1
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Andersen KØ, Detlefsen S, Brusgaard K, Christesen HT. Well-differentiated G1 and G2 pancreatic neuroendocrine tumors: a meta-analysis of published expanded DNA sequencing data. Front Endocrinol (Lausanne) 2024; 15:1351624. [PMID: 38868744 PMCID: PMC11167081 DOI: 10.3389/fendo.2024.1351624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Well-differentiated pancreatic neuroendocrine tumors (PNETs) can be non-functional or functional, e.g. insulinoma and glucagonoma. The majority of PNETs are sporadic, but PNETs also occur in hereditary syndromes, primarily multiple endocrine neoplasia type 1 (MEN1). The Knudson hypothesis stated a second, somatic hit in MEN1 as the cause of PNETs of MEN1 syndrome. In the recent years, reports on genetic somatic events in both sporadic and hereditary PNETs have emerged, providing a basis for a more detailed molecular understanding of the pathophysiology. In this systematic review and meta-analysis, we made a collation and statistical analysis of aggregated frequent genetic alterations and potential driver events in human grade G1/G2 PNETs. Methods A systematic search was performed in concordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) reporting guidelines of 2020. A search in Pubmed for published studies using whole exome, whole genome, or targeted gene panel (+400 genes) sequencing of human G1/G2 PNETs was conducted at the 25th of September 2023. Fourteen datasets from published studies were included with data on 221 patients and 225 G1/G2 PNETs, which were divided into sporadic tumors, and hereditary tumors with pre-disposing germline variants, and tumors with unknown germline status. Further, non-functioning and functioning PNETs were distinguished into two groups for pathway evaluation. The collated genetical analyses were conducted using the 'maftools' R-package. Results Sporadic PNETs accounted 72.0% (162/225), hereditary PNETs 13.3% (30/225), unknown germline status 14.7% (33/225). The most frequently altered gene was MEN1, with somatic variants and copy number variations in overall 42% (95/225); hereditary PNETs (germline variations in MEN1, VHL, CHEK2, BRCA2, PTEN, CDKN1B, and/or MUTYH) 57% (16/30); sporadic PNETs 36% (58/162); unknown germline status 64% (21/33). The MEN1 point mutations/indels were distributed throughout MEN1. Overall, DAXX (16%, 37/225) and ATRX-variants (12%, 27/225) were also abundant with missense mutations clustered in mutational hotspots associated with histone binding, and translocase activity, respectively. DAXX mutations occurred more frequently in PNETs with MEN1 mutations, p<0.05. While functioning PNETs shared few variated genes, non-functioning PNETs had more recurrent variations in genes associated with the Phosphoinositide 3-kinase, Wnt, NOTCH, and Receptor Tyrosine Kinase-Ras signaling onco-pathways. Discussion The somatic genetic alterations in G1/G2 PNETs are diverse, but with distinct differences between sporadic vs. hereditary, and functional vs. non-functional PNETs. Increased understanding of the genetic alterations may lead to identification of more drivers and driver hotspots in the tumorigenesis in well-differentiated PNETs, potentially giving a basis for the identification of new drug targets. (Funded by Novo Nordisk Foundation, grant number NNF19OC0057915).
Collapse
Affiliation(s)
- Kirstine Øster Andersen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Steno Diabetes Center Odense, Odense, Denmark
| |
Collapse
|
3
|
Ioffe D, McSweeny M, Hall MJ. Precision Medicine in the Era of Genetic Testing: Microsatellite Instability Evolved. Clin Colon Rectal Surg 2024; 37:157-171. [PMID: 38617845 PMCID: PMC11007599 DOI: 10.1055/s-0043-1770385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The recognized importance of microsatellite instability (MSI) in cancer has evolved considerably in the past 30 years. From its beginnings as a molecular predictor for Lynch syndrome, MSI first transitioned to a universal screening test in all colorectal and endometrial cancers, substantially increasing the identification of patients with Lynch syndrome among cancer patients. More recently, MSI has been shown to be a powerful biomarker of response to immune checkpoint blockade therapy across a diversity of tumor types, and in 2017 was granted Food and Drug Administration approval as the first tumor histology-agnostic biomarker for a cancer therapy. Focusing on colorectal cancer specifically, immune checkpoint blockade therapy has been shown to be highly effective in the treatment of both MSI-high (MSI-H) colon and rectal cancer, with data increasingly suggesting an early role for immune checkpoint blockade therapy in MSI-H colorectal tumors in the neoadjuvant setting, with the potential to avoid more toxic and morbid approaches using traditional chemotherapy, radiation therapy, and surgery. The success of MSI as an immune checkpoint blockade target has inspired ongoing vigorous research to identify new similar targets for immune checkpoint blockade therapy that may help to one day expand the reach of this revolutionary cancer therapy to a wider swath of patients and indications.
