1
|
Huang W, Wei S, Zhou T, Fan Z, Cao L, Li Z, Guo S. MCMV-infected maize attracts its insect vector Frankliniella occidentalis by inducing β-myrcene. FRONTIERS IN PLANT SCIENCE 2024; 15:1404271. [PMID: 39233912 PMCID: PMC11371577 DOI: 10.3389/fpls.2024.1404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024]
Abstract
Maize lethal necrosis is attributed to the accumulation of maize chlorotic mottle virus (MCMV), an invasive virus transmitted by insect vectors. The western flower thrips (WFT) can shift host to maize, thus promoting the spread of MCMV. However, our understanding of the characteristics and interactions involved in the transmission of MCMV is still limited. This study finds that non-viruliferous WFTs showed a 57.56% higher preference for MCMV-infected maize plants compared to healthy maize plants, while viruliferous WFTs showed a 53.70% higher preference for healthy maize plants compared to MCMV-infected maize plants. We also show for the first time that both adults and larvae of WFT could successfully acquire MCMV after 1 min of acquisition access period (AAP), and after 48 h of AAP, WFT could transmit MCMV in an inoculation access period of 1 h without a latent period. Both adults and larvae of WFT can transmit MCMV for up to 2 days. Furthermore, the decreasing number of viruliferous WFTs and transmission rates as time progressed, together with the transcriptomic evidence, collectively suggest that WFTs transmit MCMV in a semi-persistent method, a mode of transmission requiring minutes to several hours for acquisition access and having a retention time of several hours to a few days. Additionally, β-myrcene can attract WFTs significantly and is detected in Nicotiana benthamiana plants transiently expressing MCMV CP (coat protein), which is consistent with results in MCMV-infected maize plants through the metabolomic profiling and the preference analyses of WFT. Therefore, this study demonstrates the indirect interaction between MCMV and WFT by inducing maize to synthesize β-myrcene to attract insect vectors. The exploration of specific interactions between MCMV and WFT could help to expand the mechanism studies of virus-vector-host plant interaction and put forward a new insight for the combined control of MCMV and WFT through the manipulation of plant volatiles and key insect genes.
Collapse
Affiliation(s)
- Weiling Huang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tao Zhou
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zaifeng Fan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lijun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shaokun Guo
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
2
|
Paris TM, Johnston N, Strzyzewski I, Griesheimer JL, Reimer B, Malfa K, Allan SA, Martini X. Tomato yellow leaf curl virus manipulates Bemisia tabaci, MEAM1 both directly and indirectly through changes in visual and volatile cues. PeerJ 2024; 12:e17665. [PMID: 39071128 PMCID: PMC11276755 DOI: 10.7717/peerj.17665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024] Open
Abstract
The sweetpotato whitefly, Bemisia tabaci MEAM1, is one of the most devastating pests of row-crop vegetables worldwide, damaging crops directly through feeding and indirectly through the transmission of many different viruses, including the geminivirus Tomato yellow leaf curl virus (TYLCV). Y-tube olfactometer tests were conducted at different stages of TYLCV infection in tomatoes to understand how TYLCV affects B. tabaci behavior. We also recorded changes in tomato hosts' color and volatile profiles using color spectrophotometry and gas chromatography-mass spectrometry (GC-MS). We found that the infection status of B. tabaci and the infection stage of TYLCV influenced host selection, with uninfected whiteflies showing a preference for TYLCV-infected hosts, especially during the late stages of infection. Viruliferous B. tabaci attraction to visual targets significantly differed from non-viruliferous B. tabaci. Late-stage infected hosts had larger surface areas reflecting yellow-green wavelengths and higher emissions of methyl salicylate in their volatile profiles. These findings shed new light on several critical mechanisms involved in the viral manipulation of an insect vector and its economically important host.
Collapse
Affiliation(s)
- Thomson M. Paris
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Nicholas Johnston
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Iris Strzyzewski
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Jessica L. Griesheimer
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Benjamin Reimer
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Kathi Malfa
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Sandra A. Allan
- Insect Behavior and Biocontrol Research Unit, USDA-ARS, Gainesville, FL, United States of America
| | - Xavier Martini
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| |
Collapse
|
3
|
Lu S, Zhang L, Lu Y, Chen M, Wang Z. Host Volatiles Potentially Drive Two Evolutionarily Related Weevils to Select Different Grains. INSECTS 2024; 15:300. [PMID: 38786856 DOI: 10.3390/insects15050300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
The Sitophilus zeamais (maize weevil) and Sitophilus oryzae (rice weevil) are two insect pests that have caused huge economic losses to stored grains worldwide. It is urgent to develop an environmentally friendly strategy for the control of these destructive pests. Here, the olfactory-mediated selection preference of the two weevil species to three stored grains was analyzed, which should help establish a pull-push system in managing them. Bioassays showed that maize weevil adults prefer to select maize, followed by paddy and wheat, while rice weevil adults mainly migrate towards wheat. Volatile analyses revealed that 2-ethylhexanol, piperitone, and (+)-Δ-cadiene are the major components in volatiles from both maize and wheat, but the abundance of these chemicals is much lower in maize than that in wheat. The volatile limonene was only detected in paddy. Y-tube bioassays suggest that 2-ethylhexanol, piperitone, and (+)-Δ-cadiene were all attractive to both weevils, whereas limonene was attractive only to rice weevils. Overall, maize weevil appeared more sensitive to the tested volatiles based on having much lower effective concentrations of these volatiles needed to attract them. The differences in volatile profiles among the grains and the sensitivity of the two species towards these volatiles may explain the behavioral differences between maize and rice weevils in selecting host grains. The differences in sensitivity of maize and rice weevils towards host volatile components with abundance differences are likely determinants driving the two insect species to migrate towards different host grains.
