1
|
Rodríguez-Becerra SH, Vázquez-Rivera R, Ventura-Hernández KI, Pawar TJ, Olivares-Romero JL. The Biology, Impact, and Management of Xyleborus Beetles: A Comprehensive Review. INSECTS 2024; 15:706. [PMID: 39336674 PMCID: PMC11432132 DOI: 10.3390/insects15090706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Xyleborus beetles, a diverse group of ambrosia beetles, present challenges to forestry and agriculture due to their damaging burrowing behavior and symbiotic relationships with fungi. This review synthesizes current knowledge on the biology, ecology, and management of Xyleborus. We explore the beetles' life cycle, reproductive strategies, habitat preferences, and feeding habits, emphasizing their ecological and economic impacts. Control and management strategies, including preventive measures, chemical and biological control, and integrated pest management (IPM), are critically evaluated. Recent advances in molecular genetics and behavioral studies offer insights into genetic diversity, population structure, and host selection mechanisms. Despite progress, managing Xyleborus effectively remains challenging. This review identifies future research needs and highlights innovative control methods, such as biopesticides and pheromone-based trapping systems.
Collapse
Affiliation(s)
- Sared Helena Rodríguez-Becerra
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
| | - Rafael Vázquez-Rivera
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, Xalapa 91090, Veracruz, Mexico
| | - Karla Irazú Ventura-Hernández
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
- Instituto de Química Aplicada, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial-Animas, Xalapa 91190, Veracruz, Mexico
| | - Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
| | - José Luis Olivares-Romero
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico
| |
Collapse
|
2
|
Milbrath LR, Biazzo J. Phenology, voltinism, and brood development of Xylosandrus (Coleoptera: Curculionidae) ambrosia beetles in New York. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:6. [PMID: 39427233 PMCID: PMC11490416 DOI: 10.1093/jisesa/ieae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The ambrosia beetles Xylosandrus germanus (Blanford) and Xylosandrus crassiusculus (Motschulsky) are nonnative pests in orchards and nurseries in North America. They construct galleries in the sapwood of stressed woody hosts and culture a symbiotic fungus as food for their offspring. Preventing attacks is preferred but a better understanding of their biology may elucidate additional avenues for control. Recent phenological studies are lacking for X. germanus that is common in New York, and biological information on brood and gallery development is lacking for the less abundant X. crassiusculus. We conducted both outdoor rearing and laboratory studies to better understand the timing of key events in the maturation of their galleries, particularly associated with the symbiotic fungi. Two and a partial third summer generation were consistently observed over 2 yr for X. germanus; and thus, 3 flights of adult females (foundresses) occurred each summer from mid-April to late September. In both the field and laboratory, initial growth of the symbiotic fungus occurs within a few days of gallery initiation. The rapid development of the reproductive tract and oviposition by X. germanus appears to be stimulated by the presence of the fungus. Fungal, reproductive, and brood development are similar for the related X. crassiusculus in laboratory studies; the 2 species mainly appear to differ in size. The lag between beetle colonization and reproduction currently seems too brief to be exploited for management. Disruption of other stages in gallery development should also be explored to minimize the beetle damage if attacks cannot be prevented.