Collapse
Affiliation(s)
- Dina Ioffe
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michelle McSweeny
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J. Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Poylin VY, Shaffer VO, Felder SI, Goldstein LE, Goldberg JE, Kalady MF, Lightner AL, Feingold DL, Paquette IM. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Adenomatous Polyposis Syndromes. Dis Colon Rectum 2024; 67:213-227. [PMID: 37682806 DOI: 10.1097/dcr.0000000000003072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Affiliation(s)
- Vitaliy Y Poylin
- Division of Gastrointestinal and Oncologic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Virginia O Shaffer
- Department of Surgery, Emory University College of Medicine, Atlanta, Georgia
| | - Seth I Felder
- Department of Surgery, Moffit Cancer Center, Tampa, Florida
| | - Lindsey E Goldstein
- Division of General Surgery, North Florida/South Georgia Veteran's Health System, Gainesville, Florida
| | - Joel E Goldberg
- Division of General and Gastrointestinal Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew F Kalady
- Division of Colon and Rectal Surgery, Ohio State University, Columbus, Ohio
| | - Amy L Lightner
- Department of Colorectal Surgery, Scripps Clinic, San Diego, California
| | - Daniel L Feingold
- Division of Colorectal Surgery, Rutgers University, New Brunswick, New Jersey
| | - Ian M Paquette
- Division of Colon and Rectal Surgery, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
5
|
Sohn J, Lee SE, Shim EY. DNA Damage and Repair in Eye Diseases. Int J Mol Sci 2023; 24:3916. [PMID: 36835325 PMCID: PMC9964121 DOI: 10.3390/ijms24043916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Vision is vital for daily activities, and yet the most common eye diseases-cataracts, DR, ARMD, and glaucoma-lead to blindness in aging eyes. Cataract surgery is one of the most frequently performed surgeries, and the outcome is typically excellent if there is no concomitant pathology present in the visual pathway. In contrast, patients with DR, ARMD and glaucoma often develop significant visual impairment. These often-multifactorial eye problems can have genetic and hereditary components, with recent data supporting the role of DNA damage and repair as significant pathogenic factors. In this article, we discuss the role of DNA damage and the repair deficit in the development of DR, ARMD and glaucoma.
Collapse
Affiliation(s)
- Joanna Sohn
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Keystone School, 119 E. Craig Pl., San Antonio, TX 78212, USA
| | - Sang-Eun Lee
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Eun-Yong Shim
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Franck C, Stéphane G, Julien C, Virginie G, Martine G, Norbert G, Fabrice C, Didier F, Josef SM, Bertrand C. Structural and functional determinants of the archaeal 8-oxoguanine-DNA glycosylase AGOG for DNA damage recognition and processing. Nucleic Acids Res 2022; 50:11072-11092. [PMID: 36300625 PMCID: PMC9638937 DOI: 10.1093/nar/gkac932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
8-Oxoguanine (GO) is a major purine oxidation product in DNA. Because of its highly mutagenic properties, GO absolutely must be eliminated from DNA. To do this, aerobic and anaerobic organisms from the three kingdoms of life have evolved repair mechanisms to prevent its deleterious effect on genetic integrity. The major way to remove GO is the base excision repair pathway, usually initiated by a GO-DNA glycosylase. First identified in bacteria (Fpg) and eukaryotes (OGG1), GO-DNA glycosylases were more recently identified in archaea (OGG2 and AGOG). AGOG is the less documented enzyme and its mode of damage recognition and removing remains to be clarified at the molecular and atomic levels. This study presents a complete structural characterisation of apo AGOGs from Pyrococcus abyssi (Pab) and Thermococcus gammatolerans (Tga) and the first structure of Pab-AGOG bound to lesion-containing single- or double-stranded DNA. By combining X-ray structure analysis, site directed mutagenesis and biochemistry experiments, we identified key amino acid residues of AGOGs responsible for the specific recognition of the lesion and the base opposite the lesion and for catalysis. Moreover, a unique binding mode of GO, involving double base flipping, never observed for any other DNA glycosylases, is revealed. In addition to unravelling the properties of AGOGs, our study, through comparative biochemical and structural analysis, offers new insights into the evolutionary plasticity of DNA glycosylases across all three kingdoms of life.
