1
|
Félix AP, Amorim ICD, Milani D, Cabral-de-Mello DC, Moura RC. Differential amplification and contraction of satellite DNAs in the distinct lineages of the beetle Euchroma gigantea. Gene 2024; 927:148723. [PMID: 38914242 DOI: 10.1016/j.gene.2024.148723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Satellite DNA (satDNA) consists of tandem repeat sequences that typically evolve rapidly through evolutionary mechanisms, including unequal crossover, transposition events, and others. The evolutionary history of Euchroma gigantea is marked by complex chromosomal evolution between lineages, making this species an interesting model for understanding satDNA evolution at intraspecies level. Therefore, our aim was to comprehend the potential contribution of satDNAs to the greater chromosomal differentiation of evolutionary lineages in E. gigantea by investigating the differential patterns of amplification and contraction of the repeats. To achieve this, we employed de novo identification of satDNA using RepeatExplorer and TAREAN, allowing the satellitome characterization between lineages. A total of 26 satDNA families were identified, ranging from 18 to 1101 nucleotides in length, with most families being shared between individuals/lineages, as predicted by the library hypothesis, except for the satDNA EgiSat21-168 that was absent for Northeast Lineage. The total satDNA content of the individuals was less than 11.2%, and it appeared to increase in two directions following the chromosomal evolution model. Thirteen satDNAs exhibited different patterns of amplification, and nine ones were contracted among individuals. Additionally, most repeats showed a divergence of about 10% for these satDNAs, indicating satellitome differentiation for each lineage/individual. This scenario suggests that the expansion of the satellitome occurred differentially among individuals/lineages of E. gigantea, with the contribution of various DNA turnover mechanisms after geographical isolation, and that they could be involved with karyotype evolution.
Collapse
Affiliation(s)
- Aline Priscila Félix
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Pós-Graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Igor Costa de Amorim
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Departamento de Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, Juazeiro, Bahia, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Rita Cássia Moura
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Mora P, Rico-Porras JM, Palomeque T, Montiel EE, Pita S, Cabral-de-Mello DC, Lorite P. Satellitome Analysis of Adalia bipunctata (Coleoptera): Revealing Centromeric Turnover and Potential Chromosome Rearrangements in a Comparative Interspecific Study. Int J Mol Sci 2024; 25:9214. [PMID: 39273162 PMCID: PMC11394905 DOI: 10.3390/ijms25179214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Eukaryotic genomes exhibit a dynamic interplay between single-copy sequences and repetitive DNA elements, with satellite DNA (satDNA) representing a substantial portion, mainly situated at telomeric and centromeric chromosomal regions. We utilized Illumina next-generation sequencing data from Adalia bipunctata to investigate its satellitome. Cytogenetic mapping via fluorescence in situ hybridization was performed for the most abundant satDNA families. In silico localization of satDNAs was carried out using the CHRISMAPP (Chromosome In Silico Mapping) pipeline on the high-fidelity chromosome-level assembly already available for this species, enabling a meticulous characterization and localization of multiple satDNA families. Additionally, we analyzed the conservation of the satellitome at an interspecific scale. Specifically, we employed the CHRISMAPP pipeline to map the satDNAs of A. bipunctata onto the genome of Adalia decempunctata, which has also been sequenced and assembled at the chromosome level. This analysis, along with the creation of a synteny map between the two species, suggests a rapid turnover of centromeric satDNA between these species and the potential occurrence of chromosomal rearrangements, despite the considerable conservation of their satellitomes. Specific satDNA families in the sex chromosomes of both species suggest a role in sex chromosome differentiation. Our interspecific comparative study can provide a significant advance in the understanding of the repeat genome organization and evolution in beetles.