Collapse
Affiliation(s)
- Lindsey R Milbrath
- United States Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Jeromy Biazzo
- United States Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| |
Collapse
|
3
|
Melet A, Leibold V, Schmitt T, Biedermann PHW. Highly diverse cuticular hydrocarbon profiles but no evidence for aggression towards non-kin in the ambrosia beetle Xyleborinus saxesenii. Ecol Evol 2024; 14:e11274. [PMID: 38654710 PMCID: PMC11036074 DOI: 10.1002/ece3.11274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Animal societies use nestmate recognition to protect against social cheaters and parasites. In most social insect societies, individuals recognize and exclude any non-nestmates and the roles of cuticular hydrocarbons as recognition cues are well documented. Some ambrosia beetles live in cooperatively breeding societies with farmed fungus cultures that are challenging to establish, but of very high value once established. Hence, social cheaters that sneak into a nest without paying the costs of nest foundation may be selected. Therefore, nestmate recognition is also expected to exist in ambrosia beetles, but so far nobody has investigated this behavior and its underlying mechanisms. Here we studied the ability for nestmate recognition in the cooperatively breeding ambrosia beetle Xyleborinus saxesenii, combining behavioural observations and cuticular hydrocarbon analyses. Laboratory nests of X. saxesenii were exposed to foreign adult females from the same population, another population and another species. Survival as well as the behaviours of the foreign female were observed. The behaviours of the receiving individuals were also observed. We expected that increasing genetic distance would cause increasing distance in chemical profiles and increasing levels of behavioural exclusion and possibly mortality. Chemical profiles differed between populations and appeared as variable as in other highly social insects. However, we found only very little evidence for the behavioural exclusion of foreign individuals. Interpopulation donors left nests at a higher rate than control donors, but neither their behaviours nor the behaviours of receiver individuals within the nest showed any response to the foreign individual in either of the treatments. These results suggest that cuticular hydrocarbon profiles might be used for communication and nestmate recognition, but that behavioural exclusion of non-nestmates is either absent in X. saxesenii or that agonistic encounters are so rare or subtle that they could not be detected by our method. Additional studies are needed to investigate this further.
Collapse
Affiliation(s)
- Antoine Melet
- Chair of Forest Entomology and Protection, Faculty of Environment and Natural ResourcesAlbert‐Ludwigs‐UniversitätFreiburgGermany
- Department of Animal Ecology and Tropical Biology, BiocentreUniversity of WürzburgWürzburgGermany
| | - Viesturs Leibold
- Department of Animal Ecology and Tropical Biology, BiocentreUniversity of WürzburgWürzburgGermany
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, BiocentreUniversity of WürzburgWürzburgGermany
| | - Peter H. W. Biedermann
- Chair of Forest Entomology and Protection, Faculty of Environment and Natural ResourcesAlbert‐Ludwigs‐UniversitätFreiburgGermany
- Department of Animal Ecology and Tropical Biology, BiocentreUniversity of WürzburgWürzburgGermany
| |
Collapse
|
4
|
Milbrath LR, Biazzo J, Mudrak E. In-gallery social behaviors of the ambrosia beetle, Xylosandrus germanus (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2024; 53:85-93. [PMID: 38245821 DOI: 10.1093/ee/nvae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The east Asian ambrosia beetle Xylosandrus germanus (Blanford) was first detected in the United States in 1932. It now occurs across much of eastern North America and parts of the Pacific Northwest. It attacks a broad range of stressed, woody hosts including ornamental and orchard species. The foundress tunnels into the sapwood of hosts where it cultures a symbiotic fungus as food for its offspring. A few other ambrosia beetles have been shown to possess a facultatively eusocial structure among gallery members, but this has not been described for Xylosandrus spp. Using a novel artificial diet arena, we quantified the behaviors of X. germanus larvae and adults (foundress and mature offspring) over 10 wk inside their galleries. Foundresses were responsible for constructing the gallery. They also initially tended the fungal garden and brood but eventually spent most of their time blocking the gallery entrance. Larvae were mainly observed to feed, crawl, or be inactive within the gallery, regardless of the absence or presence of adult siblings. Adult female offspring were primarily inactive, likely due to dormancy. Adult male offspring actively crawled and attempted to mate with their sisters before eventually dispersing out of the gallery. Cooperative hygienic behaviors (removal of frass, cannibalism of dead nest mates, grooming siblings) were observed but a division of labor among offspring was not clear. Rather, foundress behaviors were mostly distinct from offspring behaviors, particularly as the gallery aged. Because no overlap in generations occurred, X. germanus displays a quasisocial structure.