Collapse
Affiliation(s)
- Coste Franck
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Goffinont Stéphane
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Cros Julien
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Gaudon Virginie
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Guérin Martine
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Garnier Norbert
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Confalonieri Fabrice
- Institut de Biologie Intégrative de la cellule (I2BC), UMR 9198 Université Paris-Saclay-CNRS-CEA , Bâtiment 21, Avenue de la Terrasse , F-91190 Gif-sur-Yvette , France
| | - Flament Didier
- Université de Brest, Ifremer, CNRS, Unité Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP) , F-29280 Plouzané , France
| | - Suskiewicz Marcin Josef
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Castaing Bertrand
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| |
Collapse
|
7
|
Kabziński J, Majsterek I. Association of base excision repair pathway genes OGG1, XRCC1 and MUTYH polymorphisms and the level of 8-oxo-guanine with increased risk of colorectal cancer occurrence. Int J Occup Med Environ Health 2022; 35:625-633. [PMID: 35770680 PMCID: PMC10464724 DOI: 10.13075/ijomeh.1896.01901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/15/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES Reduced efficiency of DNA repair systems has long been a suspected factor in increasing the risk of cancer. In this work authors investigate influence of selected polymorphisms of DNA repair genes (XRCC1, OGG1 and MUTYH) and level of oxidative damage (measured as level of 8-oxo-guanine, 8-oG) on modulation of the risk of colorectal cancer. MATERIAL AND METHODS In group of 324 patients with colorectal cancer the occurrence of polymorphic variants in Ser326Cys of OGG1, Arg399Gln of XRCC1 and Gln324His of MUTYH were studied with TaqMan technique. In addition level of 8-oG in isolated DNA was determined. RESULTS Studied polymorphisms of OGG1, XRCC1 and MUTYH genes influence the risk of CRC: OGG1 Ser326Cys (OR = 1.259, 95% CI: 1.058-1.499, p = 0.007), XRCC1 Arg399Gln (OR = 2.481, 95% CI: 1.745-3.529, p < 0.0001) and MUTYH Gln324His (OR = 1.421, 95% CI: 1.017-1.984, p = 0.039) increase the risk. At the same time, studies examined level of 8-oG for each of the genotypes in both the patient and control group, and have shown that OGG1 Ser326Cys and XRCC1 Arg399Gln are associated with elevated 8-oG level, while MUTYH Gln324His is not, suggesting, that in case of OGG1 Ser326Cys and XRCC1 Arg399Gln CRC risk modulation is connected to mechanisms associated with 8-oG levels. CONCLUSIONS This work shows that patients with CRC not only have an increased level of 8-oG and that the studied polymorphisms modulate risk of cancer, but also indicate a relationship between these 2 phenomena, which may contribute to a better understanding of the mechanism of neoplastic process in case of reduced effectiveness of DNA repair mechanisms. Int J Occup Med Environ Health. 2022;35(5):625-33.
