulture, Hellenic Agricultural Organization – DEMETER, Chania, Greece
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - George D. Broufas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Kalliope K. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|