1
|
Mazzoni V, Anfora G, Cocroft RB, Fatouros NE, Groot AT, Gross J, Hill PSM, Hoch H, Ioriatti C, Nieri R, Pekas A, Stacconi MVR, Stelinski LL, Takanashi T, Virant-Doberlet M, Wessel A. Bridging biotremology and chemical ecology: a new terminology. TRENDS IN PLANT SCIENCE 2024; 29:848-855. [PMID: 38744599 DOI: 10.1016/j.tplants.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Living organisms use both chemical and mechanical stimuli to survive in their environment. Substrate-borne vibrations play a significant role in mediating behaviors in animals and inducing physiological responses in plants, leading to the emergence of the discipline of biotremology. Biotremology is experiencing rapid growth both in fundamental research and in applications like pest control, drawing attention from diverse audiences. As parallels with concepts and approaches in chemical ecology emerge, there is a pressing need for a shared standardized vocabulary in the area of overlap for mutual understanding. In this article, we propose an updated set of terms in biotremology rooted in chemical ecology, using the suffix '-done' derived from the classic Greek word 'δονέω' (pronounced 'doneo'), meaning 'to shake'.
Collapse
Affiliation(s)
- Valerio Mazzoni
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy.
| | - Gianfranco Anfora
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy; Centre Agriculture Food Environment (C3A), University of Trento, Trento, Italy
| | - Reginald B Cocroft
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Nina E Fatouros
- Wageningen University, Biosystematics Group, Wageningen, The Netherlands
| | - Astrid T Groot
- Evolutionary and Population Biology (EPB), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Jürgen Gross
- Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Dossenheim, Germany
| | | | - Hannelore Hoch
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde-Leibniz-Institute for Evolution and Biodiversity Science at Humboldt University Berlin, Berlin, Germany
| | - Claudio Ioriatti
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
| | - Rachele Nieri
- Centre Agriculture Food Environment (C3A), University of Trento, Trento, Italy; Department of Mathematics, University of Trento, Trento, Italy
| | - Apostolos Pekas
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, València, Spain
| | | | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Takuma Takanashi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Iwate, Japan
| | - Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Andreas Wessel
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde-Leibniz-Institute for Evolution and Biodiversity Science at Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
2
|
Roberts L, Rice AN. Vibrational and acoustic communication in fishes: The overlooked overlap between the underwater vibroscape and soundscape. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2708-2720. [PMID: 37888943 DOI: 10.1121/10.0021878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Substrate-borne communication via mechanical waves is widespread throughout the animal kingdom but has not been intensively studied in fishes. Families such as the salmonids and sculpins have been documented to produce vibratory signals. However, it is likely that fish taxa on or close to the substrate that produce acoustic signals will also have a vibratory component to their signal due to their proximity to substrates and energy transfer between media. Fishes present an intriguing opportunity to study vibrational communication, particularly in the context of signal production and detection, detection range, and how vibratory signals may complement or replace acoustic signals. It is highly likely that the vibrational landscape, the vibroscape, is an important component of their sensory world, which certainly includes and overlaps with the soundscape. With the wide range of anthropogenic activities modifying underwater substrates, vibrational noise presents similar risks as acoustic noise pollution for fishes that depend on vibrational communication. However, in order to understand vibrational noise, more empirical studies are required to investigate the role of vibrations in the fish environment.
Collapse
Affiliation(s)
- Louise Roberts
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, United Kingdom
| | - Aaron N Rice
- K. Lisa Yang Center for Conservation Bioacoustics Cornell Lab of Ornithology, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
3
|
Polajnar J, Kuhelj A, Janža R, Žnidaršič N, Simčič T, Virant-Doberlet M. Leafhopper males compensate for unclear directional cues in vibration-mediated mate localization. Sci Rep 2023; 13:8879. [PMID: 37264041 PMCID: PMC10235090 DOI: 10.1038/s41598-023-35057-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
Ambient noise and transmission properties of the substrate pose challenges in vibrational signal-mediated mating behavior of arthropods, because vibrational signal production is energetically demanding. We explored implications of these challenges in the leafhopper Aphrodes makarovi (Insecta: Hemiptera: Cicadellidae) by exposing males to various kinds of vibrational noise on a natural substrate and challenging them to find the source of the female playback. Contrary to expectations, males exposed to noise were at least as efficient as control males on account of similar searching success with less signaling effort, while playing back male-female duets allowed the males to switch to satellite behavior and locate the target without signaling, as expected. We found altered mitochondrial structure in males with high signaling effort that likely indicate early damaging processes at the cellular level in tymbal muscle, but no relation between biochemical markers of oxidative stress and signaling effort. Analysis of signal transmission revealed ambiguous amplitude gradients, which might explain relatively low searching success, but it also indicates the existence of behavioral adaptations to complex vibrational environments. We conclude that the observed searching tactic, emphasizing speed rather than thorough evaluation of directional cues, may compensate for unclear stimuli when the target is near.