Collapse
Affiliation(s)
- Jacek Kabziński
- Medical University of Lodz, Department of Clinical Chemistry and Biochemistry, Łódź, Poland
| | - Ireneusz Majsterek
- Medical University of Lodz, Department of Clinical Chemistry and Biochemistry, Łódź, Poland
| |
Collapse
|
8
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
9
|
Rehman O, Sackfield B, Thoguluva Chandrasekar V, Oliver J, Aswath G. A Case Report of CHEK2 and MUTYH Germline Mutations Associated With Cholangiocarcinoma in a Young Patient. Cureus 2022; 14:e22631. [PMID: 35371633 PMCID: PMC8959066 DOI: 10.7759/cureus.22631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 11/05/2022] Open
|
10
|
Gupta A, Hwang BJ, Benyamien-Roufaeil D, Jain S, Liu S, Gonzales R, Brown RA, Zalzman M, Lu AL, Lu AL. Mammalian MutY Homolog (MYH or MUTYH) is Critical for Telomere Integrity under Oxidative Stress. OBM GERIATRICS 2022; 6:196. [PMID: 35812693 PMCID: PMC9267527 DOI: 10.21926/obm.geriatr.2202196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Telomeres consist of special features and proteins to protect the ends of each chromosome from deterioration and fusion. The telomeric DNA repeats are highly susceptible to oxidative damage that can accelerate telomere shortening and affect telomere integrity. Several DNA repair factors including MYH/MUTYH DNA glycosylase, its interacting partners Rad9/Rad1/Hus1 checkpoint clamp, and SIRT6 aging regulator, are associated with the telomeres. MYH prevents C:G to A:T mutation by removing adenine mispaired with a frequent oxidative DNA lesion, 8-oxoguanine. Here, we show that hMYH knockout (KO) human HEK-293T cells are more sensitive to H2O2 treatment, have higher levels of DNA strand breaks and shorter telomeres than the control hMYH +/+ cells. SIRT6 foci increase at both the global genome and at telomeric regions in H2O2-treated hMYH +/+ cells. However, in untreated hMYH KO HEK-293T cells, SIRT6 foci only increase at the global genome, but not at the telomeric regions. In addition, the hMYH KO HEK-293T cells have increased extra-chromosomal and intra-chromosomal telomeres compared to the control cells, even in the absence of H2O2 treatment. After H2O2 treatment, the frequency of extra-chromosomal telomeres increased in control HEK-293T cells. Remarkably, in H2O2-treated hMYH KO cells, the frequencies of extra-chromosomal telomeres, intra-chromosomal telomeres, and telomere fusions are further increased. We further found that the sensitivity to H2O2 and shortened telomeres of hMYH KO cells, are restored by expressing wild-type hMYH, and partially rescued by expressing hMYHQ324H mutant (defective in Hus1 interaction only), but not by expressing hMYHV315A mutant (defective in both SIRT6 and Hus1 interactions). Thus, MYH interactions with SIRT6 and Hus1 are critical for maintaining cell viability and telomeric stability. Therefore, the failure to coordinate 8-oxoG repair is detrimental to telomere integrity.
Collapse
Affiliation(s)
- Aditi Gupta
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bor-Jang Hwang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Sara Jain
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sophie Liu
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rex Gonzales
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert A Brown
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michal Zalzman
- University of Maryland School of Medicine; The Center for Stem Cell Biology and Regenerative Medicine; Marlene and Stewart Greenbaum Cancer Center, Baltimore, MD 21201, USA
| | - A-Lien Lu
- University of Maryland School of Medicine; Marlene and Stewart Greenbaum Cancer Center, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Saad AM, Abdel-Megied AES, Elbaz RA, Hassab El-Nabi SE, Elshazli RM. Genetic variants of APEX1 p.Asp148Glu and XRCC1 p.Gln399Arg with the susceptibility of hepatocellular carcinoma. J Med Virol 2021; 93:6278-6291. [PMID: 34289138 DOI: 10.1002/jmv.27217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022]
Abstract
The DNA repair genes have a crucial function in the base excision repair (BER) mechanism among different cancerous disorders, particularly hepatocellular carcinoma (HCC). The foremost objective of this study is to explore the association of genetic variants of the APEX1 p.Asp148Glu and the XRCC1 p.Gln399Arg with the susceptibility of HCC and to identify the computational bioinformatics frameworks of these missense variants. A total of 250 participants were enrolled in this study, including 150 HCC patients and 100 cancer-free controls. The genomic DNA was characterized and genotyped by applying the PCR-CTPP method. The frequency of the APEX1 (rs1130409*Glu) allele was statistically significant with increased risk of HCC (OR = 1.66, 95% CI = 1.12-2.45), while the XRCC1 (rs25487*Gln) allele conferred a protection against the progression of HCC (OR = 0.64, 95% CI = 0.42-0.96). Furthermore, HCC patients carrying the APEX1 p.Asp148Glu and the XRCC1 p.Gln399Arg variants indicated no significant difference with the clinical, and laboratory parameters (p > .05). Our findings confirmed that the APEX1 p.Asp148Glu variant was associated with increased risk of HCC, while the XRCC1 p.Gln399Arg variant revealed protection against the development of HCC.