Collapse
Affiliation(s)
- Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - José M Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Eugenia E Montiel
- Department of Biology, Genetics, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
- Biodiversity and Global Change Research Centre (CIBC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Sebastián Pita
- Section Evolutive Genetics, Faculty of Sciences, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay
| | - Diogo C Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP-São Paulo State University, Rio Claro 13506-900, SP, Brazil
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
3
|
Wang Z, Zhuo Z, Ali H, Mureed S, Liu Q, Yang X, Xu D. Predicting potential habitat distribution of the invasive species Rhynchophorus ferrugineus Olivier in China based on MaxEnt modelling technique and future climate change. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:524-533. [PMID: 39295445 DOI: 10.1017/s0007485324000336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Changes in the distribution of species due to global climate change have a critically significant impact on the increase in the spread of invasive species. An in-depth study of the distribution patterns of invasive species and the factors influencing them can help to better predict and combat invasive alien species. Rhynchophorus ferrugineus Olivier is an invasive species that primarily harms plants of Trachycarpus H. Wendl. The pest invades trees in three main ways: by laying eggs and incubating them in the crown of the plant, on roots at the surface and at the base of the trunk or petiole. Most of the plants in the genus Trachycarpus are taller, and the damage is concentrated in the middle and upper parts of the plant, making control more difficult. In this paper, we combine 19 bioclimatic variables based on the MaxEnt model to project the current and future distributions of R. ferrugineus under three typical emission scenarios (2.6 W m-2 (SSP1-2.6), 4.5 W m-2 (SSP2-4.5) and 8.5 W m-2 (SSP5-8.5)) in the 2050s and 2090s. Among the 19 bioclimatic variables, five variables were screened out by contribution rates, namely annual mean temperature (BIO 1), precipitation of driest quarter (BIO 17), minimum temperature of coldest month (BIO 6), mean diurnal range (BIO 2) and precipitation of wettest quarter (BIO 16). These five variables are key environmental variables that influence habitat suitability for R. ferrugineus and are representative in reflecting its potential habitat. The results showed that R. ferrugineus is now widely distributed in the southeastern coastal area of China (high suitability zone), concentrating in the provinces of Hainan, Guangdong, Fujian, Guangxi and Taiwan. In the future, the area of high and low suitability zones will increase and the area of medium suitability zones will decrease. The area of low suitability zone will still be in the largest proportion. This study aims to provide a theoretical reference for the future control of R. ferrugineus from the perspective of geographic distribution.
Collapse
Affiliation(s)
- Zhiling Wang
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Habib Ali
- Depatment of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sumbul Mureed
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanwei Liu
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Xuebin Yang
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong 637002, China
| |
Collapse
|
4
|
Dos Santos GE, Crepaldi C, da Silva MJ, Parise-Maltempi PP. Revealing the Satellite DNA Content in Ancistrus sp. (Siluriformes: Loricariidae) by Genomic and Bioinformatic Analysis. Cytogenet Genome Res 2024; 164:52-59. [PMID: 38631304 DOI: 10.1159/000538926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION Eukaryotic genomes are composed of simple, repetitive sequences, including satellite DNAs (satDNA), which are noncoding sequences arranged in tandem arrays. These sequences play a crucial role in genomic functions and innovations, influencing processes such as the maintenance of nuclear material, the formation of heterochromatin and the differentiation of sex chromosomes. In this genomic era, advances in next-generation sequencing and bioinformatics tools have facilitated the exhaustive cataloging of repetitive elements in genomes, particularly in non-model species. This study focuses on the satDNA content of Ancistrus sp., a diverse species of fish from the Loricariidae family. The genus Ancistrus shows significant karyotypic evolution, with extensive variability from the ancestral diploid number. METHODS By means of bioinformatic approaches, 40 satDNA families in Ancistrus sp., constituting 5.19% of the genome were identified. Analysis of the abundance and divergence landscape revealed diverse profiles, indicating recent amplification and homogenization of these satDNA sequences. RESULTS The most abundant satellite, AnSat1-142, constitutes 2.1% of the genome, while the least abundant, AnSat40-52, represents 0.0034%. The length of the monomer repeat varies from 16 to 142 base pairs, with an average length of 61 bp. These results contribute to understanding the genomic dynamics and evolution of satDNAs in Ancistrus sp. CONCLUSION The study underscores the variability of satDNAs between fish species and provides valuable information on chromosome organization and the evolution of repetitive elements in non-model organisms.
