1
|
Niu D, Xu L, Lin K. Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds. INSECTS 2024; 15:572. [PMID: 39194777 DOI: 10.3390/insects15080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Plants communicate with insects and other organisms through the release of volatile organic compounds (VOCs). Using Boolean operators, we retrieved 1093 articles from the Web of Science and Scopus databases, selecting 406 for detailed analysis, with approximately 50% focusing on herbivore-induced plant volatiles (HIPVs). This review examines the roles of VOCs in direct and indirect plant defense mechanisms and their influence on complex communication networks within ecosystems. Our research reveals significant functions of VOCs in four principal areas: activating insect antennae, attracting adult insects, attracting female insects, and attracting natural enemies. Terpenoids like α-pinene and β-myrcene significantly alter pest behavior by attracting natural enemies. β-ocimene and β-caryophyllene are crucial in regulating aboveground and belowground interactions. We emphasize the potential applications of VOCs in agriculture for developing novel pest control strategies and enhancing crop resilience. Additionally, we identify research gaps and propose new directions, stressing the importance of comparative studies across ecosystems and long-term observational research to better understand VOCs dynamics. In conclusion, we provide insights into the multifunctionality of VOCs in natural ecosystems, their potential for future research and applications, and their role in advancing sustainable agricultural and ecological practices, contributing to a deeper understanding of their mechanisms and ecological functions.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| |
Collapse
|
2
|
Li C, Lambers H, Jing J, Zhang C, Bezemer TM, Klironomos J, Cong WF, Zhang F. Belowground cascading biotic interactions trigger crop diversity benefits. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00115-8. [PMID: 38821841 DOI: 10.1016/j.tplants.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Crop diversification practices offer numerous synergistic benefits. So far, research has traditionally been confined to exploring isolated, unidirectional single-process interactions among plants, soil, and microorganisms. Here, we present a novel and systematic perspective, unveiling the intricate web of plant-soil-microbiome interactions that trigger cascading effects. Applying the principles of cascading interactions can be an alternative way to overcome soil obstacles such as soil compaction and soil pathogen pressure. Finally, we introduce a research framework comprising the design of diversified cropping systems by including commercial varieties and crops with resource-efficient traits, the exploration of cascading effects, and the innovation of field management. We propose that this provides theoretical and methodological insights that can reveal new mechanisms by which crop diversity increases productivity.
Collapse
Affiliation(s)
- Chunjie Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hans Lambers
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; School of Biological Sciences and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Jingying Jing
- College of Grassland Science and Technology, China Agricultural University, 100193 Beijing, China
| | - Chaochun Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - T Martijn Bezemer
- Institute of Biology, Leiden University, 2333, BE, Leiden, The Netherlands
| | - John Klironomos
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, PO Box 26666, Sharjah, United Arab Emirates
| | - Wen-Feng Cong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Menta C, Remelli S, Andreoni M, Gatti F, Sergi V. Can Grasslands in Photovoltaic Parks Play a Role in Conserving Soil Arthropod Biodiversity? Life (Basel) 2023; 13:1536. [PMID: 37511911 PMCID: PMC10381872 DOI: 10.3390/life13071536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Under the increasing global energy demand, the new European Union Biodiversity Strategy for 2030 encourages combinations of energy production systems compatible with biodiversity conservation; however, in photovoltaic parks, panels shadowing the effects on soil health and biodiversity are still unknown. This study (location: Northern Italy) aimed to evaluate the effect of ground-mounted photovoltaic (GMPV) systems on soil arthropod biodiversity, considering two parks with different vegetation management: site 1-grassland mowed with tractor; site 2-grassland managed with sheep and donkeys. Three conditions were identified in each park: under photovoltaic panel (row), between the panel rows (inter-row), and around the photovoltaic plant (control). The soil pH and organic matter (SOM), soil arthropod community, biodiversity, and soil quality index (e.g., QBS-ar index) were characterised. Differences between the two GMPVs were mainly driven by the SOM content (higher values where grazing animals were present). No differences were observed in site 1, even if a high heterogeneity of results was observed for the soil biodiversity parameters under the panels. In site 2, SOM and pH, as well as arthropods biodiversity and QBS-ar, showed low values in the row. Soil fauna assemblages were also affected by ground-mounted panels, where Acarina, Collembola, Hymenoptera, and Hemiptera showed the lowest density in the row. This study suggests that ground-mounted solar panels had significant effects on below-ground soil fauna, and was more marked depending on the system management. Furthermore, the results obtained for the inter-row were similar to the control, suggesting that the area between the panel rows could be considered a good hotspot for soil biodiversity.