Collapse
Affiliation(s)
- Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia.
| | - Anka Kuhelj
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Rok Janža
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Tatjana Simčič
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| |
Collapse
|
4
|
Bernal XE, Leavell BC, Page RA. Assessing patterns of eavesdropper risk on sexual signals and the use of meta-analysis in behavioural ecology: a comment on: 'The exploitation of sexual signals by predators: a meta-analysis' White et al. (2022). Proc Biol Sci 2023; 290:20221866. [PMID: 37161325 PMCID: PMC10170210 DOI: 10.1098/rspb.2022.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Affiliation(s)
- Ximena E Bernal
- Department of Biological Sciences, Purdue University, 915 W State Street, West Lafayette, IN 47907, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
| | - Brian C Leavell
- Department of Biological Sciences, Purdue University, 915 W State Street, West Lafayette, IN 47907, USA
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
| |
Collapse
|
5
|
Bernal XE, Page RA. Tactics of evasion: strategies used by signallers to deter eavesdropping enemies from exploiting communication systems. Biol Rev Camb Philos Soc 2023; 98:222-242. [PMID: 36176190 DOI: 10.1111/brv.12904] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Eavesdropping predators, parasites and parasitoids exploit signals emitted by their prey and hosts for detection, assessment, localization and attack, and in the process impose strong selective pressures on the communication systems of the organisms they exploit. Signallers have evolved numerous anti-eavesdropper strategies to mitigate the trade-off between the costs imposed from signal exploitation and the need for conspecific communication. Eavesdropper strategies fall along a continuum from opportunistic to highly specialized, and the tightness of the eavesdropper-signaller relationship results in differential pressures on communication systems. A wide variety of anti-eavesdropper strategies mitigate the trade-off between eavesdropper exploitation and conspecific communication. Antagonistic selection from eavesdroppers can result in diverse outcomes including modulation of signalling displays, signal structure, and evolutionary loss or gain of a signal from a population. These strategies often result in reduced signal conspicuousness and in decreased signal ornamentation. Eavesdropping enemies, however, can also promote signal ornamentation. While less common, this alternative outcome offers a unique opportunity to dissect the factors that may lead to different evolutionary pathways. In addition, contrary to traditional assumptions, no sensory modality is completely 'safe' as eavesdroppers are ubiquitous and have a broad array of sensory filters that allow opportunity for signal exploitation. We discuss how anthropogenic change affects interactions between eavesdropping enemies and their victims as it rapidly modifies signalling environments and community composition. Drawing on diverse research from a range of taxa and sensory modalities, we synthesize current knowledge on anti-eavesdropper strategies, discuss challenges in this field and highlight fruitful new directions for future research. Ultimately, this review offers a conceptual framework to understand the diverse strategies used by signallers to communicate under the pressure imposed by their eavesdropping enemies.
Collapse
Affiliation(s)
- Ximena E Bernal
- Department of Biological Sciences, Purdue University, 915 W State Street, West Lafayette, IN, 47907, USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
6
|
Virant-Doberlet M, Stritih-Peljhan N, Žunič-Kosi A, Polajnar J. Functional Diversity of Vibrational Signaling Systems in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:191-210. [PMID: 36198397 DOI: 10.1146/annurev-ento-120220-095459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Communication by substrate-borne mechanical waves is widespread in insects. The specifics of vibrational communication are related to heterogeneous natural substrates that strongly influence signal transmission. Insects generate vibrational signals primarily by tremulation, drumming, stridulation, and tymbalation, most commonly during sexual behavior but also in agonistic, social, and mutualistic as well as defense interactions and as part of foraging strategies. Vibrational signals are often part of multimodal communication. Sensilla and organs detecting substrate vibration show great diversity and primarily occur in insect legs to optimize sensitivity and directionality. In the natural environment, signals from heterospecifics, as well as social and enemy interactions within vibrational communication networks, influence signaling and behavioral strategies. The exploitation of substrate-borne vibrational signaling offers a promising application for behavioral manipulation in pest control.
