1
|
Lal A, Viprakasit V, Vichinsky E, Lai Y, Lu MY, Kattamis A. Disease burden, management strategies, and unmet needs in α-thalassemia due to hemoglobin H disease. Am J Hematol 2024; 99:2164-2177. [PMID: 39037279 DOI: 10.1002/ajh.27440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Alpha-thalassemia is an inherited blood disorder caused by impaired α-globin chain production, leading to anemia and other complications. Hemoglobin H (HbH) disease is caused by a combination of mutations generally affecting the expression of three of four α-globin alleles; disease severity is highly heterogeneous, largely driven by genotype. Notably, non-deletional mutations cause a greater degree of ineffective erythropoiesis and hemolysis, higher transfusion burden, and increased complication risks versus deletional mutations. There are limited treatment options for HbH disease, and effective therapies are needed. This review discusses the pathophysiology of HbH disease, current management strategies, unmet needs, and emerging treatment options.
Collapse
Affiliation(s)
- Ashutosh Lal
- University of California-San Francisco School of Medicine, Pediatric Hematology, Oakland, California, USA
| | - Vip Viprakasit
- Department of Pediatrics & Thalassemia Center, Siriraj Research Hospital, Mahidol University, Bangkok, Thailand
| | - Elliott Vichinsky
- University of California-San Francisco School of Medicine, Pediatric Hematology, Oakland, California, USA
| | - Yongrong Lai
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meng-Yao Lu
- Department of Paediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Awor S, Bongomin F, Kaggwa MM, Pebolo FP, Epila J, Malinga GM, Oryema C, Nnamuyomba P, Abola B, Ongwech A, Musoke D. Liver and renal biochemical profiles of people with sickle cell disease in Africa: a systematic review and meta-analysis of case-control studies. Syst Rev 2024; 13:260. [PMID: 39407336 PMCID: PMC11479572 DOI: 10.1186/s13643-024-02662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Sickle cell disease (SCD) is a genetic blood disorder characterized by a painful vaso-occlusive crisis due to the sickling of red blood cells in capillaries. Complications often lead to liver and renal dysfunctions, contributing to morbidity and mortality, particularly for children under 5. This systematic review and meta-analysis aimed to evaluate the liver and renal functions of people with SCD (HbSS) compared to those without it (HbAA) in Africa. METHODS The protocol was registered with PROSPERO (CRD42022346771). We searched PubMed, Embase, Web of Science, and Google Scholar using the keywords "liver function", "renal function", "sickle cell disease", and "Africa" on 6th May 2023 for peer-reviewed articles with abstracts in English. We included case-control studies comparing SCD (HbSS) with controls without hemoglobinopathies (HbAA). We used the random-effect model to calculate the pooled average values for the blood tests of people with SCD in RStudio version 4.2.2. RESULTS Overall, 17 articles were analyzed from five African countries involving 1312 people with SCD and 1558 controls. The pooled mean difference of liver enzymes aspartate transaminase (AST) was 8.62 (95% CI - 2.99-20.23, I2 = 97.0%, p < 0.01), alanine transaminase (ALT) 7.82 (95% CI - 0.16-15.80, I2 = 99%, p < 0.01) and alkaline phosphatase (ALP) - 2.54 (95% CI - 64.72 - 59.64, I2 = 99%, p < 0.01) compared to controls. The pooled mean difference for the renal biochemical profiles creatinine - 3.15 (95% CI - 15.02; 8.72, I2=99%, p < 0.01) with a funnel plot asymmetry of t = 1.09, df = 9, p = 0.3048 and sample estimates bias of 6.0409. The pooled mean difference for serum urea was - 0.57 (95% CI - 3.49; 2.36, I2 = 99%, p < 0.01), and the estimated glomerular filtration (eGFR) rate was 19.79 (95% CI 10.89-28.68 mL/min/1.73 m2, I2 = 87%, p < 0.01) compared to controls. CONCLUSION People with SCD have slightly elevated liver enzymes and estimated glomerular filtration rates compared to controls in Africa. With all the heterogeneity (I2) > 50%, there was substantial variation in the reported articles' results. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022346771.