Collapse
Affiliation(s)
- Cristina Menta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A, 43124 Parma, Italy
| | - Sara Remelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A, 43124 Parma, Italy
| | - Matteo Andreoni
- ESPERTA Benefit Corporation, Strada Giarola, 8, 43044 Collecchio, Italy
| | - Fabio Gatti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A, 43124 Parma, Italy
| | - Valeria Sergi
- Department Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, via Branze 43, 25060 Brescia, Italy
| |
Collapse
|
4
|
Hou H, Liu H, Xiong J, Wang C, Zhang S, Ding Z. Comparison of Soil Bacterial Communities under Canopies of Pinus tabulaeformis and Populus euramericana in a Reclaimed Waste Dump. PLANTS (BASEL, SWITZERLAND) 2023; 12:974. [PMID: 36840322 PMCID: PMC9964797 DOI: 10.3390/plants12040974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
To compare the effects of different remediation tree species on soil bacterial communities and provide a theoretical basis for the selection of ecosystem function promotion strategies after vegetation restoration, the characteristic changes in soil bacterial communities after Pinus tabulaeformis and Populus euramericana reclamation were explored using high-throughput sequencing and molecular ecological network methods. The results showed that: (1) With the increase in reclamation years, the reclaimed soil properties were close to the control group, and the soil properties of Pinus tabulaeformis were closer to the control group than those of P. euramericana. (2) The dominant bacteria under the canopies of P. tabulaeformis and P. euramericana was the same. Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes, Planctomycetes, Bacteroidetes, and Cyanobacteria were the dominant bacteria in the restored soil, accounting for more than 95% of the total abundance. The average values of the Shannon diversity index, Simpson diversity index, Chao 1 richness estimator, and abundance-based coverage estimator of the bacterial community in the P. euramericana reclaimed soil were higher than those in the P. tabulaeformis reclaimed soil. The influence of reclamation years on the bacterial community of samples is greater than that of species types. (3) The results of ecological network construction showed that the total number of nodes, total number of connections, and average connectivity of the soil bacterial network under P. euramericana reclamation were greater than those under P. tabulaeformis reclamation. The bacterial molecular ecological network under P. euramericana was more abundant. (4) Among the dominant bacteria, the relative abundance of Actinobacteria was negatively correlated with soil pH, soil total nitrogen content, and the activities of urease, invertase, and alkaline phosphatase, while the relative abundance of Proteobacteria and Bacteroidetes was positively correlated with these environmental factors. The relationship between the soil bacterial community of P. tabulaeformis and P. euramericana and the environmental factors is not completely the same, and even the interaction between some environmental factors and bacteria is opposite.