Collapse
Affiliation(s)
- Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Nataša Stritih-Peljhan
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Alenka Žunič-Kosi
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| |
Collapse
|
7
|
Bota JL, Schöner MG, Schöner CR, Eberhard MJB. Rustling ants: Vibrational communication performed by two Camponotus species in Borneo. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101172. [PMID: 35810530 DOI: 10.1016/j.asd.2022.101172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Interactions between ants and plants are classic examples of cooperation between individuals of different species. Usually, plants provide shelter or food for ants and in turn are defended against herbivores by their insect allies. To coordinate attacks, ants use multi-modal alarm signals consisting of vibrational and chemical components. This can also be observed in Borneo, where two Camponotus species inhabit the ocreas (diverging, tubular leaf sheaths) of the rattan palm Korthalsia robusta. When ants are disturbed, they beat or scratch mandibles and abdomens on the plant surface resulting in loud rustling sounds. To describe the characteristics of these signals, we recorded them with a Laser-Doppler-vibrometer in the field. Analyses of temporal patterns and dominant frequency revealed that the signals of the two species differ fundamentally. To assess transmission characteristics of the rattan palm, we conducted experiments under controlled lab-conditions. We show that the ocrea is an adequate structure for converting airborne sound into substrate vibrations, acting as a mediator between these two modalities. We hypothesize that the ants' vibratory signal has multiple functions, with the substrate-borne component used as an alarm signal for conspecifics, and the airborne component acting as vibro-acoustic aposematism against predators or herbivores to protect the host plant.
Collapse
Affiliation(s)
- Julien L Bota
- Zoological Institute and Museum, University of Greifswald, Loitzer-Str. 26, 17489, Greifswald, Germany
| | - Michael G Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer-Str. 26, 17489, Greifswald, Germany; Sensory and Cognitive Ecology, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Caroline R Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer-Str. 26, 17489, Greifswald, Germany
| | - Monika J B Eberhard
- Zoological Institute and Museum, University of Greifswald, Loitzer-Str. 26, 17489, Greifswald, Germany.
| |
Collapse
|
8
|
Šturm R, López Díez JJ, Polajnar J, Sueur J, Virant-Doberlet M. Is It Time for Ecotremology? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.828503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Our awareness of air-borne sounds in natural and urban habitats has led to the recent recognition of soundscape ecology and ecoacoustics as interdisciplinary fields of research that can help us better understand ecological processes and ecosystem dynamics. Because the vibroscape (i.e., the substrate-borne vibrations occurring in a given environment) is hidden to the human senses, we have largely overlooked its ecological significance. Substrate vibrations provide information crucial to the reproduction and survival of most animals, especially arthropods, which are essential to ecosystem functioning. Thus, vibroscape is an important component of the environment perceived by the majority of animals. Nowadays, when the environment is rapidly changing due to human activities, climate change, and invasive species, this hidden vibratory world is also likely to change without our notice, with potentially crucial effects on arthropod communities. Here, we introduce ecotremology, a discipline that mainly aims at studying substrate-borne vibrations for unraveling ecological processes and biological conservation. As biotremology follows the main research concepts of bioacoustics, ecotremology is consistent with the paradigms of ecoacoustics. We argue that information extracted from substrate vibrations present in the environment can be used to comprehensively assess and reliably predict ecosystem changes. We identify key research questions and discuss the technical challenges associated with ecotremology studies.