Collapse
Affiliation(s)
- Ahmad M Saad
- Biochemistry Section, Department of Chemistry, Faculty of Science, Menoufia University, Menoufia, Egypt
| | | | - Rizk A Elbaz
- Genetic Unit, Children Hospital, Mansoura University, Mansoura, Egypt
| | | | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
13
|
Tlemsani C, Takahashi N, Pongor L, Rajapakse VN, Tyagi M, Wen X, Fasaye GA, Schmidt KT, Desai P, Kim C, Rajan A, Swift S, Sciuto L, Vilimas R, Webb S, Nichols S, Figg WD, Pommier Y, Calzone K, Steinberg SM, Wei JS, Guha U, Turner CE, Khan J, Thomas A. Whole-exome sequencing reveals germline-mutated small cell lung cancer subtype with favorable response to DNA repair-targeted therapies. Sci Transl Med 2021; 13:13/578/eabc7488. [PMID: 33504652 DOI: 10.1126/scitranslmed.abc7488] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/27/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
Because tobacco is a potent carcinogen, secondary causes of lung cancer are often diminished in perceived importance. To assess the extent of inherited susceptibility to small cell lung cancer (SCLC), the most lethal type of lung cancer, we sequenced germline exomes of 87 patients (77 SCLC and 10 extrapulmonary small cell) and considered 607 genes, discovering 42 deleterious variants in 35 cancer-predisposition genes among 43.7% of patients. These findings were validated in an independent cohort of 79 patients with SCLC. Loss of heterozygosity was observed in 3 of 14 (21.4%) tumors. Identification of variants influenced medical management and family member testing in nine (10.3%) patients. Unselected patients with SCLC were more likely to carry germline RAD51 paralog D (RAD51D), checkpoint kinase 1 (CHEK1), breast cancer 2 (BRCA2), and mutY DNA glycosylase (MUTYH) pathogenic variants than healthy controls. Germline genotype was significantly associated with the likelihood of a first-degree relative with cancer or lung cancer (odds ratio: 1.82, P = 0.008; and 2.60, P = 0.028), and longer recurrence-free survival after platinum-based chemotherapy (P = 0.002), independent of known prognostic factors. Treatment of a patient with relapsed SCLC and germline pathogenic mutation of BRCA1 interacting protein C-terminal helicase 1 (BRIP1), a homologous recombination-related gene, using agents synthetically lethal with homologous recombination deficiency, resulted in a notable disease response. This work demonstrates that SCLC, currently thought to result almost exclusively from tobacco exposure, may have an inherited predisposition and lays the groundwork for targeted therapies based on the genes involved.
Collapse
Affiliation(s)
- Camille Tlemsani
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Manoj Tyagi
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Xinyu Wen
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Grace-Ann Fasaye
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Keith T Schmidt
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Chul Kim
- Georgetown University, Washington, DC 20007, USA
| | - Arun Rajan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Shannon Swift
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Santhana Webb
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - William Douglas Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Kathleen Calzone
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Clesson E Turner
- Walter Reed National Military Medical Center, Bethesda, MD, Bethesda, MD 20814, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Gorini F, Scala G, Cooke MS, Majello B, Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair (Amst) 2021; 97:103027. [PMID: 33285475 PMCID: PMC7926032 DOI: 10.1016/j.dnarep.2020.103027] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of DNA oxidation, is a pre-mutagenic lesion which is prone to mispair, if left unrepaired, with 2'-deoxyadenosine during DNA replication. While unrepaired or incompletely repaired 8-oxodG has classically been associated with genome instability and cancer, it has recently been reported to have a role in the epigenetic regulation of gene expression. Despite the growing collection of genome-wide 8-oxodG mapping studies that have been used to provide new insight on the functional nature of 8-oxodG within the genome, a comprehensive view that brings together the epigenetic and the mutagenic nature of the 8-oxodG is still lacking. To help address this gap, this review aims to provide (i) a description of the state-of-the-art knowledge on both the mutagenic and epigenetic roles of 8-oxodG; (ii) putative molecular models through which the 8-oxodG can cause genome instability; (iii) a possible molecular model on how 8-oxodG, acting as an epigenetic signal, could cause the translocations and deletions which are associated with cancer.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy.
