1
|
Santini G, Castiglia D, Perrotta MM, Landi S, Maisto G, Esposito S. Plastic in the Environment: A Modern Type of Abiotic Stress for Plant Physiology. PLANTS (BASEL, SWITZERLAND) 2023; 12:3717. [PMID: 37960073 PMCID: PMC10648480 DOI: 10.3390/plants12213717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
In recent years, plastic pollution has become a growing environmental concern: more than 350 million tons of plastic material are produced annually. Although many efforts have been made to recycle waste, a significant proportion of these plastics contaminate and accumulate in the environment. A central point in plastic pollution is demonstrated by the evidence that plastic objects gradually and continuously split up into smaller pieces, thus producing subtle and invisible pollution caused by microplastics (MP) and nanoplastics (NP). The small dimensions of these particles allow for the diffusion of these contaminants in farmlands, forest, freshwater, and oceans worldwide, posing serious menaces to human, animal, and plant health. The uptake of MPs and NPs into plant cells seriously affects plant growth, development, and photosynthesis, finally limiting crop yields and endangering natural environmental biodiversity. Furthermore, nano- and microplastics-once adsorbed by plants-can easily enter the food chain, being highly toxic to animals and humans. This review addresses the impacts of MP and NP particles on plants in the terrestrial environment. In particular, we provide an overview here of the detrimental effects of photosynthetic injuries, oxidative stress, ROS production, and protein damage triggered by MN and NP in higher plants and, more specifically, in crops. The possible damage at the physiological and environmental levels is discussed.
Collapse
Affiliation(s)
- Giorgia Santini
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Daniela Castiglia
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy
| | - Maryanna Martina Perrotta
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Giulia Maisto
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Sergio Esposito
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| |
Collapse
|
2
|
Bugnot AB, Gribben PE, O'Connor WA, Erickson K, Coleman RA, Dafforn KA. Below‐ground ecosystem engineers enhance biodiversity and function in a polluted ecosystem. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ana B. Bugnot
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
- Sydney Institute of Marine Science Mosman NSW Australia
| | - Paul E. Gribben
- Sydney Institute of Marine Science Mosman NSW Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Wayne A. O'Connor
- Port Stephens Fisheries Institute NSW Department of Primary Industries NSW Australia
| | - Katherine Erickson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Ross A. Coleman
- Sydney School of Architecture Design and Planning, The University of Sydney Sydney NSW Australia
| | - Katherine A. Dafforn
- Sydney Institute of Marine Science Mosman NSW Australia
- School of Natural Sciences Macquarie University North Ryde NSW Australia
| |
Collapse
|
3
|
Abstract
AbstractInvertebrates comprise the most diversified animal group on Earth. Due to their long evolutionary history and small size, invertebrates occupy a remarkable range of ecological niches, and play an important role as “ecosystem engineers” by structuring networks of mutualistic and antagonistic ecological interactions in almost all terrestrial ecosystems. Urban forests provide critical ecosystem services to humans, and, as in other systems, invertebrates are central to structuring and maintaining the functioning of urban forests. Identifying the role of invertebrates in urban forests can help elucidate their importance to practitioners and the public, not only to preserve biodiversity in urban environments, but also to make the public aware of their functional importance in maintaining healthy greenspaces. In this review, we examine the multiple functional roles that invertebrates play in urban forests that contribute to ecosystem service provisioning, including pollination, predation, herbivory, seed and microorganism dispersal and organic matter decomposition, but also those that lead to disservices, primarily from a public health perspective, e.g., transmission of invertebrate-borne diseases. We then identify a number of ecological filters that structure urban forest invertebrate communities, such as changes in habitat structure, increased landscape imperviousness, microclimatic changes and pollution. We also discuss the complexity of ways that forest invertebrates respond to urbanisation, including acclimation, local extinction and evolution. Finally, we present management recommendations to support and conserve viable and diverse urban forest invertebrate populations into the future.
Collapse
|
4
|
Borden MA, Benda ND, Bean EZ, Dale AG. Effects of soil mitigation on lawn-dwelling invertebrates following residential development. JOURNAL OF URBAN ECOLOGY 2022. [DOI: 10.1093/jue/juac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Residential areas are the most rapidly expanding land use type in the southeastern USA. Residential development impairs soil functions primarily through compaction and the removal or burial of topsoil and natural vegetation, which reduces water infiltration and retention, root penetration, and plant establishment. Plant stress reduces plant-derived ecosystem services and increases vulnerability to pests, often leading to supplemental management inputs in the form of irrigation, fertilizers, pesticides and labor. Soil-dwelling invertebrates, including detritivores and natural enemies of pests, drive valuable ecosystem functions that facilitate plant establishment and reduce maintenance inputs. Although poorly understood, soil disturbance during residential development likely disturbs these communities and reduces the services provided by soil-dwelling invertebrates. Here, we compare the effects of two soil compaction mitigation techniques, tillage with and without compost incorporation, on invertebrate communities and the services they provide over 2 years following residential development. We focus on the relationships between detritivores and detritus decomposition rates, entomopathogenic nematodes and the activity density of a key turfgrass pest and other arthropod herbivores and predators. We found that soil mitigation had no detectable benefit for epigeal arthropods within 1 year after disturbance, but that compost-amended soils supported greater arthropod richness and predator activity density than unmitigated soils in the second year after disturbance. In contrast, we found reduced insect-parasitic nematode activity associated with compost amendment. All taxa increased in abundance with time after development. These results can inform more sustainable residential development and landscape maintenance practices for more biodiverse and functional urban and residential ecosystems.