Collapse
Affiliation(s)
- Gabriel Esbrisse Dos Santos
- General and Applied Biology Department, Bioscience Institute/São Paulo State University (UNESP), Rio Claro, Brazil
| | - Carolina Crepaldi
- General and Applied Biology Department, Bioscience Institute/São Paulo State University (UNESP), Rio Claro, Brazil
| | - Marcelo João da Silva
- General and Applied Biology Department, Bioscience Institute/São Paulo State University (UNESP), Rio Claro, Brazil
| | | |
Collapse
|
5
|
de Oliveira AM, Souza GM, Toma GA, Dos Santos N, Dos Santos RZ, Goes CAG, Deon GA, Setti PG, Porto-Foresti F, Utsunomia R, Gunski RJ, Del Valle Garnero A, Herculano Correa de Oliveira E, Kretschmer R, Cioffi MDB. Satellite DNAs, heterochromatin, and sex chromosomes of the wattled jacana (Charadriiformes; Jacanidae): a species with highly rearranged karyotype. Genome 2024; 67:109-118. [PMID: 38316150 DOI: 10.1139/gen-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.
Collapse
Affiliation(s)
- Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | | | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Rico-Porras JM, Mora P, Palomeque T, Montiel EE, Cabral-de-Mello DC, Lorite P. Heterochromatin Is Not the Only Place for satDNAs: The High Diversity of satDNAs in the Euchromatin of the Beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genes (Basel) 2024; 15:395. [PMID: 38674330 PMCID: PMC11049206 DOI: 10.3390/genes15040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The satellitome of the beetle Chrysolina americana Linneo, 1758 has been characterized through chromosomal analysis, genomic sequencing, and bioinformatics tools. C-banding reveals the presence of constitutive heterochromatin blocks enriched in A+T content, primarily located in pericentromeric regions. Furthermore, a comprehensive satellitome analysis unveils the extensive diversity of satellite DNA families within the genome of C. americana. Using fluorescence in situ hybridization techniques and the innovative CHRISMAPP approach, we precisely map the localization of satDNA families on assembled chromosomes, providing insights into their organization and distribution patterns. Among the 165 identified satDNA families, only three of them exhibit a remarkable amplification and accumulation, forming large blocks predominantly in pericentromeric regions. In contrast, the remaining, less abundant satDNA families are dispersed throughout euchromatic regions, challenging the traditional association of satDNA with heterochromatin. Overall, our findings underscore the complexity of repetitive DNA elements in the genome of C. americana and emphasize the need for further exploration to elucidate their functional significance and evolutionary implications.
Collapse
Affiliation(s)
- José M. Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Eugenia E. Montiel
- Department of Biology, Genetics, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
- Center for Research in Biodiversity and Global Change, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Diogo C. Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP—São Paulo State University, Rio Claro 13506-900, SP, Brazil;
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| |
Collapse
|
7
|
Sales-Oliveira VC, Dos Santos RZ, Goes CAG, Calegari RM, Garrido-Ramos MA, Altmanová M, Ezaz T, Liehr T, Porto-Foresti F, Utsunomia R, Cioffi MB. Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia). BMC Biol 2024; 22:47. [PMID: 38413947 PMCID: PMC10900743 DOI: 10.1186/s12915-024-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Crocodilians are one of the oldest extant vertebrate lineages, exhibiting a combination of evolutionary success and morphological resilience that has persisted throughout the history of life on Earth. This ability to endure over such a long geological time span is of great evolutionary importance. Here, we have utilized the combination of genomic and chromosomal data to identify and compare the full catalogs of satellite DNA families (satDNAs, i.e., the satellitomes) of 5 out of the 8 extant Alligatoridae species. As crocodilian genomes reveal ancestral patterns of evolution, by employing this multispecies data collection, we can investigate and assess how satDNA families evolve over time. RESULTS Alligators and caimans displayed a small number of satDNA families, ranging from 3 to 13 satDNAs in A. sinensis and C. latirostris, respectively. Together with little variation both within and between species it highlighted long-term conservation of satDNA elements throughout evolution. Furthermore, we traced the origin of the ancestral forms of all satDNAs belonging to the common ancestor of Caimaninae and Alligatorinae. Fluorescence in situ experiments showed distinct hybridization patterns for identical orthologous satDNAs, indicating their dynamic genomic placement. CONCLUSIONS Alligators and caimans possess one of the smallest satDNA libraries ever reported, comprising only four sets of satDNAs that are shared by all species. Besides, our findings indicated limited intraspecific variation in satellite DNA, suggesting that the majority of new satellite sequences likely evolved from pre-existing ones.