Collapse
|
9
|
Liao YC, Percy DM, Yang MM. Biotremology: Vibrational communication of Psylloidea. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 66:101138. [PMID: 35074654 DOI: 10.1016/j.asd.2021.101138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Psyllids perform duetting via vibrational signals between genders that are important in pre-copulation species specific recognition. To date, vibrational behavior has been recorded in more than 100 species of psyllid, which is still only a small fraction of the ∼4000 described species. In this overview, we categorize the duet behavior into (1) reciprocal duets, (2) engaged duets, (3) three-way duets and (4) loose duets. In species with notable signal differences between genders, typically the male possesses a longer, more complex signal, which is emitted at a higher frequency compared to those of the females. Vibrational signals exhibit species specific characteristics that are taxonomically informative in some cases. Despite only a limited number of vibrational communication studies incorporating phylogenetic analyses, these reveal that signals can have reliable systematic information, but also that evolutionary and/or environmental factors may influence signal characteristics in ways that confound phylogenetic signal. Other possible strategies employed in mate finding in psyllids are chemical and visual signals. The most likely mechanism of vibrational signal production in psyllids involves stridulation between forewing and thorax. In some applied approaches, methods exploiting vibrational signals to disrupt mating may be effective to control psyllid pests in the field.
Collapse
Affiliation(s)
- Yi-Chang Liao
- Department of Entomology, University of California, Riverside, CA, USA.
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Man-Miao Yang
- Department of Entomology, University of Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
10
|
Caorsi V, Cornara D, Wells KE, Moser D, Berardo A, Miselli R, Torriani M, Pugno NM, Tasin M, Maistrello L, Mazzoni V. Design of ideal vibrational signals for stinkbug male attraction through vibrotaxis experiments. PEST MANAGEMENT SCIENCE 2021; 77:5498-5508. [PMID: 34357680 PMCID: PMC9292951 DOI: 10.1002/ps.6590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Many groups of insects utilize substrate-borne vibrations for intraspecific communication. This characteristic makes them a suitable model for exploring the use of vibrations as a tool for pest control as an alternative to the use of chemicals. Detailed knowledge of species communication is a prerequisite to select the best signals to use. This study explored the use of substrate-borne vibrations for pest control of the brown marmorated stink bug (BMSB), Halyomorpha halys Stål (Heteroptera: Pentatomidae). For this purpose, we first identified the spectral and temporal characteristics that best elicit male responsiveness. Bioassays were conducted with artificial signals that mimicked the natural female calling signal. Second, we used the acquired knowledge to synthesize new signals endowed with different degrees of attractiveness in single- and two-choice bioassays using a wooden custom-made T stand. RESULTS The results from this study showed that males were attracted to female signals along a high range of amplitudes, especially starting from a threshold of 100 μm s-1 , a high pulse repetition time (1 s) and frequency peak corresponding to the first harmonic (76 Hz). This resulted in an "optimal" signal for use to attract males, while the choice test in the T arena showed that this signal elicits searching behavior and attracts BMSB males towards a stimulation point. CONCLUSION We confirm the use of vibrational signals as a strong tool for behavioral manipulation of male BMSB and suggest its possible use in the development of field traps and further management of this pest. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentina Caorsi
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
- C3A Centro Agricoltura, Alimenti e AmbienteUniversity of TrentoTrentoItaly
| | - Daniele Cornara
- International Centre for Advanced Mediterranean Agronomic Studies – Institute of Bari (CIHEAM‐Bari)ValenzanoItaly
- Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - Karen E Wells
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Damiano Moser
- Department of Chemical SciencesUniversity of PaduaPaduaItaly
| | - Alice Berardo
- Laboratory of Bio‐Inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly
- Present address:
Department of Civil, Environmental and Architectural EngineeringUniversity of PadovaPaduaItaly
| | - Roberto Miselli
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Michele Torriani
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Nicola M Pugno
- Laboratory of Bio‐Inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK
| | - Marco Tasin
- Department of Chemical SciencesUniversity of PaduaPaduaItaly
| | - Lara Maistrello
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Valerio Mazzoni
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| |
Collapse
|
11
|
Classen-Rodríguez L, Tinghitella R, Fowler-Finn K. Anthropogenic noise affects insect and arachnid behavior, thus changing interactions within and between species. CURRENT OPINION IN INSECT SCIENCE 2021; 47:142-153. [PMID: 34252592 DOI: 10.1016/j.cois.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Urbanization and the by-product pollutants of anthropogenic activity pose unique threats to arthropods by altering their sensory environments. Sounds generated by human activities, like construction and road traffic, can oversaturate or interfere with biotic acoustic cues that regulate important ecological processes, such as trophic interactions and the coordination of mating. Here, we review recent work exploring how anthropogenic noise impacts inter-intra-specific interactions in insects and arachnids. We outline empirical frameworks for future research that integrate three mechanisms by which anthropogenic noise alters behavior through interference with acoustic cues: masking, distraction, and misleading. Additionally, we emphasize the need for experimental designs that more accurately replicate natural soundscapes. We encourage future investigations on the effects of developmental exposure to noise pollution and the impacts of multiple interacting sensory pollutants on insect and arachnid behavior.
