1
|
Martins-Santana L, Petrucelli MF, Sanches PR, Almeida F, Martinez-Rossi NM, Rossi A. The StuA Transcription Factor and Alternative Splicing Mechanisms Drive the Levels of MAPK Hog1 Transcripts in the Dermatophyte Trichophyton rubrum. Mycopathologia 2024; 189:37. [PMID: 38704808 DOI: 10.1007/s11046-024-00842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
Trichophyton rubrum is a human fungal pathogen that causes dermatophytosis, an infection that affects keratinized tissues. Integrated molecular signals coordinate mechanisms that control pathogenicity. Transcriptional regulation is a core regulation of relevant fungal processes. Previous RNA sequencing data revealed that the absence of the transcription factor StuA resulted in the differential expression of the MAPK-related high glycerol osmolarity gene (hog1) in T. rubrum. Here we validated the role of StuA in regulating the transcript levels of hog1. We showed through RT-qPCR that transcriptional regulation controls hog1 levels in response to glucose, keratin, and co-culture with human keratinocytes. In addition, we also detected hog1 pre-mRNA transcripts that underwent alternative splicing, presenting intron retention in a StuA-dependent mechanism. Our findings suggest that StuA and alternative splicing simultaneously, but not dependently, coordinate hog1 transcript levels in T. rubrum. As a means of preventing and treating dermatophytosis, our results contribute to the search for new potential drug therapies based on the molecular aspects of signaling pathways in T. rubrum.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Department of Genetics, Ribeirão Preto Medical Schoool, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Monise Fazolin Petrucelli
- Department of Genetics, Ribeirão Preto Medical Schoool, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical Schoool, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical Schoool, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical Schoool, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical Schoool, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Petrucelli MF, Martins-Santana L, Rossi A, Martinez-Rossi NM. Molecular Signaling and Metabolic Responses during the Interaction between Human Keratinocytes (HaCaT) and the Dermatophyte Trichophyton rubrum. J Fungi (Basel) 2024; 10:72. [PMID: 38248981 PMCID: PMC10820588 DOI: 10.3390/jof10010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Trichophyton rubrum is the leading causative agent of dermatophytosis worldwide. Keratinocytes are the first line of defense that drives an immune response against fungal invasion. Host-specific pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) to trigger immunological pathways. Fungal cell wall components are the primary sources of fungal PAMPs, and some pathogens increase cell wall rearrangement to evade the immune system. Glycolysis and enhanced lactate levels are critical for improving host immune responses to fungal infections. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), we evaluated the transcriptional responses of human genes involved in fungal recognition and glycolytic metabolism and fungal cell-wall-related genes in a co-culture model of human keratinocytes with T. rubrum. We observed the upregulation of several Toll-like receptors (TLRs), NOD-like receptors (NLRs), and glycolytic genes. Complementarily, we measured intra- and extracellular glucose levels and the increase in lactate production in the co-culture supernatant. We noted a distinct transcriptional regulation pattern of fungal cell-wall-related genes from fungal growth on keratin as the primary carbon source compared to co-culture with human keratinocytes. Our results showed new insights into the transcriptional adaptation of keratinocytes, particularly in regulating genes involved in sensing and metabolic processes, during the interaction with T. rubrum.
Collapse
Affiliation(s)
| | | | | | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.F.P.); (L.M.-S.); (A.R.)
| |
Collapse
|
3
|
Navale AM. Glucose Transporter and Sensor Mechanisms in Fungal Pathogens as Potential Drug Targets. Curr Rev Clin Exp Pharmacol 2024; 19:250-258. [PMID: 37861001 DOI: 10.2174/0127724328263050230923154326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Fungal infections are emerging as major health challenges in recent years. The development of resistance against existing antifungal agents needs urgent attention and action. The limited classes of antifungal drugs available, their tendency to cause adverse effects, lack of effectiveness, etc., are the major limitations of current therapy. Thus, there is a pressing demand for new antifungal drug classes to cope with the present circumstances. Glucose is the key source of energy for all organisms, including fungi. Glucose plays a crucial role as a source of carbon and energy for processes like virulence, growth, invasion, biofilm formation, and resistance development. The glucose transport and sensing mechanisms are well developed in these organisms as an important strategy to sustain survival. Modulating these transport or sensor mechanisms may serve as an important strategy to inhibit fungal growth. Moreover, the structural difference between human and fungal glucose transporters makes them more appealing as drug targets. Limited literature is available for fungal glucose entry mechanisms. This review provides a comprehensive account of sugar transport mechanisms in common fungal pathogens.