| |
Collapse
|
15
|
Moscatello C, Di Nicola M, Veschi S, Di Gregorio P, Cianchetti E, Stuppia L, Battista P, Cama A, Curia MC, Aceto GM. Relationship between MUTYH, OGG1 and BRCA1 mutations and mRNA expression in breast and ovarian cancer predisposition. Mol Clin Oncol 2020; 14:15. [PMID: 33343895 PMCID: PMC7725208 DOI: 10.3892/mco.2020.2177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
The aetiology of breast and ovarian cancer (BC/OC) is multi-factorial. At present, the involvement of base excision repair (BER) glycosylases (MUTYH and OGG1) in BC/OC predisposition is controversial. The present study investigated whether germline mutation status and mRNA expression of two BER genes, MUTHY and OGG1, were correlated with BRCA1 in 59 patients with BC/OC and 50 matched population controls. In addition, to evaluate the relationship between MUTYH, OGG1 and BRCA1, their possible mutual modulation and correlation among mutational spectrum, gene expression and demographic characteristics were evaluated. The results identified 18 MUTYH and OGG1 variants, of which 4 were novel (2 MUTYH and 2 OGG1) in 44 of the 59 patients. In addition, two pathogenic mutations were identified: OGG1 p.Arg46Gln, detected in a patient with BC and a family history of cancer, and MUTYH p.Val234Gly in a patient with OC, also with a family history of cancer. A significant reduced transcript expression in MUTYH was observed (P=0.033) in cases, and in association with the presence of rare variants in the same gene (P=0.030). A significant correlation in the expression of the two BER genes was observed in cases (P=0.004), whereas OGG1 and BRCA1 was significantly correlated in cases (P=0.001) compared with controls (P=0.010). The results of the present study indicated that the relationship among mutational spectrum, gene expression and demographic characteristics may improve the genetic diagnosis and primary prevention of at-risk individuals belonging to families with reduced mRNA expression, regardless of mutation presence.
Collapse
Affiliation(s)
- Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Patrizia Di Gregorio
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Ettore Cianchetti
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Liborio Stuppia
- Immunohaematology and Transfusional Medicine Service, 'SS. Annunziata' Hospital, I-66100 Chieti, Italy
| | - Pasquale Battista
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
16
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|
17
|
Zhu RY, Majumdar C, Khuu C, De Rosa M, Opresko PL, David SS, Kool ET. Designer Fluorescent Adenines Enable Real-Time Monitoring of MUTYH Activity. ACS CENTRAL SCIENCE 2020; 6:1735-1742. [PMID: 33145410 PMCID: PMC7596860 DOI: 10.1021/acscentsci.0c00369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 05/04/2023]
Abstract
The human DNA base excision repair enzyme MUTYH (MutY homolog DNA glycosylase) excises undamaged adenine that has been misincorporated opposite the oxidatively damaged 8-oxoG, preventing transversion mutations and serving as an important defense against the deleterious effects of this damage. Mutations in the MUTYH gene predispose patients to MUTYH-associated polyposis and colorectal cancer, and MUTYH expression has been documented as a biomarker for pancreatic cancer. Measuring MUTYH activity is therefore critical for evaluating and diagnosing disease states as well as for testing this enzyme as a potential therapeutic target. However, current methods for measuring MUTYH activity rely on indirect electrophoresis and radioactivity assays, which are difficult to implement in biological and clinical settings. Herein, we synthesize and identify novel fluorescent adenine derivatives that can act as direct substrates for excision by MUTYH as well as bacterial MutY. When incorporated into synthetic DNAs, the resulting fluorescently modified adenine-release turn-on (FMART) probes report on enzymatic base excision activity in real time, both in vitro and in mammalian cells and human blood. We also employ the probes to identify several promising small-molecule modulators of MUTYH by employing FMART probes for in vitro screening.