Collapse
Affiliation(s)
- Leticia Classen-Rodríguez
- Department of Biology, Saint Louis University, Macelwane Hall, 3507 Laclede Avenue, St. Louis, MO 63103, USA.
| | - Robin Tinghitella
- Department of Biological Sciences, University of Denver, Olin Hall, 2190 E Iliff Avenue, Denver, CO 80210, USA
| | - Kasey Fowler-Finn
- Department of Biology, Saint Louis University, Macelwane Hall, 3507 Laclede Avenue, St. Louis, MO 63103, USA; Living Earth Collaborative, Saint Louis, MO, USA
| |
Collapse
|
12
|
Wignall AE, Soley FG. Assassin bugs can reduce the aggression of their spider prey before an attack. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Predators that hunt dangerous prey require specialized predatory tactics to avoid counter-attack. Usually, these predatory tactics reduce the probability of detection. The assassin bugs Stenolemus bituberus and S. giraffa rely on stealth or mimicry to prey on dangerous web-building spiders. Paradoxically, however, these assassin bugs tap the spiders with their antennae prior to attacking, leaving the bugs vulnerable to detection and counter-attack. Here, we tested the function of prey tapping. We used a controlled, repeated-measures experiment to assess the responses of spiders (Pholcus phalangioides) to simulated prey and compared their responses after being tapped on the leg (mimicking tapping by Stenolemus) or sham-tapped. We show that tapping can reduce the likelihood that spiders will behave aggressively, in turn lowering the risks of injury for assassin bug predators. Tapping may be an adaptation to reduce intraspecific aggression in prey that is being exploited by their predators.
Collapse
Affiliation(s)
- Anne E Wignall
- School of Natural and Computational Sciences, Massey University, Auckland 0632, New Zealand
| | - Fernando G Soley
- Organization for Tropical Studies, Apartado 676-2050, San José, Costa Rica
- Department of Terrestrial Zoology, Western Australian Museum, Welshpool, WA 6106, Australia
| |
Collapse
|
13
|
Šturm R, Rexhepi B, López Díez JJ, Blejec A, Polajnar J, Sueur J, Virant-Doberlet M. Hay meadow vibroscape and interactions within insect vibrational community. iScience 2021; 24:103070. [PMID: 34585116 PMCID: PMC8456062 DOI: 10.1016/j.isci.2021.103070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Our experiences shape our knowledge and understanding of the world around us. The natural vibrational environment (vibroscape) is hidden to human senses but is nevertheless perceived and exploited by the majority of animals. Here, we show that the vibroscape recorded on plants in a temperate hay meadow is a dynamic low-frequency world, rich in species-specific vibrational signals. The overall vibroscape composition changed throughout the season and also depended on the plant species, as well as on the spatial position of individual plants within the meadow. Within the studied community, vibrationally signaling species sharing this communication channel avoided interference primarily by partitioning vibrational space on a fine temporal scale. The vibroscape is a reliable source of information in the environment and expands our understanding of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Rok Šturm
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Behare Rexhepi
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Juan José López Díez
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Andrej Blejec
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Jérôme Sueur
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 Rue Cuvier, CP 50, 75005 Paris, France
| | - Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| |
Collapse
|
14
|
Akassou I, Avosani S, Caorsi V, Verrastro V, Ciolli M, Mazzoni V. Intrasexual Vibrational Behavior of Philaenus spumarius in Semi-Field Conditions. INSECTS 2021; 12:584. [PMID: 34203353 PMCID: PMC8306748 DOI: 10.3390/insects12070584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Insects that communicate by vibrational signals live in a complex interactive network of communication. Most studies on insect intrasexual behavior, based on plant-borne vibrational signals, have targeted few individuals. Despite their importance, behaviors that occur within groups were often overlooked. The study of multiple individuals, when insects occur in high density could simulate the environment in which they live and provide more reliable information on their behavior. In semi-field conditions, we investigated the intrasexual behavior of the meadow spittlebug, Philaenus spumarius. Vibrational signals exchanged among individuals of the same sex were recorded throughout their adult stage, from late spring to early autumn, and during the day, from the morning to the evening using a laser vibrometer. Males were less active than females throughout the season and their interactions were less frequent compared to females. Intrasexual interactions were characterized by signal overlapping in both unisex groups, in addition to signal alternating only in the case of males. In conclusion, the study of signaling behavior in intrasexual groups contributed to a better understanding of P. spumarius social behavior. We discuss the hypothesis of a possible competitive behavior between males and cooperative behavior between females.