Collapse
Affiliation(s)
- Vanessa C Sales-Oliveira
- Departamento de Genética E Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czech Republic
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | | | | | - Marcelo B Cioffi
- Departamento de Genética E Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
8
|
Hoddle MS, Antony B, El-Shafie HAF, Chamorro ML, Milosavljević I, Löhr B, Faleiro JR. Taxonomy, Biology, Symbionts, Omics, and Management of Rhynchophorus Palm Weevils (Coleoptera: Curculionidae: Dryophthorinae). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:455-479. [PMID: 38270987 DOI: 10.1146/annurev-ento-013023-121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Palm weevils, Rhynchophorus spp., are destructive pests of native, ornamental, and agricultural palm species. Of the 10 recognized species, two of the most injurious species, Rhynchophorus ferrugineus and Rhynchophorus palmarum, both of which have spread beyond their native range, are the best studied. Due to its greater global spread and damage to edible date industries in the Middle East, R. ferrugineus has received more research interest. Integrated pest management programs utilize traps baited with aggregation pheromone, removal of infested palms, and insecticides. However, weevil control is costly, development of resistance to insecticides is problematic, and program efficacy can be impaired because early detection of infestations is difficult. The genome of R. ferrugineus has been sequenced, and omics research is providing insight into pheromone communication and changes in volatile and metabolism profiles of weevil-infested palms. We outline how such developments could lead to new control strategies and early detection tools.
Collapse
Affiliation(s)
- Mark S Hoddle
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Binu Antony
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia;
| | - Hamadttu A F El-Shafie
- Sustainable Date Palm Pest Management Research Program, Date Palm Research Center of Excellence, King Faisal University, Hofuf-Al-Ahsa, Saudi Arabia;
| | - M Lourdes Chamorro
- Systematic Entomology Laboratory, Agricultural Research Service, US Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA;
| | - Ivan Milosavljević
- Department of Entomology, University of California, Riverside, California, USA; ,
| | | | | |
Collapse
|
9
|
Cuadrado Á, Montiel EE, Mora P, Figueroa RI, Lorite P, de Bustos A. Contribution of the satellitome to the exceptionally large genome of dinoflagellates: The case of the harmful alga Alexandrium minutum. HARMFUL ALGAE 2023; 130:102543. [PMID: 38061820 DOI: 10.1016/j.hal.2023.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
Dinoflagellates are known to possess an exceptionally large genome organized in permanently condensed chromosomes. Focusing on the contribution of satellite DNA (satDNA) to the whole DNA content of genomes and its potential role in the architecture of the chromosomes, we present the characterization of the satellitome of Alexandriun minutum strain VGO577. To achieve this, we analyzed Illumina reads using graph-based clustering and performed complementary bioinformatic analyses. In this way, we discovered 180 satDNAs occupying 17.38 % of the genome. The 12 most abundant satDNAs represent the half of the satellitome but no satDNA is overrepresented, with the most abundant contributing ∼1.56 % of the genome. The largest repeat unit is 517 bp long but more than the half of the satDNAs (101) have repeat units shorter than 20 bp. We used FISH to map a selected set of 26 satDNAs. Although some satDNAs generate discrete hybridization signals at specific chromosomal locations (hybridization sites, HS), our cytological analysis showed that most satDNAs are dispersed throughout the genome, probably forming short arrays. Two satDNAs co-localize with the 45S rDNA. With the exception of telomeric DNA, no other satDNA yields HS on all chromosomes. In addition, we analyzed nine satDNAs yielding HS in VGO577 in four other A. minutum strains. Polymorphism at the intraspecific level was found for the presence/absence and/or abundance of some satDNAs, suggesting the amplification/deletion of these satDNAs following geographic separation or during culture maintenance of the strains. We also discuss how these results contribute to the understanding of chromosome architecture and evolution of dinoflagellate genomes.