Collapse
Affiliation(s)
- Lindsey R Milbrath
- United States Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY, USA
| | - Jeromy Biazzo
- United States Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY, USA
| | - Erika Mudrak
- Cornell Statistical Consulting Unit, Cornell University, 1198 Comstock Hall, 129 Garden Avenue, Ithaca, NY, USA
| |
Collapse
|
5
|
Wang Q, Zhou X, Zhang K, Qin L, Wu Q, Deng L, Xu Z, Guo J. Ligand-binding properties of XaffOBP9, a Minus-C odorant-binding protein from Xyleborus affinis (Coleoptera: Curculionidae: Scolytinae). Front Physiol 2024; 14:1326099. [PMID: 38235380 PMCID: PMC10791897 DOI: 10.3389/fphys.2023.1326099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Xyleborus affinis, one of the most important pests of rubber trees, has caused severe damage to the natural rubber industry in Hainan province. The ability to detect host plants through a sensitive and specific olfactory system is crucial for Xyleborus affinis. Odorant binding proteins (OBPs) are believed to bind and carry hydrophobic active compounds from the environment to the surface of olfactory receptor neurons. To investigate the potential functional role of the highly expressed XaffOBP9 in binding with semiochemicals, we cloned and analyzed the cDNA sequence of XaffOBP9. The results showed that XaffOBP9 contains a 411bp open reading frame that encodes 136 amino acids. Then XaffOBP9 was expressed in Escherichia coli. The binding affinity of the recombinant OBP to 15 different ligands (14 host plant volatiles and 1 aggregation pheromone) was then examined using a fluorescence competitive binding approach. The results demonstrated that XaffOBP9 exhibited broad binding capabilities and strong affinities for 14 ligands. The structure of XaffOBP9 and its interactions with fourteen ligands were further analyzed by modeling and molecular docking, respectively. Based on the docking result, we found hydrophobic interactions are important between XaffOBP9 to these ligands and three amino acid residues (L71, Y106, and L114) were highly overlapped and contributed to the interaction with ligands. Mutation functional assays confirmed that the mutant L114A showed significantly reduced binding capacity to these ligands. This study suggested that XaffOBP9 may be involved in the chemoreception of semiochemicals and that it is helpful for the integrated management of X. affinis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jixing Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
6
|
Liu D, Smagghe G, Liu TX. Interactions between Entomopathogenic Fungi and Insects and Prospects with Glycans. J Fungi (Basel) 2023; 9:jof9050575. [PMID: 37233286 DOI: 10.3390/jof9050575] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Concerns regarding the ecological and health risks posed by synthetic insecticides have instigated the exploration of alternative methods for controlling insects, such as entomopathogenic fungi (EPF) as biocontrol agents. Therefore, this review discusses their use as a potential alternative to chemical insecticides and especially focuses on the two major ones, Beauveria bassiana and Metarhizium anisopliae, as examples. First, this review exemplifies how B. bassiana- and M. anisopliae-based biopesticides are used in the world. Then, we discuss the mechanism of action by which EPF interacts with insects, focusing on the penetration of the cuticle and the subsequent death of the host. The interactions between EPF and the insect microbiome, as well as the enhancement of the insect immune response, are also summarized. Finally, this review presents recent research that N-glycans may play a role in eliciting an immune response in insects, resulting in the increased expression of immune-related genes and smaller peritrophic matrix pores, reducing insect midgut permeability. Overall, this paper provides an overview of the EPF in insect control and highlights the latest developments relating to the interaction between fungi and insect immunity.
