1
|
Billerbeck S, Walker RSK, Pretorius IS. Killer yeasts: expanding frontiers in the age of synthetic biology. Trends Biotechnol 2024; 42:1081-1096. [PMID: 38575438 DOI: 10.1016/j.tibtech.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Killer yeasts secrete protein toxins that are selectively lethal to other yeast and filamentous fungi. These exhibit exceptional genetic and functional diversity, and have several biotechnological applications. However, despite decades of research, several limitations hinder their widespread adoption. In this perspective we contend that technical advances in synthetic biology present an unprecedented opportunity to unlock the full potential of yeast killer systems across a spectrum of applications. By leveraging these new technologies, engineered killer toxins may emerge as a pivotal new tool to address antifungal resistance and food security. Finally, we speculate on the biotechnological potential of re-engineering host double-stranded (ds) RNA mycoviruses, from which many toxins derive, as a safe and noninfectious system to produce designer RNA.
Collapse
Affiliation(s)
- Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, University of Groningen, Groningen 9747, AG, The Netherlands
| | - Roy S K Walker
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia.
| |
Collapse
|
2
|
Sun M, Gao AX, Liu X, Yang Y, Ledesma-Amaro R, Bai Z. High-throughput process development from gene cloning to protein production. Microb Cell Fact 2023; 22:182. [PMID: 37715258 PMCID: PMC10503041 DOI: 10.1186/s12934-023-02184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023] Open
Abstract
In the post-genomic era, the demand for faster and more efficient protein production has increased, both in public laboratories and industry. In addition, with the expansion of protein sequences in databases, the range of possible enzymes of interest for a given application is also increasing. Faced with peer competition, budgetary, and time constraints, companies and laboratories must find ways to develop a robust manufacturing process for recombinant protein production. In this review, we explore high-throughput technologies for recombinant protein expression and present a holistic high-throughput process development strategy that spans from genes to proteins. We discuss the challenges that come with this task, the limitations of previous studies, and future research directions.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. The Epigenetic Control of the Transposable Element Life Cycle in Plant Genomes and Beyond. Annu Rev Genet 2022; 56:63-87. [DOI: 10.1146/annurev-genet-072920-015534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Graduate Program in the Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
Gervais NC, Halder V, Shapiro RS. A data library of Candida albicans functional genomic screens. FEMS Yeast Res 2021; 21:6433625. [PMID: 34864983 DOI: 10.1093/femsyr/foab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Functional genomic screening of genetic mutant libraries enables the characterization of gene function in diverse organisms. For the fungal pathogen Candida albicans, several genetic mutant libraries have been generated and screened for diverse phenotypes, including tolerance to environmental stressors and antifungal drugs, and pathogenic traits such as cellular morphogenesis, biofilm formation and host-pathogen interactions. Here, we compile and organize C. albicans functional genomic screening data from ∼400 screens, to generate a data library of genetic mutant strains analyzed under diverse conditions. For quantitative screening data, we normalized these results to enable quantitative and comparative analysis of different genes across different phenotypes. Together, this provides a unique C. albicans genetic database, summarizing abundant phenotypic data from functional genomic screens in this critical fungal pathogen.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|