Collapse
Affiliation(s)
- Ángeles Cuadrado
- Department of Biomedicine and Biotecnology, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid 28805, Spain.
| | - Eugenia E Montiel
- Department of Experimental Biology (Genetics Area), Human and Animal Molecular Genetic Group (RNM-924), Universidad de Jaén, Jaén 23071, Spain; Departamento de Biología (Genética), Universidad Autonoma de Madrid, Madrid 28049, Spain
| | - Pablo Mora
- Department of Experimental Biology (Genetics Area), Human and Animal Molecular Genetic Group (RNM-924), Universidad de Jaén, Jaén 23071, Spain
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, Vigo 36390, Spain
| | - Pedro Lorite
- Department of Experimental Biology (Genetics Area), Human and Animal Molecular Genetic Group (RNM-924), Universidad de Jaén, Jaén 23071, Spain
| | - Alfredo de Bustos
- Department of Biomedicine and Biotecnology, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid 28805, Spain
| |
Collapse
|
10
|
de Moraes RLR, de Menezes Cavalcante Sassi F, Vidal JAD, Goes CAG, dos Santos RZ, Stornioli JHF, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Chromosomal Rearrangements and Satellite DNAs: Extensive Chromosome Reshuffling and the Evolution of Neo-Sex Chromosomes in the Genus Pyrrhulina (Teleostei; Characiformes). Int J Mol Sci 2023; 24:13654. [PMID: 37686460 PMCID: PMC10563077 DOI: 10.3390/ijms241713654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.
Collapse
Affiliation(s)
- Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Francisco de Menezes Cavalcante Sassi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Jhon Alex Dziechciarz Vidal
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
| | - Caio Augusto Gomes Goes
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - José Henrique Forte Stornioli
- Institute of Biological Sciences and Health, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Fábio Porto-Foresti
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Ricardo Utsunomia
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
11
|
de Oliveira MPB, Kretschmer R, Deon GA, Toma GA, Ezaz T, Goes CAG, Porto-Foresti F, Liehr T, Utsunomia R, Cioffi MDB. Following the Pathway of W Chromosome Differentiation in Triportheus (Teleostei: Characiformes). BIOLOGY 2023; 12:1114. [PMID: 37626998 PMCID: PMC10452202 DOI: 10.3390/biology12081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
In this work, we trace the dynamics of satellite DNAs (SatDNAs) accumulation and elimination along the pathway of W chromosome differentiation using the well-known Triportheus fish model. Triportheus stands out due to a conserved ZZ/ZW sex chromosome system present in all examined species. While the Z chromosome is conserved in all species, the W chromosome is invariably smaller and exhibits differences in size and morphology. The presumed ancestral W chromosome is comparable to that of T. auritus, and contains 19 different SatDNA families. Here, by examining five additional Triportheus species, we showed that the majority of these repetitive sequences were eliminated as speciation was taking place. The W chromosomes continued degeneration, while the Z chromosomes of some species began to accumulate some TauSatDNAs. Additional species-specific SatDNAs that made up the heterochromatic region of both Z and W chromosomes were most likely amplified in each species. Therefore, the W chromosomes of the various Triportheus species have undergone significant evolutionary changes in a short period of time (15-25 Myr) after their divergence.
Collapse
Affiliation(s)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-610, Brazil;
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Sao Carlos 13565-905, Brazil; (M.P.B.d.O.); (G.A.D.); (G.A.T.); (M.d.B.C.)