Collapse
Affiliation(s)
- Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Diehl JMC, Keller A, Biedermann PHW. Comparing the succession of microbial communities throughout development in field and laboratory nests of the ambrosia beetle Xyleborinus saxesenii. Front Microbiol 2023; 14:1151208. [PMID: 37152720 PMCID: PMC10159272 DOI: 10.3389/fmicb.2023.1151208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Some fungus-farming ambrosia beetles rely on multiple nutritional cultivars (Ascomycota: Ophiostomatales and/or yeasts) that seem to change in relative abundance over time. The succession of these fungi could benefit beetle hosts by optimal consumption of the substrate and extended longevity of the nest. However, abundances of fungal cultivars and other symbionts are poorly known and their culture-independent quantification over development has been studied in only a single species. Here, for the first time, we compared the diversity and succession of both fungal and bacterial communities of fungus gardens in the fruit-tree pinhole borer, Xyleborinus saxesenii, from field and laboratory nests over time. By amplicon sequencing of probed fungus gardens of both nest types at three development phases we showed an extreme reduction of diversity in both bacterial and fungal symbionts in laboratory nests. Furthermore, we observed a general transition from nutritional to non-beneficial fungal symbionts during beetle development. While one known nutritional mutualist, Raffaelea canadensis, was occurring more or less stable over time, the second mutualist R. sulphurea was dominating young nests and decreased in abundance at the expense of other secondary fungi. The quicker the succession proceeded, the slower offspring beetles developed, suggesting a negative role of these secondary symbionts. Finally, we found signs of transgenerational costs of late dispersal for daughters, possibly as early dispersers transmitted and started their own nests with less of the non-beneficial taxa. Future studies should focus on the functional roles of the few bacterial taxa that were present in both field and laboratory nests.
Collapse
Affiliation(s)
- Janina M. C. Diehl
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Freiburg im Breisgau, Germany
- Insect-Fungus Interactions Research Group, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
- *Correspondence: Janina M. C. Diehl,
| | - Alexander Keller
- Faculty of Biology, Cellular and Organismic Networks, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter H. W. Biedermann
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Freiburg im Breisgau, Germany
- Peter H. W. Biedermann,
| |
Collapse
|
8
|
Menocal O, Cruz LF, Kendra PE, Berto M, Carrillo D. Flexibility in the ambrosia symbiosis of Xyleborus bispinatus. Front Microbiol 2023; 14:1110474. [PMID: 36937297 PMCID: PMC10018145 DOI: 10.3389/fmicb.2023.1110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Ambrosia beetles maintain strict associations with specific lineages of fungi. However, anthropogenic introductions of ambrosia beetles into new ecosystems can result in the lateral transfer of their symbionts to other ambrosia beetles. The ability of a Florida endemic ambrosia beetle, Xyleborus bispinatus, to feed and establish persistent associations with two of its known symbionts (Raffaelea subfusca and Raffaelea arxii) and two other fungi (Harringtonia lauricola and Fusarium sp. nov.), which are primary symbionts of invasive ambrosia beetles, was investigated. Methods The stability of these mutualisms and their effect on the beetle's fitness were monitored over five consecutive generations. Surface-disinfested pupae with non-developed mycangia were reared separately on one of the four fungal symbionts. Non-treated beetles (i.e., lab colony) with previously colonized mycangia were used as a control group. Results Xyleborus bispinatus could exchange its fungal symbionts, survive, and reproduce on different fungal diets, including known fungal associates and phylogenetically distant fungi, which are plant pathogens and primary symbionts of other invasive ambrosia beetles. These changes in fungal diets resulted in persistent mutualisms, and some symbionts even increased the beetle's reproduction. Females that developed on Fusarium sp. nov. had a significantly greater number of female offspring than non-treated beetles. Females that fed solely on Harringtonia or Raffaelea symbionts produced fewer female offspring. Discussion Even though some ambrosia beetles like X. bispinatus can partner with different ambrosia fungi, their symbiosis under natural conditions is modulated by their mycangium and possibly other environmental factors. However, exposure to symbionts of invasive beetles can result in stable partnerships with these fungi and affect the population dynamics of ambrosia beetles and their symbionts.
