1
|
Suchan T, Bataille CP, Reich MS, Toro-Delgado E, Vila R, Pierce NE, Talavera G. A trans-oceanic flight of over 4,200 km by painted lady butterflies. Nat Commun 2024; 15:5205. [PMID: 38918383 PMCID: PMC11199637 DOI: 10.1038/s41467-024-49079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
The extent of aerial flows of insects circulating around the planet and their impact on ecosystems and biogeography remain enigmatic because of methodological challenges. Here we report a transatlantic crossing by Vanessa cardui butterflies spanning at least 4200 km, from West Africa to South America (French Guiana) and lasting between 5 and 8 days. Even more, we infer a likely natal origin for these individuals in Western Europe, and the journey Europe-Africa-South America could expand to 7000 km or more. This discovery was possible through an integrative approach, including coastal field surveys, wind trajectory modelling, genomics, pollen metabarcoding, ecological niche modelling, and multi-isotope geolocation of natal origins. The overall journey, which was energetically feasible only if assisted by winds, is among the longest documented for individual insects, and potentially the first verified transatlantic crossing. Our findings suggest that we may be underestimating transoceanic dispersal in insects and highlight the importance of aerial highways connecting continents by trade winds.
Collapse
Affiliation(s)
- Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Clément P Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Megan S Reich
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric Toro-Delgado
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Catalonia, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Catalonia, Spain
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain.
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
2
|
Oelmann Y, Fiedler D, Michaelis R, Leivits M, Braun A, Gschwind P, Neidhardt H, Willigalla C. Autumn migration of the migrant hawker (Aeshna mixta) at the Baltic coast. MOVEMENT ECOLOGY 2023; 11:52. [PMID: 37620899 PMCID: PMC10464154 DOI: 10.1186/s40462-023-00415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Migratory insects are important for the provision of ecosystem services both at the origin and destination sites but - apart from some iconic species - the migration routes of many insect species have not been assessed. Coastlines serve as a funnel where migrating animals including insects accumulate. Migratory behaviour and captures of dragonflies in bird traps suggest autumn migration of dragonflies along coastlines while the origin and regularity of this migration remain unclear. METHODS Dragonfly species were caught at the bird observatory Kabli at the Baltic coast in Estonia in 2009, 2010 and 2015. For the 2015 data set, we used a stable hydrogen (H) approach to trace the potential natal origin of the migrant hawker (Aeshna mixta). RESULTS 1079 (2009), 701 (2010) and 88 (2015) A. mixta individuals were caught during the study periods (35, 37 and 11 days in 2009, 2010 and 2015, respectively). The migration period lasted from end of August to end of September. Based on the results from our stable isotope analysis, we identified two populations of A. mixta: One (range of isotope signatures of non-exchangeable H [δ2Hn wing]: -78‰ to -112‰) had a local likely origin while the other (δ2Hn wing: -113‰ to -147‰) migrated from northerly directions even in headwind from the South. The former showed an even sex ratio whereas the actively migrating population was dominated by males. CONCLUSIONS Our results suggest a regular southbound autumn migration of A. mixta along the Baltic coast. However, nearly half of the sampled individuals originated from the surroundings suggesting either no, partial or "leap-frog" migration. Contrary to our expectation, A. mixta did not select favourable wind conditions but continued the southbound autumn migration in the flight boundary layer even in case of headwinds. The dominance of males might indicate migration as a result of competition for resources. Further repeated, large-scale studies along the Baltic coast are necessary to pinpoint the migratory pattern and the reason for migration of A. mixta. Such studies should also comprise locations north of the known species range of A. mixta because of the rapid climate-change induced range expansion.