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Sao Carlos 13565-905, Brazil; (M.P.B.d.O.); (G.A.D.); (G.A.T.); (M.d.B.C.)
| | - Tariq Ezaz
- Faculty of Science and Technology, Centre for Conservation Ecology and Genomics, University of Canberra, Canberra 2617, Australia;
| | - Caio Augusto Gomes Goes
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, Brazil; (C.A.G.G.); (F.P.-F.); (R.U.)
| | - Fábio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, Brazil; (C.A.G.G.); (F.P.-F.); (R.U.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, Brazil; (C.A.G.G.); (F.P.-F.); (R.U.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Sao Carlos 13565-905, Brazil; (M.P.B.d.O.); (G.A.D.); (G.A.T.); (M.d.B.C.)
| |
Collapse
|
12
|
Gržan T, Dombi M, Despot-Slade E, Veseljak D, Volarić M, Meštrović N, Plohl M, Mravinac B. The Low-Copy-Number Satellite DNAs of the Model Beetle Tribolium castaneum. Genes (Basel) 2023; 14:genes14050999. [PMID: 37239359 DOI: 10.3390/genes14050999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The red flour beetle Tribolium castaneum is an important pest of stored agricultural products and the first beetle whose genome was sequenced. So far, one high-copy-number and ten moderate-copy-number satellite DNAs (satDNAs) have been described in the assembled part of its genome. In this work, we aimed to catalog the entire collection of T. castaneum satDNAs. We resequenced the genome using Illumina technology and predicted potential satDNAs via graph-based sequence clustering. In this way, we discovered 46 novel satDNAs that occupied a total of 2.1% of the genome and were, therefore, considered low-copy-number satellites. Their repeat units, preferentially 140-180 bp and 300-340 bp long, showed a high A + T composition ranging from 59.2 to 80.1%. In the current assembly, we annotated the majority of the low-copy-number satDNAs on one or a few chromosomes, discovering mainly transposable elements in their vicinity. The current assembly also revealed that many of the in silico predicted satDNAs were organized into short arrays not much longer than five consecutive repeats, and some of them also had numerous repeat units scattered throughout the genome. Although 20% of the unassembled genome sequence masked the genuine state, the predominance of scattered repeats for some low-copy satDNAs raises the question of whether these are essentially interspersed repeats that occur in tandem only sporadically, with the potential to be satDNA "seeds".
Collapse
Affiliation(s)
- Tena Gržan
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- University Hospital Centre Zagreb, HR-10000 Zagreb, Croatia
| | - Mira Dombi
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Damira Veseljak
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Marin Volarić
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Nevenka Meštrović
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Miroslav Plohl
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Brankica Mravinac
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
13
|
Šatović-Vukšić E, Plohl M. Satellite DNAs-From Localized to Highly Dispersed Genome Components. Genes (Basel) 2023; 14:genes14030742. [PMID: 36981013 PMCID: PMC10048060 DOI: 10.3390/genes14030742] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
According to the established classical view, satellite DNAs are defined as abundant non-coding DNA sequences repeated in tandem that build long arrays located in heterochromatin. Advances in sequencing methodologies and development of specialized bioinformatics tools enabled defining a collection of all repetitive DNAs and satellite DNAs in a genome, the repeatome and the satellitome, respectively, as well as their reliable annotation on sequenced genomes. Supported by various non-model species included in recent studies, the patterns of satellite DNAs and satellitomes as a whole showed much more diversity and complexity than initially thought. Differences are not only in number and abundance of satellite DNAs but also in their distribution across the genome, array length, interspersion patterns, association with transposable elements, localization in heterochromatin and/or in euchromatin. In this review, we compare characteristic organizational features of satellite DNAs and satellitomes across different animal and plant species in order to summarize organizational forms and evolutionary processes that may lead to satellitomes' diversity and revisit some basic notions regarding repetitive DNA landscapes in genomes.