Collapse
Affiliation(s)
- Shaohua Lu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Lingfang Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yujie Lu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Mingshun Chen
- USDA-ARS-PSERU, Kansas State University, Manhattan, KS 66506, USA
| | - Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Shi PQ, Liu J, Ye JX, Zhang TZ, Lin YC, Lao QB, Qiu BL, Zhou HK, Xu J. Population changes of Bemisia tabaci (Hemiptera: Aleyrodidae) on different colored poinsettia leaves with different trichome densities and chemical compositions. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1276-1285. [PMID: 37279557 DOI: 10.1093/jee/toad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
The whitefly, Bemisia tabaci, is a destructive and invasive pest of many horticultural plants including poinsettia (Euphorbia pulcherrima). Outbreaks of B. tabaci cause serious damage by direct feeding on phloem sap, and spreading 100+ plant viruses to crops. Bemisia tabaci were observed more frequently on green than red poinsettia leaves, and the factors responsible for this are unknown. Here, we investigated the development rate, survivorship, fecundity of B. tabaci feeding on green versus red leaves, as well as the leaves' volatiles, trichome density, anthocyanin content, soluble sugars, and free amino acids. Compared to red leaves, B. tabaci on green leaves showed increased fecundity, a higher female sex ratio, and survival rate. The green color alone was more attractive to B. tabaci than red. Red leaves of poinsettia contained more phenol, and panaginsene in their volatiles. Alpha-copaene and caryophyllene were more abundant in the volatiles of poinsettia green leaves. Leaf trichome density, soluble sugars and free amino acids were higher in green than red leaves of poinsettia, anthocyanin was lower in green than red leaves. Overall, green leaves of poinsettia were more susceptible and attractive to B. tabaci. The morphological and chemical variation between red and green leaves also differed; further investigation may reveal how these traits affect B. tabaci's responses.
Collapse
Affiliation(s)
- Pei-Qiong Shi
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Jing Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Jun-Xi Ye
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Ting-Zhen Zhang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, Guizhou Province 563000, China
| | - Yu-Chun Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Qiao-Bin Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Bao-Li Qiu
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Hong-Kai Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| | - Jin Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, China
| |
Collapse
|
5
|
He H, Li J, Zhang Z, Yan M, Zhang B, Zhu C, Yan W, Shi B, Wang Y, Zhao C, Yan F. A plant virus enhances odorant-binding protein 5 (OBP5) in the vector whitefly for more actively olfactory orientation to the host plant. PEST MANAGEMENT SCIENCE 2023; 79:1410-1419. [PMID: 36480018 DOI: 10.1002/ps.7313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a notorious agricultural pest and the effective vector of many plant viruses worldwide. Cucurbit chlorotic yellows virus (CCYV), exclusively transmitted by B. tabaci in a semipersistent manner, is a serious causal agent in cucurbit crops in many countries. Plant viruses can manipulate the behaviors of insect vectors to promote the spread of themselves, but underlying mechanisms are remaining unclear. RESULTS In this study, our observations indicated that B. tabaci, when carrying CCYV, oriented more actively to the host plant cucumber. Transcriptome analysis and quantitative polymerase chain reaction with reverse transcription analysis showed that the odorant-binding protein 5 (OBP5) was upregulated with viral acquisition. Sequence and phylogenetic analysis showed that BtabOBP5 was highly homologous with nine OBPs from other hemipteran insects. In addition, OBP5-silenced whiteflies significantly altered their orientation behavior towards cucumber plants and towards some typical volatile organic compounds released from cucumbers. CONCLUSION This study described a novel mechanism by which the olfactory system of vector insects could be regulated by a semipersistent plant virus, thereby affecting insect olfactory behavior and relationship with host plants. These results provided a basis for developing potential olfaction-based pest management strategies in the future. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Minghui Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Beibei Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chaoqiang Zhu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weili Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Baozheng Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaxin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Zhao K, Liu SS, Wang XW, Yang JG, Pan LL. Manipulation of Whitefly Behavior by Plant Viruses. Microorganisms 2022; 10:microorganisms10122410. [PMID: 36557663 PMCID: PMC9782533 DOI: 10.3390/microorganisms10122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Whiteflies of the Bemisia tabaci complex transmit hundreds of plant viruses belonging to the genera Begomovirus and Crinivirus, among others. Tripartite interactions of whitefly-virus-plant frequently occur during virus infection and transmission. Specifically, virus transmission-related behavior of whitefly, such as preference and feeding, may be altered by viruses and thus exert significant impacts on the outcome of virus spread and epidemics. Here, we provide an overview on the current understanding of the manipulation of whitefly behavior by plant viruses. Plant viruses can significantly modulate whitefly preference and feeding behavior, either directly or in a plant-mediated manner. In general, non-viruliferous whiteflies tend to prefer virus-infected plants, and viruliferous whiteflies are more likely to prefer uninfected plants. In most cases, virus infection of plants and/or whitefly seems to exhibit positive or no effects on whitefly feeding on plants. The significance and evolution of these patterns are then discussed. Finally, we suggest several future directions of research, such as the exploration of temporal dynamics and the dissection of underlying mechanisms of virus-induced changes in whitefly behavior.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Guang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (J.-G.Y.); (L.-L.P.)