Collapse
Affiliation(s)
- Yvonne Oelmann
- Geoecology, Department of Geosciences, University of Tübingen, 72070, Tübingen, Germany.
| | - Diana Fiedler
- Geoecology, Department of Geosciences, University of Tübingen, 72070, Tübingen, Germany
| | - Rune Michaelis
- Geoecology, Department of Geosciences, University of Tübingen, 72070, Tübingen, Germany
- Lower Saxon Wadden Sea National Park Authority, 26382, Wilhelmshaven, Germany
| | - Meelis Leivits
- Estonian Environment Agency, Nigula Nature Centre, 86107, Reinu village, Estonia
| | - Andreas Braun
- Geoinformatics, Department of Geosciences, University of Tübingen, 72070, Tübingen, Germany
| | - Philipp Gschwind
- Geoecology, Department of Geosciences, University of Tübingen, 72070, Tübingen, Germany
- GÖG - Gruppe für ökologische Gutachten, 70599, Stuttgart, Germany
| | - Harald Neidhardt
- Geoecology, Department of Geosciences, University of Tübingen, 72070, Tübingen, Germany
| | | |
Collapse
|
3
|
Homberg U, Kirchner M, Kowalewski K, Pitz V, Kinoshita M, Kern M, Seyfarth J. Comparative morphology of serotonin-immunoreactive neurons innervating the central complex in the brain of dicondylian insects. J Comp Neurol 2023. [PMID: 37478205 DOI: 10.1002/cne.25529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
Serotonin (5-hydroxytryptamine) acts as a widespread neuromodulator in the nervous system of vertebrates and invertebrates. In insects, it promotes feeding, enhances olfactory sensitivity, modulates aggressive behavior, and, in the central complex of Drosophila, serves a role in sleep homeostasis. In addition to a role in sleep-wake regulation, the central complex has a prominent role in spatial orientation, goal-directed locomotion, and navigation vector memory. To further understand the role of serotonergic signaling in this brain area, we analyzed the distribution and identity of serotonin-immunoreactive neurons across a wide range of insect species. While one bilateral pair of tangential neurons innervating the central body was present in all species studied, a second type was labeled in all neopterans but not in dragonflies and firebrats. Both cell types show conserved major fiber trajectories but taxon-specific differences in dendritic targets outside the central body and axonal terminals in the central body, noduli, and lateral accessory lobes. In addition, numerous tangential neurons of the protocerebral bridge were labeled in all studied polyneopteran species except for Phasmatodea, but not in Holometabola. Lepidoptera and Diptera showed additional labeling of two bilateral pairs of neurons of a third type. The presence of serotonin in systems of columnar neurons apparently evolved independently in dragonflies and desert locusts. The data suggest distinct evolutionary changes in the composition of serotonin-immunolabeled neurons of the central complex and provides a promising basis for a phylogenetic study in a wider range of arthropod species.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Michelle Kirchner
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kevin Kowalewski
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Vanessa Pitz
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Martina Kern
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
4
|
Homberg U, Pfeiffer K. Unraveling the neural basis of spatial orientation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01635-9. [PMID: 37198448 DOI: 10.1007/s00359-023-01635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
The neural basis underlying spatial orientation in arthropods, in particular insects, has received considerable interest in recent years. This special issue of the Journal of Comparative Physiology A seeks to take account of these developments by presenting a collection of eight review articles and eight original research articles highlighting hotspots of research on spatial orientation in arthropods ranging from flies to spiders and the underlying neural circuits. The contributions impressively illustrate the wide range of tools available to arthropods extending from specific sensory channels to highly sophisticated neural computations for mastering complex navigational challenges.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology, Philipps University Marburg, 35032, Marburg, Germany.
- Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany.
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
5
|
Lv H, Zhai MY, Zeng J, Zhang YY, Zhu F, Shen HM, Qiu K, Gao BY, Reynolds DR, Chapman JW, Hu G. Changing patterns of the East Asian monsoon drive shifts in migration and abundance of a globally important rice pest. GLOBAL CHANGE BIOLOGY 2023; 29:2655-2668. [PMID: 36794561 DOI: 10.1111/gcb.16636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 05/31/2023]
Abstract
Numerous insects including pests and beneficial species undertake windborne migrations over hundreds of kilometers. In East Asia, climate-induced changes in large-scale atmospheric circulation systems are affecting wind-fields and precipitation zones and these, in turn, are changing migration patterns. We examined the consequences in a serious rice pest, the brown planthopper (BPH, Nilaparvata lugens) in East China. BPH cannot overwinter in temperate East Asia, and infestations there are initiated by several waves of windborne spring or summer migrants originating from tropical areas in Indochina. The East Asian summer monsoon, characterized by abundant rainfall and southerly winds, is of critical importance for these northward movements. We analyzed a 42-year dataset of meteorological parameters and catches of BPH from a standardized network of 341 light-traps in South and East China. We show that south of the Yangtze River during summer, southwesterly winds have weakened and rainfall increased, while the summer precipitation has decreased further north on the Jianghuai Plain. Together, these changes have resulted in shorter migratory journeys for BPH leaving South China. As a result, pest outbreaks of BPH in the key rice-growing area of the Lower Yangtze River Valley (LYRV) have declined since 2001. We show that these changes to the East Asian summer monsoon weather parameters are driven by shifts in the position and intensity of the Western Pacific subtropical high (WPSH) system that have occurred during the last 20 years. As a result, the relationship between WPSH intensity and BPH immigration that was previously used to predict the size of the immigration to the LYRV has now broken down. Our results demonstrate that migration patterns of a serious rice pest have shifted in response to the climate-induced changes in precipitation and wind pattern, with significant consequences for the population management of migratory pests.