Collapse
Affiliation(s)
- Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Manee MM, Alqahtani FH, Al-Shomrani BM, El-Shafie HAF, Dias GB. Omics in the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae): A Bridge to the Pest. INSECTS 2023; 14:255. [PMID: 36975940 PMCID: PMC10054242 DOI: 10.3390/insects14030255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera: Curculionidae), is the most devastating pest of palm trees worldwide. Mitigation of the economic and biodiversity impact it causes is an international priority that could be greatly aided by a better understanding of its biology and genetics. Despite its relevance, the biology of the RPW remains poorly understood, and research on management strategies often focuses on outdated empirical methods that produce sub-optimal results. With the development of omics approaches in genetic research, new avenues for pest control are becoming increasingly feasible. For example, genetic engineering approaches become available once a species's target genes are well characterized in terms of their sequence, but also population variability, epistatic interactions, and more. In the last few years alone, there have been major advances in omics studies of the RPW. Multiple draft genomes are currently available, along with short and long-read transcriptomes, and metagenomes, which have facilitated the identification of genes of interest to the RPW scientific community. This review describes omics approaches previously applied to RPW research, highlights findings that could be impactful for pest management, and emphasizes future opportunities and challenges in this area of research.
Collapse
Affiliation(s)
- Manee M. Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Fahad H. Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Badr M. Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | | | | |
Collapse
|
15
|
Mora P, Pita S, Montiel EE, Rico-Porras JM, Palomeque T, Panzera F, Lorite P. Making the Genome Huge: The Case of Triatoma delpontei, a Triatominae Species with More than 50% of Its Genome Full of Satellite DNA. Genes (Basel) 2023; 14:genes14020371. [PMID: 36833298 PMCID: PMC9957312 DOI: 10.3390/genes14020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The genome of Triatoma delpontei Romaña & Abalos 1947 is the largest within Heteroptera, approximately two to three times greater than other evaluated Heteroptera genomes. Here, the repetitive fraction of the genome was determined and compared with its sister species Triatoma infestans Klug 1834, in order to shed light on the karyotypic and genomic evolution of these species. The T. delpontei repeatome analysis showed that the most abundant component in its genome is satellite DNA, which makes up more than half of the genome. The T. delpontei satellitome includes 160 satellite DNA families, most of them also present in T. infestans. In both species, only a few satellite DNA families are overrepresented on the genome. These families are the building blocks of the C-heterochromatic regions. Two of these satellite DNA families that form the heterochromatin are the same in both species. However, there are satellite DNA families highly amplified in the heterochromatin of one species that in the other species are in low abundance and located in the euchromatin. Therefore, the present results depicted the great impact of the satellite DNA sequences in the evolution of Triatominae genomes. Within this scenario, satellitome determination and analysis led to a hypothesis that explains how satDNA sequences have grown on T. delpontei to reach its huge genome size within true bugs.
Collapse
Affiliation(s)
- Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Sebastián Pita
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay
- Correspondence: (S.P.); (P.L.)
| | - Eugenia E. Montiel
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - José M. Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Francisco Panzera
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
- Correspondence: (S.P.); (P.L.)