Collapse
Affiliation(s)
- Archana Mohit Navale
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University, Limda, India
| |
Collapse
|
4
|
Petrucelli MF, Martins-Santana L, Sanches PR, Oliveira VM, Rossi A, Martinez-Rossi NM. The Transcription Factor StuA Regulates the Glyoxylate Cycle in the Dermatophyte Trichophyton rubrum under Carbon Starvation. Int J Mol Sci 2023; 25:405. [PMID: 38203573 PMCID: PMC10778625 DOI: 10.3390/ijms25010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Trichophyton rubrum is the primary causative agent of dermatophytosis worldwide. This fungus colonizes keratinized tissues and uses keratin as a nutritional source during infection. In T. rubrum-host interactions, sensing a hostile environment triggers the adaptation of its metabolic machinery to ensure its survival. The glyoxylate cycle has emerged as an alternative metabolic pathway when glucose availability is limited; this enables the conversion of simple carbon compounds into glucose via gluconeogenesis. In this study, we investigated the impact of stuA deletion on the response of glyoxylate cycle enzymes during fungal growth under varying culture conditions in conjunction with post-transcriptional regulation through alternative splicing of the genes encoding these enzymes. We revealed that the ΔstuA mutant downregulated the malate synthase and isocitrate lyase genes in a keratin-containing medium or when co-cultured with human keratinocytes. Alternative splicing of an isocitrate lyase gene yielded a new isoform. Enzymatic activity assays showed specific instances where isocitrate lyase and malate synthase activities were affected in the mutant strain compared to the wild type strain. Taken together, our results indicate a relevant balance in transcriptional regulation that has distinct effects on the enzymatic activities of malate synthase and isocitrate lyase.
Collapse
Affiliation(s)
| | | | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.F.P.); (L.M.-S.); (P.R.S.); (V.M.O.); (A.R.)
| |
Collapse
|
5
|
Galvão-Rocha FM, Rocha CHL, Martins MP, Sanches PR, Bitencourt TA, Sachs MS, Martinez-Rossi NM, Rossi A. The Antidepressant Sertraline Affects Cell Signaling and Metabolism in Trichophyton rubrum. J Fungi (Basel) 2023; 9:275. [PMID: 36836389 PMCID: PMC9961077 DOI: 10.3390/jof9020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The dermatophyte Trichophyton rubrum is responsible for most human cutaneous infections. Its treatment is complex, mainly because there are only a few structural classes of fungal inhibitors. Therefore, new strategies addressing these problems are essential. The development of new drugs is time-consuming and expensive. The repositioning of drugs already used in medical practice has emerged as an alternative to discovering new drugs. The antidepressant sertraline (SRT) kills several important fungal pathogens. Accordingly, we investigated the inhibitory mechanism of SRT in T. rubrum to broaden the knowledge of its impact on eukaryotic microorganisms and to assess its potential for future use in dermatophytosis treatments. We performed next-generation sequencing (RNA-seq) to identify the genes responding to SRT at the transcript level. We identified that a major effect of SRT was to alter expression for genes involved in maintaining fungal cell wall and plasma membrane stability, including ergosterol biosynthetic genes. SRT also altered the expression of genes encoding enzymes related to fungal energy metabolism, cellular detoxification, and defense against oxidative stress. Our findings provide insights into a specific molecular network interaction that maintains metabolic stability and is perturbed by SRT, showing potential targets for its strategic use in dermatophytosis.
Collapse
Affiliation(s)
- Flaviane M. Galvão-Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Carlos H. L. Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Maíra P. Martins
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Tamires A. Bitencourt
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
6
|
Dey S, Chakraborty R, Taneja B. Biophysical Characterization of the C-Terminal Tail of T. rubrum PacC Reveals an Inherent Intrinsically Disordered Structure with pH-Induced Structural Plasticity. ACS OMEGA 2023; 8:357-364. [PMID: 36643486 PMCID: PMC9835192 DOI: 10.1021/acsomega.2c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
PacC is a key transcriptional regulator of human pathogenic fungus Trichophyton rubrum with pivotal roles in pH homeostasis and virulence. We report the first biophysical characterization of the C-terminal inhibitory tail of PacC, pertinent to its physiological role in maintaining the inactive state of PacC at acidic pH which undergoes conformational changes for its proteolytic removal and activation, at alkaline pH. To gain insights into the structural features of PacC that enable the required conformational flexibility, we performed gel filtration chromatography, dynamic light scattering, circular dichroism, and 1-anilino-8-naphthalenesulfonate binding and showed that the tail exhibits properties similar to intrinsically disordered proteins, as also predicted by bioinformatics tools. We demonstrate that the C-terminal tail is conformationally flexible and attains a molten globule-like state at extremely acidic pH and undergoes biphasic GdmCl-induced unfolding in a noncooperative manner with an intermediate X state. We hypothesize that the conformational plasticity of the C-terminal tail of PacC may play a significant role in modulating its pH-dependent transcriptional activation.
Collapse
Affiliation(s)
- Sanchita
Sanchaya Dey
- CSIR-Institute
of Genomics and Integrative Biology (CSIR-IGIB), New Delhi110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Rahul Chakraborty
- CSIR-Institute
of Genomics and Integrative Biology (CSIR-IGIB), New Delhi110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bhupesh Taneja
- CSIR-Institute
of Genomics and Integrative Biology (CSIR-IGIB), New Delhi110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|