Collapse
Affiliation(s)
- Ru-Yi Zhu
- Department
of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Chandrima Majumdar
- Department
of Chemistry, and Biochemistry, Molecular, Cellular and Developmental
Biology Graduate Group, University of California
at Davis, Davis, California 95616, United States
| | - Cindy Khuu
- Department
of Chemistry, and Biochemistry, Molecular, Cellular and Developmental
Biology Graduate Group, University of California
at Davis, Davis, California 95616, United States
| | - Mariarosaria De Rosa
- Department
of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, United States
- Hillman
Cancer Center, University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Patricia L. Opresko
- Department
of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, United States
- Hillman
Cancer Center, University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Sheila S. David
- Department
of Chemistry, and Biochemistry, Molecular, Cellular and Developmental
Biology Graduate Group, University of California
at Davis, Davis, California 95616, United States
| | - Eric T. Kool
- Department
of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
- E-mail:
| |
Collapse
|
18
|
An ordered assembly of MYH glycosylase, SIRT6 protein deacetylase, and Rad9-Rad1-Hus1 checkpoint clamp at oxidatively damaged telomeres. Aging (Albany NY) 2020; 12:17761-17785. [PMID: 32991318 PMCID: PMC7585086 DOI: 10.18632/aging.103934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 01/24/2023]
Abstract
In the base excision repair pathway, MYH/MUTYH DNA glycosylase prevents mutations by removing adenine mispaired with 8-oxoG, a frequent oxidative lesion. MYH glycosylase activity is enhanced by Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp and SIRT6 histone/protein deacetylase. Here, we show that MYH, SIRT6, and 9-1-1 are recruited to confined oxidatively damaged regions on telomeres in mammalian cells. Using different knockout cells, we show that SIRT6 responds to damaged telomeres very early, and then recruits MYH and Hus1 following oxidative stress. However, the recruitment of Hus1 to damaged telomeres is partially dependent on SIRT6. The catalytic activities of SIRT6 are not important for SIRT6 response but are essential for MYH recruitment to damaged telomeres. Compared to wild-type MYH, the recruitment of hMYHV315A mutant (defective in both SIRT6 and Hus1 interactions), but not hMYHQ324H mutant (defective in Hus1 interaction only), to damaged telomeres is severely reduced. The formation of MYH/SIRT6/9-1-1 complex is of biological significance as interrupting their interactions can increase cell's sensitivity to H2O2 and/or elevate cellular 8-oxoG levels after H2O2 treatment. Our results establish that SIRT6 acts as an early sensor of BER enzymes and both SIRT6 and 9-1-1 serve critical roles in DNA repair to maintain telomere integrity.
Collapse
|
19
|
Kita A, Fujiya M, Konishi H, Tanaka H, Kashima S, Iwama T, Ijiri M, Murakami Y, Takauji S, Goto T, Sakatani A, Ando K, Ueno N, Ogawa N, Okumura T. Probiotic‑derived ferrichrome inhibits the growth of refractory pancreatic cancer cells. Int J Oncol 2020; 57:721-732. [PMID: 32705165 PMCID: PMC7384844 DOI: 10.3892/ijo.2020.5096] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is associated with a poor prognosis due to challenges in early detection, severe progression of the primary tumor, metastatic lesions, and resistance to antitumor agents. However, previous studies have indicated a relationship between the microbiome and pancreatic cancer outcomes. Our previous study demonstrated that ferrichrome derived from Lactobacillus casei, a probiotic bacteria, exhibited tumor‑suppressive effects in colorectal and gastric cancer, and that the suppressive effects were stronger than conventional antitumor agents, such as 5‑fluorouracil (5‑FU) and cisplatin, suggesting that certain probiotics exert antitumorigenic effects. However, whether or not probiotic‑derived molecules, including ferrichrome, exert a tumor‑suppressive effect in other gastrointestinal tumors, such as pancreatic cancer, remains unclear. In the present study, it was demonstrated that probiotic‑derived ferrichrome inhibited the growth of pancreatic cancer cells, and its tumor‑suppressive effects were further revealed in 5‑FU‑resistant pancreatic cancer cells in vitro and in vivo in a mouse xenograft model. Ferrichrome inhibited the progression of cancer cells via dysregulation of the cell cycle by activating p53. DNA fragmentation and cleavage of poly (ADP‑ribose) polymerase were induced by ferrichrome treatment, suggesting that ferrichrome induced apoptosis in pancreatic cancer cells. A transcriptome analysis revealed that the expression p53‑associated mRNAs was significantly altered by ferrichrome treatment. Thus, the tumor‑suppressive effects of probiotics may mediated by probiotic‑derived molecules, such as ferrichrome, which may have applications as an antitumor drug, even in refractory and 5‑FU‑resistant pancreatic cancer.