Collapse
Affiliation(s)
- Octavio Menocal
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
- *Correspondence: Octavio Menocal,
| | - Luisa F. Cruz
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Marielle Berto
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
- Daniel Carrillo,
| |
Collapse
|
9
|
Diehl JMC, Kowallik V, Keller A, Biedermann PHW. First experimental evidence for active farming in ambrosia beetles and strong heredity of garden microbiomes. Proc Biol Sci 2022; 289:20221458. [PMID: 36321493 PMCID: PMC9627711 DOI: 10.1098/rspb.2022.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fungal cultivation is a defining feature for advanced agriculture in fungus-farming ants and termites. In a third supposedly fungus-farming group, wood-colonizing ambrosia beetles, an experimental proof for the effectiveness of beetle activity for selective promotion of their food fungi over others is lacking and farming has only been assumed based on observations of social and hygienic behaviours. Here, we experimentally removed mothers and their offspring from young nests of the fruit-tree pinhole borer, Xyleborinus saxesenii. By amplicon sequencing of bacterial and fungal communities of nests with and without beetles we could show that beetles are indeed able to actively shift symbiont communities. Although being consumed, the Raffaelea food fungi were more abundant when beetles were present while a weed fungus (Chaetomium sp.) as well as overall bacterial diversity were reduced in comparison to nests without beetles. Core symbiont communities were generally of low diversity and there were strong signs for vertical transmission not only for the cultivars, but also for secondary symbionts. Our findings verify the existence of active farming, even though the exact mechanisms underlying the selective promotion and/or suppression of symbionts need further investigation.
Collapse
Affiliation(s)
- Janina M. C. Diehl
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| | - Vienna Kowallik
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Peter H. W. Biedermann
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| |
Collapse
|
10
|
Nicoletti R, Becchimanzi A. Ecological and Molecular Interactions between Insects and Fungi. Microorganisms 2022; 10:microorganisms10010096. [PMID: 35056545 PMCID: PMC8779020 DOI: 10.3390/microorganisms10010096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
Insects and fungi represent two of the most widespread groupings of organisms in nature, occurring in every kind of ecological context and impacting agriculture and other human activities in various ways. Moreover, they can be observed to reciprocally interact, establishing a wide range of symbiotic relationships, from mutualism to antagonism. The outcome of these relationships can in turn affect the extent at which species of both organisms can exert their noxious effects, as well as the management practices which are to be adopted to counter them. In conjunction with the launch of a Special Issue of Microorganisms with the same title, this article offers a general overview of the manifold aspects related to such interactions from the perspective of implementing our capacity to regulate them in a direction more favorable for the environment, crop production and human health.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Correspondence:
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
11
|
Wheeler GS, Kendra PE, David AS, Lake EC, Sigmon JW, Palacios J, Donlan EM. Community of Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) Infesting Brazilian Peppertree Treated With Herbicide and the Volatile Tree Response. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1311-1321. [PMID: 34519789 DOI: 10.1093/ee/nvab096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), is one of the most invasive weeds of natural and agricultural areas of Florida, Hawaii, and Texas (USA). Herbicides are the main tool used to manage populations of this weed. Faunal inventories of the insects associated with invasive populations of the weed have mostly listed leaf-feeding phytophagous, pollinator, or predacious species. Among these, bark and ambrosia beetles were collected only once from S. terebinthifolia in the invaded range and there are no reports from the native range. A diverse assemblage of bark and ambrosia beetles, many well-known economic pests of ornamentals, was reared from S. terebinthifolia bolts collected at a restoration site in Florida that had been treated with herbicide (triclopyr ester). A similar collection of beetles was captured on ethanol-baited sticky traps. No beetles emerged from bolts of untreated trees, almost none emerged from those wounded with a machete (3.1% of total), whereas nearly all the beetles collected emerged from bolts that had been treated with herbicide (62.3%) or the combination wounded + herbicide (34.6%). Ethanol was detected from the herbicide and wound + herbicide-treated bolts suggesting this was the attractive kairomone. Abundant amounts of other volatiles were collected from all bolts, especially from the wounded treatment, but no association was detected between volatile emissions and beetle infestation. Further studies are needed to determine whether invasive populations of S. terebinthifolia treated with herbicides constitute reservoirs for pest bark and ambrosia beetles that may spill over onto neighboring ornamental hosts.
Collapse
Affiliation(s)
- Gregory S Wheeler
- USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL, USA
| | - Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| | | | - Ellen C Lake
- USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL, USA
| | - Joseph W Sigmon
- USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL, USA
| | - Jean Palacios
- USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL, USA
| | - Ellen M Donlan
- South Florida Water Management District, West Palm Beach, FL, USA
| |
Collapse
|