Collapse
Affiliation(s)
- Silvia Awor
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Gulu University, P. O. Box 166, Gulu, Uganda.
| | - Felix Bongomin
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Mark Mohan Kaggwa
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Canada
| | - Francis Pebalo Pebolo
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Jackie Epila
- Faculty of Education, Lira University, P.O. Box 1035, Lira, Uganda
| | | | - Christine Oryema
- Department of Biology, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Proscovia Nnamuyomba
- Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Benard Abola
- Department of Mathematics, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Acaye Ongwech
- Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - David Musoke
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| |
Collapse
|
3
|
Rallabandi R, Sharp B, Majerus S, Royster A, Hoffer S, Ikeda M, Devaux P. Engineering single-cycle MeV vector for CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev 2024; 32:101290. [PMID: 39070290 PMCID: PMC11283025 DOI: 10.1016/j.omtm.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
CRISPR-Cas9-mediated gene editing has vast applications in basic and clinical research and is a promising tool for several disorders. Our lab previously developed a non-integrating RNA virus, measles virus (MeV), as a single-cycle reprogramming vector by replacing the viral attachment protein with the reprogramming factors for induced pluripotent stem cell generation. Encouraged by the MeV reprogramming vector efficiency, in this study, we develop a single-cycle MeV vector to deliver the gRNA(s) and Cas9 nuclease to human cells for efficient gene editing. We show that the MeV vector achieved on-target gene editing of the reporter (mCherry) and endogenous genes (HBB and FANCD1) in human cells. Additionally, the MeV vector achieved precise knock-in via homology-directed repair using a single-stranded oligonucleotide donor. The MeV vector is a new and flexible platform for gene knock-out and knock-in modifications in human cells, capable of incorporating new technologies as they are developed.
Collapse
Affiliation(s)
- Ramya Rallabandi
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| | - Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Spencer Majerus
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Austin Royster
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarrianna Hoffer
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mia Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis 2024; 11:268-282. [PMID: 37588217 PMCID: PMC10425811 DOI: 10.1016/j.gendis.2023.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
CRISPR/Cas9 is an effective gene editing tool with broad applications for the prevention or treatment of numerous diseases. It depends on CRISPR (clustered regularly interspaced short palindromic repeats) as a bacterial immune system and plays as a gene editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9 compared to other editing approaches, it has been broadly investigated to treat numerous hereditary and acquired illnesses, including cancers, hemolytic diseases, immunodeficiency disorders, cardiovascular diseases, visual maladies, neurodegenerative conditions, and a few X-linked disorders. CRISPR/Cas9 system has been used to treat cancers through a variety of approaches, with stable gene editing techniques. Here, the applications and clinical trials of CRISPR/Cas9 in various illnesses are described. Due to its high precision and efficiency, CRISPR/Cas9 strategies may treat gene-related illnesses by deleting, inserting, modifying, or blocking the expression of specific genes. The most challenging barrier to the in vivo use of CRISPR/Cas9 like off-target effects will be discussed. The use of transfection vehicles for CRISPR/Cas9, including viral vectors (such as an Adeno-associated virus (AAV)), and the development of non-viral vectors is also considered.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14155-6463, Iran
| | - Hossein Soltaninejad
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14117-13116, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
5
|
Ravikumar Y, Koonyosying P, Srichairatanakool S, Ponpandian LN, Kumaravelu J, Srichairatanakool S. In Silico Molecular Docking and Dynamics Simulation Analysis of Potential Histone Lysine Methyl Transferase Inhibitors for Managing β-Thalassemia. Molecules 2023; 28:7266. [PMID: 37959685 PMCID: PMC10650625 DOI: 10.3390/molecules28217266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
A decreased hemoglobin synthesis is contemplated as a pathological indication of β-thalassemia. Recent studies show that EPZ035544 from Epizyme could induce fetal hemoglobin (HbF) levels due to its proven capability to inhibit euchromatin histone lysine methyl transferase (EHMT2). Therefore, the development of EHMT2 inhibitors is considered promising in managing β-thalassemia. Our strategy to find novel compounds that are EHMT2 inhibitors relies on the virtual screening of ligands that have a structural similarity to N2-[4-methoxy-3-(2,3,4,7-tetrahydro-1H-azepin-5-yl) phenyl]-N4,6-dimethyl-pyrimidine-2,4-diamine (F80) using the PubChem database. In silico docking studies using Autodock Vina were employed to screen a library of 985 compounds and evaluate their binding ability with EHMT2. The selection of hit compounds was based on the docking score and mode of interaction with the protein. The top two ranked compounds were selected for further investigations, including pharmacokinetic properties analysis and molecular dynamics simulations (MDS). Based on the obtained docking score and interaction analysis, N-(4-methoxy-3-methylphenyl)-4,6-diphenylpyrimidin-2-amine (TP1) and 2-N-[4-methoxy-3-(5-methoxy-3H-indol-2-yl)phenyl]-4-N,6-dimethylpyrimidine-2,4-diamine (TP2) were found to be promising candidates, and TP1 exhibited better stability in the MDS study compared to TP2. In summary, our approach helps identify potential EHMT2 inhibitors, and further validation using in vitro and in vivo experiments could certainly enable this molecule to be used as a therapeutic drug in managing β-thalassemia disease.