| | - Li-Long Pan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.-G.Y.); (L.-L.P.)
| |
Collapse
|
7
|
Ai S, Zhang Y, Chen Y, Zhang T, Zhong G, Yi X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. INSECTS 2022; 13:1094. [PMID: 36555004 PMCID: PMC9787996 DOI: 10.3390/insects13121094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays an essential role in various insect behaviors, including habitat selection, access to food, avoidance of predators, inter-species communication, aggregation, and reproduction. The olfactory process involves integrating multiple signals from external conditions and internal physiological states, including living environments, age, physiological conditions, and circadian rhythms. As microorganisms and insects form tight interactions, the behaviors of insects are constantly challenged by versatile microorganisms via olfactory cues. To better understand the microbial influences on insect behaviors via olfactory cues, this paper summarizes three different ways in which microorganisms modulate insect behaviors. Here, we deciphered three interesting aspects of microorganisms-contributed olfaction: (1) How do volatiles emitted by microorganisms affect the behaviors of insects? (2) How do microorganisms reshape the behaviors of insects by inducing changes in the synthesis of host volatiles? (3) How do symbiotic microorganisms act on insects by modulating behaviors?
Collapse
Affiliation(s)
- Shupei Ai
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhua Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Zhang Z, He H, Yan M, Zhao C, Lei C, Li J, Yan F. Widely targeted analysis of metabolomic changes of Cucumis sativus induced by cucurbit chlorotic yellows virus. BMC PLANT BIOLOGY 2022; 22:158. [PMID: 35361125 PMCID: PMC8969345 DOI: 10.1186/s12870-022-03555-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plant metabolites play vital roles in regulating the behavior of herbivore insects. Virus infection can universally alter plant metabolites to manipulate the orientation and feeding behaviors of insect vector, to favor the transmission of virus. Thus, determining the differentially accumulated metabolites of plant upon virus infection could provide insights into understanding how the triple interactions among plant, virus and insect vector happens. Our previous studies have found that vector whitefly Bemisia tabaci (Gennadius, Hemiptera: Aleyrodidae) showed different orientation behavior and performance on CCYV-infected and healthy cucumber plants. Cucurbit chlorotic yellows virus (CCYV) is exclusively transmitted by B. tabaci in a semi-persistent mode. In this study, we take the CCYV, B. tabaci and cucumber as a research system to explore the functions of phyto-metabolites in the triple interactions. RESULTS A total of 612 metabolites changed upon CCYV infection were monitored. Metabolites mainly enriched in flavonoids, lipids, nucleotides and their derivatives. At 7 days post CCYV inoculation (dpi), the contents of lipids, terpenoids and flavonoids remarkably decreased, while amino acids, nucleotides and their derivatives notably up-accumulated. At 15 dpi, the accumulation of flavonoids were still significantly reduced upon CCYV infection, while lipids, amino acids, nucleotides and derivatives were remarkably enhanced. Most of significantly increased metabolites were lipids (lysophosphatidylethanolamine, LPE; lysophosphatidylcholine, LPC and their isomers). Also, the number of significantly changed metabolites increased with the infection period. However, only a few organic acids and phenolic acids showed difference between CCYV-infected and healthy cucumber plants. CONCLUSIONS CCYV infection repressed the defensive flavonoids, terpeneoids metabolism but triggered the lipids, amino acids and nucleotides metabolism with the inoculation period. This result suggests that CCYV-infection makes cucumber plants more susceptible for whiteflies attack and CCYV infection. The reduction of defensive comounds and the increase of amino acids may be partially responsible for enhancing feeding preference of whiteflies to CCYV-infected hosts. CCYV may hijacked lipid metabolism for virus replication and assembly.
Collapse
Affiliation(s)
- Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Minghui Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Caiyan Lei
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| |
Collapse
|