Collapse
Affiliation(s)
- Huping Hou
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
| | - Haiya Liu
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China
| | - Jinting Xiong
- School of Environment Science & Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chen Wang
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | - Shaoliang Zhang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhongyi Ding
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
5
|
Wyckhuys KAG, Nguyen H, Fonte SJ. Artefactual depiction of predator-prey trophic linkages in global soils. Sci Rep 2021; 11:23861. [PMID: 34903745 PMCID: PMC8668944 DOI: 10.1038/s41598-021-03234-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Soil invertebrates contribute to multiple ecosystem services, including pest control, nutrient cycling, and soil structural regulation, yet trophic interactions that determine their diversity and activity in soils remain critically understudied. Here, we systematically review literature (1966-2020) on feeding habits of soil arthropods and macrofauna and summarize empirically studied predator-prey linkages across ecosystem types, geographies and taxa. Out of 522 unique predators and 372 prey organisms (constituting 1947 predator-prey linkages), the vast majority (> 75%) are only covered in a single study. We report a mean of just 3.0 ± 4.7 documented linkages per organism, with pronounced taxonomic biases. In general, model organisms and crop pests (generally Insecta) are well-studied, while important soil-dwelling predators, fungivores and detritivores (e.g., Collembola, Chilopoda and Malacostraca) remain largely ignored. We argue that broader food-web based research approaches, considering multiple linkages per organism and targeting neglected taxa, are needed to inform science-driven management of soil communities and associated ecosystem services.
Collapse
Affiliation(s)
- Kris A G Wyckhuys
- Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing, China
- Fujian Agriculture and Forestry University, Fuzhou, China
- University of Queensland, Brisbane, Australia
- Chrysalis Consulting, Hanoi, Vietnam
| | - Ha Nguyen
- Center for Agricultural Research and Ecological Studies, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Steven J Fonte
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Schmidt A, Hines J, Türke M, Buscot F, Schädler M, Weigelt A, Gebler A, Klotz S, Liu T, Reth S, Trogisch S, Roy J, Wirth C, Eisenhauer N. The iDiv Ecotron-A flexible research platform for multitrophic biodiversity research. Ecol Evol 2021; 11:15174-15190. [PMID: 34765169 PMCID: PMC8571575 DOI: 10.1002/ece3.8198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Across the globe, ecological communities are confronted with multiple global environmental change drivers, and they are responding in complex ways ranging from behavioral, physiological, and morphological changes within populations to changes in community composition and food web structure with consequences for ecosystem functioning. A better understanding of global change-induced alterations of multitrophic biodiversity and the ecosystem-level responses in terrestrial ecosystems requires holistic and integrative experimental approaches to manipulate and study complex communities and processes above and below the ground. We argue that mesocosm experiments fill a critical gap in this context, especially when based on ecological theory and coupled with microcosm experiments, field experiments, and observational studies of macroecological patterns. We describe the design and specifications of a novel terrestrial mesocosm facility, the iDiv Ecotron. It was developed to allow the setup and maintenance of complex communities and the manipulation of several abiotic factors in a near-natural way, while simultaneously measuring multiple ecosystem functions. To demonstrate the capabilities of the facility, we provide a case study. This study shows that changes in aboveground multitrophic interactions caused by decreased predator densities can have cascading effects on the composition of belowground communities. The iDiv Ecotrons technical features, which allow for the assembly of an endless spectrum of ecosystem components, create the opportunity for collaboration among researchers with an equally broad spectrum of expertise. In the last part, we outline some of such components that will be implemented in future ecological experiments to be realized in the iDiv Ecotron.
Collapse
Affiliation(s)
- Anja Schmidt
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - François Buscot
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Martin Schädler
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Alban Gebler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Stefan Klotz
- Helmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
| | - Tao Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded EcosystemsSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Sascha Reth
- Umwelt‐Geräte‐Technik GmbH – UGTMünchebergGermany
| | - Stefan Trogisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Jacques Roy
- French National Centre for Scientific Research – CNRSParisFrance
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| |
Collapse
|
7
|
Wyckhuys KAG, González-Chang M, Adriani E, Albaytar AB, Albertini A, Avila G, Beltran MJB, Boreros AD, Fanani MZ, Nguyen DT, Nguyen G, Nurkomar I, Tiwari S. Delivering on the Promise of Biological Control in Asia's Food Systems: A Humboldtian Perspective. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Vanbergen AJ, Aizen MA, Cordeau S, Garibaldi LA, Garratt MP, Kovács-Hostyánszki A, Lecuyer L, Ngo HT, Potts SG, Settele J, Skrimizea E, Young JC. Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security. ADV ECOL RES 2020. [DOI: 10.1016/bs.aecr.2020.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|