Collapse
Affiliation(s)
- Yuvaraj Ravikumar
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.R.); (P.K.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.R.); (P.K.)
| | - Sirichai Srichairatanakool
- Division of Hematology, Department of Internal Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Jayanthi Kumaravelu
- Department of Microbiology and Biotechnology, Bharath Institute of Higher Education and Research, Agharam Road Selaiyur, Chennai 600073, India
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.R.); (P.K.)
| |
Collapse
|
6
|
Spatial and Temporal Expression Characteristics of the HBB Gene Family in Six Different Pig Breeds. Genes (Basel) 2022; 13:genes13101822. [PMID: 36292707 PMCID: PMC9601290 DOI: 10.3390/genes13101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
β-Thalassemia induces hemolytic anemia caused by mutations in the β-chain gene locus. As humans progress from embryo to adulthood, hemoglobin recombines twice. To test whether similar hemoglobin reassembly occurs in pigs, bioinformatics tools were used to predict the pig hemoglobin-encoding gene. We then systematically analyzed the expression patterns of the HBB gene family in three developmental stages (weaning, sexual maturity and physical maturity) of six different pig breeds (Landrace, Yorkshire, Wuzhishan, Songliao black, Meishan and Tibetan). The results showed that the new hemoglobin coding gene 'HBB-like' was found in pigs, while the HBG gene did not exist in pigs, indicating that human-like reassembly might not exist in pigs. The HBB and HBB-like genes shared highly similar amino acid sequences and gene sequences. The genes on the β-chain were highly similar between humans and pigs and the amino acid sequences of human and pig HBB genes at position 26 and positions 41-42 were identical. qPCR results showed that there were significant differences in the spatiotemporal expression patterns of the four genes (HBA, HBB, HBB-like and HBE) across breeds. Our results provide a foundation for follow-up studies assessing the relationship between the gene-encoding hemoglobin and β-thalassemia disease, as well as the construction of a gene-edited β-thalassemia miniature pig model to assess β-thalassemia treatments.
Collapse
|
7
|
Harteveld CL, Achour A, Arkesteijn SJG, Ter Huurne J, Verschuren M, Bhagwandien-Bisoen S, Schaap R, Vijfhuizen L, El Idrissi H, Koopmann TT. The hemoglobinopathies, molecular disease mechanisms and diagnostics. Int J Lab Hematol 2022; 44 Suppl 1:28-36. [PMID: 36074711 PMCID: PMC9542123 DOI: 10.1111/ijlh.13885] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Hemoglobinopathies are the most common monogenic disorders in the world with an ever increasing global disease burden each year. As most hemoglobinopathies show recessive inheritance carriers are usually clinically silent. Programmes for preconception and antenatal carrier screening, with the option of prenatal diagnosis are considered beneficial in many endemic countries. With the development of genetic tools such as Array analysis and Next Generation Sequencing in addition to state of the art screening at the hematologic, biochemic and genetic level, have contributed to the discovery of an increasing number of rare rearrangements and novel factors influencing the disease severity over the recent years. This review summarizes the basic requirements for adequate carrier screening analysis, the importance of genotype–phenotype correlation and how this may lead to the unrevealing exceptional interactions causing a clinically more severe phenotype in otherwise asymptomatic carriers. A special group of patients are β‐thalassemia carriers presenting with features of β‐thalassemia intermedia of various clinical severity. The disease mechanisms may involve duplicated α‐globin genes, mosaic partial Uniparental Isodisomy of chromosome 11p15.4 where the HBB gene is located or haplo‐insufficiency of a non‐linked gene SUPT5H on chromosome 19q, first described in two Dutch families with β‐thalassemia trait without variants in the HBB gene.