| |
Collapse
|
16
|
Anjos A, Milani D, Bardella VB, Paladini A, Cabral-de-Mello DC. Evolution of satDNAs on holocentric chromosomes: insights from hemipteran insects of the genus Mahanarva. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:5. [PMID: 36705735 DOI: 10.1007/s10577-023-09710-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 01/28/2023]
Abstract
Satellite DNAs (satDNAs) constitute one of the main components of eukaryote genomes and are involved in chromosomal organization and diversification. Although largely studied, little information was gathered about their evolution on holocentric species, i.e., diffuse centromeres, which, due to differences in repeat organization, could result in different evolutionary patterns. Here, we combined bioinformatics and cytogenetic approaches to evaluate the evolution of the satellitomes in Mahanarva holocentric insects. In two species, de novo identification revealed a high number of satDNAs, 110 and 113, with an extreme monomer length range of 18-4228 bp. The overall abundance of satDNAs was observed to be 6.67% in M. quadripunctata and 1.98% in M. spectabilis, with different abundances for the shared satDNAs. Chromosomal mapping of the most abundant repeats of M. quadripunctata and M. spectabilis on other Mahanarva reinforced the dynamic nature of satDNAs. Variable patterns of chromosomal distribution for the satDNAs were noticed, with the occurrence of clusters on distinct numbers of chromosomes and at different positions and the occurrence of scattered signals or nonclustered satDNAs. Altogether, our data demonstrated the high dynamism of satDNAs in Mahanarva with the involvement of this genomic fraction in chromosome diversification of the genus. The general characteristics and patterns of evolution of satDNAs are similar to those observed on monocentric chromosomes, suggesting that the differential organization of genome compartments observed on holocentric chromosomes compared with monocentric chromosomes does not have a large impact on the evolution of satDNAs. Analysis of the satellitomes of other holocentric species in a comparative manner will shed light on this issue.
Collapse
Affiliation(s)
- Allison Anjos
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Andressa Paladini
- Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil.
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071, Jaen, Spain.
| |
Collapse
|
17
|
Gutiérrez J, Aleix-Mata G, Montiel EE, Cabral-de-Mello DC, Marchal JA, Sánchez A. Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae. Genes (Basel) 2022; 14:117. [PMID: 36672858 PMCID: PMC9859602 DOI: 10.3390/genes14010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
In the genus Talpa a new species, named Talpa aquitania, has been recently described. Only cytogenetic data are available for the nuclear genome of this species. In this work, we characterize the satellitome of the T. aquitania genome that presents 16 different families, including telomeric sequences, and they represent 1.24% of the genome. The first satellite DNA family (TaquSat1-183) represents 0.558%, and six more abundant families, including TaquSat1-183, comprise 1.13%, while the remaining 11 sat-DNAs represent only 0.11%. The average A + T content of the SatDNA families was 50.43% and the median monomer length was 289.24 bp. The analysis of these SatDNAs indicated that they have different grades of clusterization, homogenization, and degeneration. Most of the satDNA families are present in the genomes of the other Talpa species analyzed, while in the genomes of other more distant species of Talpidae, only some of them are present, in accordance with the library hypothesis. Moreover, chromosomal localization by FISH revealed that some satDNAs are localized preferentially on centromeric and non-centromeric heterochromatin in T. aquitania and also in the sister species T. occidentalis karyotype. The differences observed between T. aquitania and the close relative T. occidentalis and T. europaea suggested that the satellitome is a very dynamic component of the genomes and that the satDNAs could be responsible for chromosomal differences between the species. Finally, in a broad context, these data contribute to the understanding of the evolution of satellitomes on mammals.
Collapse
Affiliation(s)
- Juana Gutiérrez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Gaël Aleix-Mata
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Eugenia E. Montiel
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Diogo C. Cabral-de-Mello
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP—Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Juan Alberto Marchal
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | - Antonio Sánchez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
18
|
Ugarković Đ, Sermek A, Ljubić S, Feliciello I. Satellite DNAs in Health and Disease. Genes (Basel) 2022; 13:genes13071154. [PMID: 35885937 PMCID: PMC9324158 DOI: 10.3390/genes13071154] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tandemly repeated satellite DNAs are major components of centromeres and pericentromeric heterochromatin which are crucial chromosomal elements responsible for accurate chromosome segregation. Satellite DNAs also contribute to genome evolution and the speciation process and are important for the maintenance of the entire genome inside the nucleus. In addition, there is increasing evidence for active and tightly regulated transcription of satellite DNAs and for the role of their transcripts in diverse processes. In this review, we focus on recent discoveries related to the regulation of satellite DNA expression and the role of their transcripts, either in heterochromatin establishment and centromere function or in gene expression regulation under various biological contexts. We discuss the role of satellite transcripts in the stress response and environmental adaptation as well as consequences of the dysregulation of satellite DNA expression in cancer and their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| |
Collapse
|