1
|
Zheng J, Arif M, Li L, He X, Wu Y, Cao W, Yan P, Li C. Dam inundation reduces ecosystem multifunctionality following riparian afforestation in the Three Gorges Reservoir Region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121188. [PMID: 38759556 DOI: 10.1016/j.jenvman.2024.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Afforestation is an acknowledged method for rehabilitating deteriorated riparian ecosystems, presenting multiple functions to alleviate the repercussions of river damming and climate change. However, how ecosystem multifunctionality (EMF) responds to inundation in riparian afforestation ecosystems remains relatively unexplored. Thus, this article aimed to disclose how EMF alters with varying inundation intensities and to elucidate the key drivers of this variation based on riparian reforestation experiments in the Three Gorges Reservoir Region in China. Our EMF analysis encompassed wood production, carbon storage, nutrient cycling, decomposition, and water regulation under different inundation intensities. We examined their correlation with soil properties and microbial diversity. The results indicated a substantial reduction in EMF with heightened inundation intensity, which was primarily due to the decline in most individual functions. Notably, soil bacterial diversity (23.02%), soil properties such as oxidation-reduction potential (ORP, 11.75%), and temperature (5.85%) emerged as pivotal variables elucidating EMF changes under varying inundation intensities. Soil bacterial diversity and ORP declined as inundation intensified but were positively associated with EMF. In contrast, soil temperature rose with increased inundation intensity and exhibited a negative correlation with EMF. Further insights gleaned from structural equation modeling revealed that inundation reduced EMF directly and indirectly by reducing soil ORP and bacterial diversity and increasing soil temperature. This work underscores the adverse effects of dam inundation on riparian EMF and the crucial role soil characteristics and microbial diversity play in mediating EMF in response to inundation. These insights are pivotal for the conservation of biodiversity and functioning following afforestation in dam-induced riparian habitats.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| | - Muhammad Arif
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| | - Lijuan Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xinrui He
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Yuanyuan Wu
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Wenqiu Cao
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Peixuan Yan
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Changxiao Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Hoppenreijs JHT, Marker J, Maliao RJ, Hansen HH, Juhász E, Lõhmus A, Altanov VY, Horká P, Larsen A, Malm-Renöfält B, Runnel K, Piccolo JJ, Magurran AE. Three major steps toward the conservation of freshwater and riparian biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14226. [PMID: 38111958 DOI: 10.1111/cobi.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
Freshwater ecosystems and their bordering wetlands and riparian zones are vital for human society and biological diversity. Yet, they are among the most degraded ecosystems, where sharp declines in biodiversity are driven by human activities, such as hydropower development, agriculture, forestry, and fisheries. Because freshwater ecosystems are characterized by strongly reciprocal linkages with surrounding landscapes, human activities that encroach on or degrade riparian zones ultimately lead to declines in freshwater-riparian ecosystem functioning. We synthesized results of a symposium on freshwater, riparian, and wetland processes and interactions and analyzed some of the major problems associated with improving freshwater and riparian research and management. Three distinct barriers are the lack of involvement of local people in conservation research and management, absence of adequate measurement of biodiversity in freshwater and riparian ecosystems, and separate legislation and policy on riparian and freshwater management. Based on our findings, we argue that freshwater and riparian research and conservation efforts should be integrated more explicitly. Best practices for overcoming the 3 major barriers to improved conservation include more and sustainable use of traditional and other forms of local ecological knowledge, choosing appropriate metrics for ecological research and monitoring of restoration efforts, and mirroring the close links between riparian and freshwater ecosystems in legislation and policy. Integrating these 3 angles in conservation science and practice will provide substantial benefits in addressing the freshwater biodiversity crisis.
Collapse
Affiliation(s)
| | - Jeffery Marker
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | - Ronald J Maliao
- Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
- Community Resiliency and Environmental Education Development (CREED) Foundation, Iloilo, Philippines
| | - Henry H Hansen
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | - Erika Juhász
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
- National Laboratory for Health Security', Centre for Ecological Research, Vácrátót, Hungary
| | - Asko Lõhmus
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vassil Y Altanov
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Petra Horká
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Annegret Larsen
- Department of Soil Geography and Landscape, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Kadri Runnel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - John J Piccolo
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
3
|
Zheng J, Arif M, He X, Liu X, Li C. Distinguishing the mechanisms driving multifaceted plant diversity in subtropical reservoir riparian zones. FRONTIERS IN PLANT SCIENCE 2023; 14:1138368. [PMID: 36909398 PMCID: PMC9998900 DOI: 10.3389/fpls.2023.1138368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Understanding the multifaceted plant diversity and its maintenance mechanisms is crucial for biodiversity conservation. Dam-induced water level fluctuations dramatically alter various aspects of riparian diversity, such as taxonomic (TD), phylogenetic (PD), or functional (FD) diversity. However, few studies simultaneously evaluated plant TD, FD, and PD, especially in the subtropical reservoir riparian zone. Here we sampled plant diversity and environmental drivers along inundation gradients of the Three Gorges Reservoir Region in China. We integrated multifaceted plant diversity to assess how distinct ecological processes affect the plant community assembly and how they respond to inundation gradients, spatial variability, climate, and soils in dam-regulated riparian zones. We found that alpha TD, PD, and FD diversity exhibited decreasing trends with increasing inundation gradients and significant positive correlations with soil organic matter. The number of clustering plant communities increases along the inundation gradients. Beta TD and PD diversity were mainly dominated by species turnover with fewer contributions from nestedness, while beta FD diversity was mainly dominated by nestedness with fewer contributions from species turnover. The explainable rates of different dimensions of beta diversity, turnover, and nestedness ranged from 11% to 61%, with spatial factors explaining the highest beta diversity in different dimensions, followed by inundation gradients, soil properties, and climate variables. Our results suggest dispersal limitations are more important for species turnover in dam-regulated riparian zones at regional scales, while inundation gradients and soil fertility are more critical in shaping plant community assemblages at the local scale. This study emphasizes that environmental and spatial gradients are critical for understanding the assembly mechanisms driving multifaceted plant communities at local and regional scales and reinforces the importance of protecting seed sources and dispersal pathways and maintaining river connectivity when implementing restoration projects.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Muhammad Arif
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Xinrui He
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaolin Liu
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Changxiao Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| |
Collapse
|