Collapse
Affiliation(s)
- Imane Akassou
- DICAM Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy; (S.A.); (M.C.)
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (V.C.); (V.M.)
- CIHEAM—IAMB International Centre for Advanced Mediterranean Agronomic Studies, Via Ceglie 9, 70010 Bari, Italy;
| | - Sabina Avosani
- DICAM Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy; (S.A.); (M.C.)
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (V.C.); (V.M.)
| | - Valentina Caorsi
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (V.C.); (V.M.)
- C3A, Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
| | - Vincenzo Verrastro
- CIHEAM—IAMB International Centre for Advanced Mediterranean Agronomic Studies, Via Ceglie 9, 70010 Bari, Italy;
| | - Marco Ciolli
- DICAM Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy; (S.A.); (M.C.)
- C3A, Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
| | - Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (V.C.); (V.M.)
| |
Collapse
|
15
|
Roberts L. Crabby commotions: visual not vibrational-orientated searching behaviours guide aggregation formation around key resources. J ETHOL 2021. [DOI: 10.1007/s10164-021-00710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Su Q, Lv J, Li WX, Sun JW, Li SH, Zhang WQ. Identification of putative abdominal vibration-related genes through transcriptome analyses in the brown planthopper (Nilaparvata lugens). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100856. [PMID: 34090066 DOI: 10.1016/j.cbd.2021.100856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/13/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The sexually mature female brown planthoppers (BPHs) send out abdominal vibration (AV) signals through the rice so that the males can obtain intraspecific, gender, and localization information to prepare for mating. Destroying vibration signals is an alternative biological method for pest control. However, the regulatory mechanism of AV in female BPHs remains elusive, which presents an obstacle to pest control. We observed that before mating female BHPs emitted abdominal vibration signals that disappeared immediately after mating and reappeared after 6 days. Therefore, ovarian and brain samples of female BPHs from Unmated-6h+ (with AV), Mated-6h- (without AV) and Mated-6d+ (with AV) individuals were collected for transcript analyses. By transcriptional sequencing analyses, 33 candidate genes that might involve in the regulation of female AV were obtained. After selecting 4 candidate genes of them for verification by RNA interference (RNAi), it was found that interference of juvenile hormone binding protein (JHBP) could greatly reduce the probability and frequency of AV for female BPHs. In general, this study identified AV-related candidate genes in female BPHs through transcriptome analyses and provided an important basis for future research on pest control in BPHs.
Collapse
Affiliation(s)
- Qin Su
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Lv
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wan-Xue Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wei Sun
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Hui Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Roberts L. Substrate-borne vibration and sound production by the land hermit crab Coenobita compressus during social interactions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:3261. [PMID: 34241129 DOI: 10.1121/10.0004988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
Despite the diversity of sound production in crustacea, sounds produced by the land hermit crabs (Coenobitidae) are not well understood. Here, sound and substrate-borne vibration production by the tropical species Coenobita compressus was characterized in relation to shell architecture and social context. Sound production rates were compared between group and solitary conditions. Chirps were measurable in the air (peak frequency 800-8400 Hz) and within the sediment (40-1120 Hz). On average, chirp pulses were 0.08 s, spaced 0.41-0.92 s apart, and had trains composed of 4-6 pulses. There were significant correlations between the shell architecture and chirp vibroacoustics. Notably, a correlation between the substrate-borne peak frequency and shell wall thickness was found, indicating that the shell remodeling process which crabs undertake (shell wall thinning) impacts the vibroacoustics of the chirps. Chirp production was significantly linked to sociality during increased individual proximity and shell contests; hence, the function is hypothesized to be intraspecific communication relative to personal space and defense. Although there have been anecdotal observations of chirping in the Coenobitidae, this paper provides a full characterization of C. compressus, which produces chirps in two sensory modes, indicating the potential of being a seismic signaler.