Collapse
Affiliation(s)
- Cornelis L Harteveld
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahlem Achour
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands.,Department of congenital and hereditary diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Sandra J G Arkesteijn
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeanet Ter Huurne
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Verschuren
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Rianne Schaap
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Vijfhuizen
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Hakima El Idrissi
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Tamara T Koopmann
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Carsote M, Vasiliu C, Trandafir AI, Albu SE, Dumitrascu MC, Popa A, Mehedintu C, Petca RC, Petca A, Sandru F. New Entity-Thalassemic Endocrine Disease: Major Beta-Thalassemia and Endocrine Involvement. Diagnostics (Basel) 2022; 12:diagnostics12081921. [PMID: 36010271 PMCID: PMC9406368 DOI: 10.3390/diagnostics12081921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Beta-thalassemia (BTH), a recessively inherited haemoglobin (Hb) disorder, causes iron overload (IO), extra-medullary haematopoiesis and bone marrow expansion with major clinical impact. The main objective of this review is to address endocrine components (including aspects of reproductive health as fertility potential and pregnancy outcome) in major beta-thalassemia patients, a complex panel known as thalassemic endocrine disease (TED). We included English, full-text articles based on PubMed research (January 2017–June 2022). TED includes hypogonadism (hypoGn), anomalies of GH/IGF1 axes with growth retardation, hypothyroidism (hypoT), hypoparathyroidism (hypoPT), glucose profile anomalies, adrenal insufficiency, reduced bone mineral density (BMD), and deterioration of microarchitecture with increased fracture risk (FR). The prevalence of each ED varies with population, criteria of definition, etc. At least one out of every three to four children below the age of 12 y have one ED. ED correlates with ferritin and poor compliance to therapy, but not all studies agree. Up to 86% of the adult population is affected by an ED. Age is a positive linear predictor for ED. Low IGF1 is found in 95% of the population with GH deficiency (GHD), but also in 93.6% of persons without GHD. HypoT is mostly pituitary-related; it is not clinically manifested in the majority of cases, hence the importance of TSH/FT4 screening. HypoT is found at any age, with the prevalence varying between 8.3% and 30%. Non-compliance to chelation increases the risk of hypoT, yet not all studies confirmed the correlation with chelation history (reversible hypoT under chelation is reported). The pitfalls of TSH interpretation due to hypophyseal IO should be taken into consideration. HypoPT prevalence varies from 6.66% (below the age of 12) to a maximum of 40% (depending on the study). Serum ferritin might act as a stimulator of FGF23. Associated hypocalcaemia transitions from asymptomatic to severe manifestations. HypoPT is mostly found in association with growth retardation and hypoGn. TED-associated adrenal dysfunction is typically mild; an index of suspicion should be considered due to potential life-threatening complications. Periodic check-up by ACTH stimulation test is advised. Adrenal insufficiency/hypocortisolism status is the rarest ED (but some reported a prevalence of up to one third of patients). Significantly, many studies did not routinely perform a dynamic test. Atypical EM sites might be found in adrenals, mimicking an incidentaloma. Between 7.5–10% of children with major BTH have DM; screening starts by the age of 10, and ferritin correlated with glycaemia. Larger studies found DM in up to 34%of cases. Many studies do not take into consideration IGF, IGT, or do not routinely include OGTT. Glucose anomalies are time dependent. Emerging new markers represent promising alternatives, such as insulin secretion-sensitivity index-2. The pitfalls of glucose profile interpretation include the levels of HbA1c and the particular risk of gestational DM. Thalassemia bone disease (TBD) is related to hypoGn-related osteoporosis, renal function anomalies, DM, GHD, malnutrition, chronic hypoxia-induced calcium malabsorption, and transplant-associated protocols. Low BMD was identified in both paediatric and adult population; the prevalence of osteoporosis/TBD in major BTH patients varies; the highest rate is 40–72% depending on age, studied parameters, DXA evaluation and corrections, and screening thoracic–lumbar spine X-ray. Lower TBS and abnormal dynamics of bone turnover markers are reported. The largest cohorts on transfusion-dependent BTH identified the prevalence of hypoGn to be between 44.5% and 82%. Ferritin