Collapse
Affiliation(s)
- Hua Lv
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yuan Zhai
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Juan Zeng
- China National Agro-Tech Extension and Service Center, Beijing, China
| | - Yi-Yang Zhang
- China National Agro-Tech Extension and Service Center, Beijing, China
| | - Feng Zhu
- Plant Protection Station of Jiangsu Province, Nanjing, China
| | - Hui-Mei Shen
- Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Kun Qiu
- Plant Protection Station of Anhui Province, Hefei, China
| | - Bo-Ya Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, UK
- Rothamsted Research, Harpenden, UK
| | - Jason W Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Centre for Ecology and Conservation, Environment and Sustainability Institute, University of Exeter, Cornwall, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Gayathri M, Anand PP, Shibu Vardhanan Y. Wing size, shape, and asymmetry analysis of the wandering glider, Pantala flavescens (Odonata: Libellulidae) revealed that hindwings are more asymmetric than the forewings. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly. BIOLOGY 2023; 12:biology12020226. [PMID: 36829503 PMCID: PMC9953429 DOI: 10.3390/biology12020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Dragonflies are sensitive to climate change due to their special habitat in aquatic and terrestrial environments, especially Pantala flavescens, which have extraordinary migratory abilities in response to climate change on spatio-temporal scales. At present, there are major gaps in the documentation of insects and the effects of climatic changes on the habitat and species it supports. In this study, we model the global distribution of a wandering glider dragonfly, P. flavescens, and detected the important environmental factors shaping its range, as well as habitat shifts under historical and future warming scenarios. The results showed a global map of species ranges of P. flavescens currently, including southern North America, most of South America, south-central Africa, most of Europe, South, East and Southeast Asia, and northern Oceania, in total, ca. 6581.667 × 104 km2. BIO5 (the max temperature of warmest month) and BIO13 (the precipitation of wettest month) greatly explained its species ranges. The historic refugia were identified around the Great Lakes in the north-central United States. Future warming will increase the total area of suitable habitat and shift the type of suitable habitat compared to the current distribution. The habitat suitability of P. flavescens decreased with elevation, global warming forced it to expand to higher elevations, and the habitat suitability of P. flavescens around the equator increased with global warming. Overall, our study provides a global dynamic pattern of suitable habitats for P. flavescens from the perspective of climate change, and provides a useful reference for biodiversity research and biological conservation.
Collapse
|
8
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
9
|
Wing shape differences along a migration route of the long-distance migrant Globe Skimmer Dragonfly Pantala flavescens. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAnimals which migrate by flying should be subject to selection for optimal wing characteristics that maximize energy efficiency during migration. We investigated wing shape and wing area variation in the Globe Skimmer Dragonfly Pantala flavescens, which has the longest known migration of any insect. Wing shape and wing area differences between individuals in southern Peninsular India, and migrating individuals at a stop-over site on the Maldives, were compared. Results suggest that individuals which successfully reached the Maldives, on their way from India to Africa, had a broader wing base and an overall more slender wing shape than individuals in southern India. Contrary to our expectations, wing area did not differ significantly in most of our comparisons between southern India and the Maldives, suggesting that wing shape is more important than wing area for successful migration in P. flavescens. The results provide indirect evidence of natural selection on wing shape in a migrating dragonfly.
Collapse
|