Collapse
Affiliation(s)
- Louise Roberts
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
18
|
Bradley SS, Howe E, Bent LR, Vickaryous MK. Cutaneous tactile sensitivity before and after tail loss and regeneration in the leopard gecko (Eublepharis macularius). J Exp Biol 2021; 224:jeb.234054. [DOI: 10.1242/jeb.234054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022]
Abstract
ABSTRACT
Amongst tetrapods, mechanoreceptors on the feet establish a sense of body placement and help to facilitate posture and biomechanics. Mechanoreceptors are necessary for stabilizing the body while navigating through changing terrains or responding to a sudden change in body mass and orientation. Lizards such as the leopard gecko (Eublepharis macularius) employ autotomy – a voluntary detachment of a portion of the tail – to escape predation. Tail autotomy represents a natural form of significant (and localized) mass loss. Semmes–Weinstein monofilaments were used to investigate the effect of tail autotomy (and subsequent tail regeneration) on tactile sensitivity of each appendage of the leopard gecko. Prior to autotomy, we identified site-specific differences in tactile sensitivity across the ventral surfaces of the hindlimbs, forelimbs and tail. Repeated monofilament testing of both control (tail-intact) and tail-loss geckos had a significant sensitization effect (i.e. decrease in tactile threshold, maintained over time) in all regions of interest except the palmar surfaces of the forelimbs in post-autotomy geckos, compared with baseline testing. Although the regenerated tail is not an exact replica of the original, tactile sensitivity is shown to be effectively restored at this site. Re-establishment of tactile sensitivity on the ventral surface of the regenerate tail points towards a (continued) role in predator detection.
Collapse
Affiliation(s)
- Stefanie S. Bradley
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Erika Howe
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Leah R. Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Matthew K. Vickaryous
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| |
Collapse
|
19
|
Velilla E, Polajnar J, Virant‐Doberlet M, Commandeur D, Simon R, Cornelissen JHC, Ellers J, Halfwerk W. Variation in plant leaf traits affects transmission and detectability of herbivore vibrational cues. Ecol Evol 2020; 10:12277-12289. [PMID: 33209287 PMCID: PMC7663069 DOI: 10.1002/ece3.6857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Many insects use plant-borne vibrations to obtain important information about their environment, such as where to find a mate or a prey, or when to avoid a predator. Plant species can differ in the way they vibrate, possibly affecting the reliability of information, and ultimately the decisions that are made by animals based on this information. We examined whether the production, transmission, and possible perception of plant-borne vibrational cues is affected by variation in leaf traits. We recorded vibrations of 69 Spodoptera exigua caterpillars foraging on four plant species that differed widely in their leaf traits (cabbage, beetroot, sunflower, and corn). We carried out a transmission and an airborne noise absorption experiment to assess whether leaf traits influence amplitude and frequency characteristics, and background noise levels of vibrational chewing cues. Our results reveal that species-specific leaf traits can influence transmission and potentially perception of herbivore-induced chewing vibrations. Experimentally-induced vibrations attenuated stronger on plants with thicker leaves. Amplitude and frequency characteristics of chewing vibrations measured near a chewing caterpillar were, however, not affected by leaf traits. Furthermore, we found a significant effect of leaf area, water content and leaf thickness-important plant traits against herbivory, on the vibrations induced by airborne noise. On larger leaves higher amplitude vibrations were induced, whereas on thicker leaves containing more water airborne noise induced higher peak frequencies. Our findings indicate that variation in leaf traits can be important for the transmission and possibly detection of vibrational cues.