positively correlates with pubertal delay, and negatively with pituitary volume. Some authors appreciate hypoGn as the most frequent ED below the age of 15. Long-term untreated hypoGn induces a high cardiovascular risk and increased FR. Hormonal replacement therapy is necessary in addition to specific BTH therapy. Infertility underlines TED-related hormonal elements (primary and secondary hypoGn) and IO-induced gonadal toxicity. Males with BTH are at risk of infertility due to germ cell loss. IO induces an excessive amount of free radicals which impair the quality of sperm, iron being a local catalyser of ROS. Adequate chelation might improve fertility issues. Due to the advances in current therapies, the reproductive health of females with major BTH is improving; a low level of statistical significance reflects the pregnancy status in major BTH (limited data on spontaneous pregnancies and growing evidence of the induction of ovulation/assisted reproductive techniques). Pregnancy outcome also depends on TED approach, including factors such as DM control, adequate replacement of hypoT and hypoPT, and vitamin D supplementation for bone health. Asymptomatic TED elements such as subclinical hypothyroidism or IFG/IGT might become overt during pregnancy. Endocrine glands are particularly sensitive to iron deposits, hence TED includes a complicated puzzle of EDs which massively impacts on the overall picture, including the quality of life in major BTH. The BTH prognostic has registered progress in the last decades due to modern therapy, but the medical and social burden remains elevated. Genetic counselling represents a major step in approaching TH individuals, including as part of the pre-conception assessment. A multidisciplinary surveillance team is mandatory.
Collapse
Affiliation(s)
- Mara Carsote
- Department of Endocrinology, C. Davila University of Medicine and Pharmacy & C.I. Parhon National Institute of Endocrinology, 011684 Bucharest, Romania
- Correspondence: (M.C.); (M.-C.D.)
| | - Cristina Vasiliu
- Department of Obstetrics and Gynaecology, C. Davila University of Medicine and Pharmacy & University Emergency Hospital, 011684 Bucharest, Romania
| | - Alexandra Ioana Trandafir
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011684 Bucharest, Romania
| | - Simona Elena Albu
- Department of Obstetrics and Gynaecology, C. Davila University of Medicine and Pharmacy & University Emergency Hospital, 011684 Bucharest, Romania
| | - Mihai-Cristian Dumitrascu
- Department of Obstetrics and Gynaecology, C. Davila University of Medicine and Pharmacy & University Emergency Hospital, 011684 Bucharest, Romania
- Correspondence: (M.C.); (M.-C.D.)
| | - Adelina Popa
- Department of Dermatovenerology, C. Davila University of Medicine and Pharmacy & “Elias” University Emergency Hospital, 011684 Bucharest, Romania
| | - Claudia Mehedintu
- Department of Obstetrics and Gynaecology, C. Davila University of Medicine and Pharmacy & “Filantropia” Clinical Hospital, 011684 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, C. Davila University of Medicine and Pharmacy & “Prof. Dr. Theodor Burghele” Clinical Hospital, 011684 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynaecology, C. Davila University of Medicine and Pharmacy & University Emergency Hospital, 011684 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatovenerology, C. Davila University of Medicine and Pharmacy & “Elias” University Emergency Hospital, 011684 Bucharest, Romania
| |
Collapse
|
9
|
Development and clinical translation of ex vivo gene therapy. Comput Struct Biotechnol J 2022; 20:2986-3003. [PMID: 35782737 PMCID: PMC9218169 DOI: 10.1016/j.csbj.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Retroviral gene therapy has emerged as a promising therapeutic modality for multiple inherited and acquired human diseases. The capability of delivering curative treatment or mediating therapeutic benefits for a long-term period following a single application fundamentally distinguishes this medical intervention from traditional medicine and various lentiviral/γ-retroviral vector-mediated gene therapy products have been approved for clinical use. Continued advances in retroviral vector engineering, genomic editing, synthetic biology and immunology will broaden the medical applications of gene therapy and improve the efficacy and safety of the treatments based on genetic correction and alteration. This review will summarize the advent and clinical translation of ex vivo gene therapy, with the focus on the milestones during the exploitation of genetically engineered hematopoietic stem cells (HSCs) tackling a variety of pathological conditions which led to marketing approval. Finally, current statue and future prospects of gene editing as an alternative therapeutic approach are also discussed.
Collapse
|