Collapse
Affiliation(s)
- Matthew A Borden
- Entomology and Nematology Department, University of Florida , Gainesville, FL 32611, USA
- Bartlett Tree Research Laboratories , 13768 Hamilton Road , Charlotte, NC 28278, USA
| | - Nicole D Benda
- Entomology and Nematology Department, University of Florida , Gainesville, FL 32611, USA
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry , Gainesville, FL 32608, USA
| | - Eban Z Bean
- Agricultural and Biological Engineering Department, University of Florida , Gainesville, FL 32611, USA
| | - Adam G Dale
- Entomology and Nematology Department, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Lear G, Kingsbury JM, Franchini S, Gambarini V, Maday SDM, Wallbank JA, Weaver L, Pantos O. Plastics and the microbiome: impacts and solutions. ENVIRONMENTAL MICROBIOME 2021; 16:2. [PMID: 33902756 PMCID: PMC8066485 DOI: 10.1186/s40793-020-00371-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 05/12/2023]
Abstract
Global plastic production has increased exponentially since manufacturing commenced in the 1950's, including polymer types infused with diverse additives and fillers. While the negative impacts of plastics are widely reported, particularly on marine vertebrates, impacts on microbial life remain poorly understood. Plastics impact microbiomes directly, exerting toxic effects, providing supplemental carbon sources and acting as rafts for microbial colonisation and dispersal. Indirect consequences include increased environmental shading, altered compositions of host communities and disruption of host organism or community health, hormone balances and immune responses. The isolation and application of plastic-degrading microbes are of substantial interest yet little evidence supports the microbial biodegradation of most high molecular weight synthetic polymers. Over 400 microbial species have been presumptively identified as capable of plastic degradation, but evidence for the degradation of highly prevalent polymers including polypropylene, nylon, polystyrene and polyvinyl chloride must be treated with caution; most studies fail to differentiate losses caused by the leaching or degradation of polymer monomers, additives or fillers. Even where polymer degradation is demonstrated, such as for polyethylene terephthalate, the ability of microorganisms to degrade more highly crystalline forms of the polymer used in commercial plastics appears limited. Microbiomes frequently work in conjunction with abiotic factors such as heat and light to impact the structural integrity of polymers and accessibility to enzymatic attack. Consequently, there remains much scope for extremophile microbiomes to be explored as a source of plastic-degrading enzymes and microorganisms. We propose a best-practice workflow for isolating and reporting plastic-degrading taxa from diverse environmental microbiomes, which should include multiple lines of evidence supporting changes in polymer structure, mass loss, and detection of presumed degradation products, along with confirmation of microbial strains and enzymes (and their associated genes) responsible for high molecular weight plastic polymer degradation. Such approaches are necessary for enzymatic degraders of high molecular weight plastic polymers to be differentiated from organisms only capable of degrading the more labile carbon within predominantly amorphous plastics, plastic monomers, additives or fillers.
Collapse
Affiliation(s)
- G Lear
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand.
| | - J M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch, 8041, New Zealand
| | - S Franchini
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - V Gambarini
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - S D M Maday
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - J A Wallbank
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - L Weaver
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch, 8041, New Zealand
| | - O Pantos
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch, 8041, New Zealand
| |
Collapse
|
6
|
Nsor CA, Oppong SK, Danquah E, Ochem M, Antobre OO. Spatiotemporal dynamics of terrestrial invertebrate assemblages in the riparian zone of the Wewe river, Ashanti region, Ghana. Open Life Sci 2020; 15:331-345. [PMID: 33817222 PMCID: PMC7874598 DOI: 10.1515/biol-2020-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
This study assessed invertebrate response to disturbances in the riparian zone of the Wewe river, using geometric series, rarefaction, Renyi diversity, and CCA models. We sampled 2,077 individuals (dry season) and 2,282 (wet season) belonging to 16 invertebrate orders. The severely disturbed habitat registered the highest individuals (n = 1,999), while the least was the moderately disturbed habitat (n = 740). Seasonal assemblages were not significantly different. Fire, farming, tree felling, and erosion explained 66.8% and 60.55% in the dry and wet seasons, respectively, of variations in invertebrate assemblages. This suggests threats to the invertebrate community and the riparian ecosystem health by anthropogenic interventions.
Collapse
Affiliation(s)
- Collins Ayine Nsor
- Department of Forest Resources Technology, Faculty of Renewable Natural Resources, Kwame University of Science and Technology, Kumasi, Ghana
| | - Samuel K Oppong
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame University of Science and Technology, Kumasi, Ghana
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame University of Science and Technology, Kumasi, Ghana
| | - Michael Ochem
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame University of Science and Technology, Kumasi, Ghana
| | - Osei Owusu Antobre
- Department of Forest Resources Technology, Faculty of Renewable Natural Resources, Kwame University of Science and Technology, Kumasi, Ghana
| |
Collapse
|