Collapse
Affiliation(s)
- Estefania Velilla
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | | | - Daniel Commandeur
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ralph Simon
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Jacintha Ellers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Wouter Halfwerk
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
20
|
Abstract
Effective communication is essential in animal life to allow fundamental behavioral processes and survival. Communicating by surface-borne vibrations is likely the most ancient mode of getting and exchanging information in both invertebrates and vertebrates. In this review, we concentrate on the use of vibrational communication in arthropods as a form of intraspecific and interspecific signaling, with a focus on the newest discoveries from our research group in terrestrial isopods (Crustacea: Isopoda: Oniscidea), a taxon never investigated before in this context. After getting little attention in the past, biotremology is now an emerging field of study in animal communication, and it is receiving increased interest from the scientific community dealing with these behavioral processes. In what follows, we illustrate the general principles and mechanisms on which biotremology is based, using definitions, examples, and insights from the literature in arthropods. Vibrational communication in arthropods has mainly been studied in insects and arachnids. For these taxa, much evidence of its use as a source of information from the surrounding environment exists, as well as its involvement in many behavioral roles, such as courtship and mating, conspecific recognition, competition, foraging, parental care, and danger perception. Recently, and for the first time, communication through surface-borne waves has been studied in terrestrial isopods, using a common Mediterranean species of the Armadillidae family as a pilot species, Armadillo officinalis Duméril, 1816. Mainly, for this species, we describe typical behavioral processes, such as turn alternation, aggregation, and stridulation, where vibrational communication appears to be involved.
Collapse
Affiliation(s)
- Sofia Cividini
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L693BX, UK.
| | | |
Collapse
|
21
|
Yack JE, Raven BH, Leveillee MB, Naranjo M. What Does an Insect Hear? Reassessing the Role of Hearing in Predator Avoidance with Insights from Vertebrate Prey. Integr Comp Biol 2020; 60:1036-1057. [PMID: 32717080 DOI: 10.1093/icb/icaa097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insects have a diversity of hearing organs known to function in a variety of contexts, including reproduction, locating food, and defense. While the role of hearing in predator avoidance has been extensively researched over the past several decades, this research has focused on the detection of one type of predator-echolocating bats. Here we reassess the role of hearing in antipredator defense by considering how insects use their ears to detect and avoid the wide range of predators that consume them. To identify the types of sounds that could be relevant to insect prey, we first review the topic of hearing-mediated predator avoidance in vertebrates. Sounds used by vertebrate prey to assess predation risk include incidental sound cues (e.g., flight sounds, rustling vegetation, and splashing) produced by an approaching predator or another escaping prey, as well as communication signals produced by a predator (e.g., echolocation calls, songs) or nonpredator (e.g., alarm calls). We then review what is known, and what is not known, about such sounds made by the main predators and parasitoids of insects (i.e., birds, bats, terrestrial vertebrates, and invertebrates) and how insects respond to them. Three key insights emerged from our review. First, there is a lack of information on how both vertebrate and insect prey use passive sound cues produced by predators to avoid being captured. Second, while there are numerous examples of vertebrate prey eavesdropping on the calls and songs of predators and nonpredators to assess risk, there are currently no such examples for eared insect prey. Third, the hearing sensitivity of many insects, including those with ears considered to be dedicated to detecting bats or mates, overlaps with both sound cues and signals generated by nonbat predators. Sounds of particular relevance to insect prey include the flight sounds and calls of insectivorous birds, the flight sounds of insect predators and parasitoids, and rustling vegetation sounds of birds and terrestrial predators. We conclude that research on the role of insect hearing in predator avoidance has been disproportionally focused on bat-detection, and that acoustically-mediated responses to other predators may have been overlooked because the responses of prey may be subtle (e.g., ceasing activity, increasing vigilance). We recommend that researchers expand their testing of hearing-mediated risk assessment in insects by considering the wide range of sounds generated by predators, and the varied responses exhibited by prey to these sounds.
Collapse
Affiliation(s)
- Jayne E Yack
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Brianna H Raven
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Michelle B Leveillee
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Mairelys Naranjo
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
22
|
Hamel JA, Cocroft RB. Maternal Vibrational Signals Reduce the Risk of Attracting Eavesdropping Predators. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|