Collapse
Affiliation(s)
- Akemi Kita
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Shin Kashima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Takuya Iwama
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Masami Ijiri
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Yuki Murakami
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Shuhei Takauji
- Asahikawa Medical University Hospital Emergency Unit, Asahikawa 078‑8510, Japan
| | - Takuma Goto
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Aki Sakatani
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Katsuyoshi Ando
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Nobuhiro Ueno
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Naoki Ogawa
- Center for Advanced Research and Education, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| |
Collapse
|
20
|
Structure of a DNA polymerase abortive complex with the 8OG:dA base pair at the primer terminus. Commun Biol 2020; 3:348. [PMID: 32620932 PMCID: PMC7334213 DOI: 10.1038/s42003-020-1080-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/12/2020] [Indexed: 01/28/2023] Open
Abstract
Adenine frequently pairs with the Hoogsteen edge of an oxidized guanine base (8OG) causing G to T transversions. The (syn)8OG:dA base pair is indistinguishable from the cognant base pair and can be extended by DNA polymerases with reduced efficiency. To examine the structural basis of this reduced efficiency, we sought to obtain the structure of the “product” complex of DNA polymerase (pol) β with the (syn)8OG:dA base pair at the primer terminus by soaking the binary complex crystals with a hydrolysable dCTP analogue complementary to the template base G. Crystallographic refinement of the structure revealed that the adenine of the (syn)8OG:dA base pair had been expelled from the primer terminus and a dCMP was inserted opposite 8OG in a reverse orientation; another uninserted molecule of the analogue was bound to the templating base G. This leads to an abortive complex that could form the basis of oxidatively-induced pol β stalling. Vinod Batra and Samuel Wilson report the structure of the complex of DNA polymerase β with the (syn)8OG:dA base pair at the primer terminus. Through crystallographic refinements, they uncover structural rearrangements that deems the complex abortive and results in oxidatively-induced pol β stalling.
Collapse
|
21
|
Kim DV, Makarova AV, Miftakhova RR, Zharkov DO. Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des 2020; 25:298-312. [PMID: 31198112 DOI: 10.2174/1381612825666190319112930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.
Collapse
Affiliation(s)
- Daria V Kim
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., Moscow 123182, Russian Federation
| | - Regina R Miftakhova
- Kazan Federal University, 18 Kremlevsakaya St., Kazan 420008, Russian Federation
| | - Dmitry O Zharkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation.,SB RAS Institute of Chemical Biology and Fu ndamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
22
|
Raetz AG, Banda DM, Ma X, Xu G, Rajavel AN, McKibbin PL, Lebrilla CB, David SS. The DNA repair enzyme MUTYH potentiates cytotoxicity of the alkylating agent MNNG by interacting with abasic sites. J Biol Chem 2020; 295:3692-3707. [PMID: 32001618 DOI: 10.1074/jbc.ra119.010497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/22/2020] [Indexed: 11/06/2022] Open
Abstract
Higher expression of the human DNA repair enzyme MUTYH has previously been shown to be strongly associated with reduced survival in a panel of 24 human lymphoblastoid cell lines exposed to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The molecular mechanism of MUTYH-enhanced MNNG cytotoxicity is unclear, because MUTYH has a well-established role in the repair of oxidative DNA lesions. Here, we show in mouse embryonic fibroblasts (MEFs) that this MNNG-dependent phenotype does not involve oxidative DNA damage and occurs independently of both O6-methyl guanine adduct cytotoxicity and MUTYH-dependent glycosylase activity. We found that blocking of abasic (AP) sites abolishes higher survival of Mutyh-deficient (Mutyh -/-) MEFs, but this blockade had no additive cytotoxicity in WT MEFs, suggesting the cytotoxicity is due to MUTYH interactions with MNNG-induced AP sites. We found that recombinant mouse MUTYH tightly binds AP sites opposite all four canonical undamaged bases and stimulated apurinic/apyrimidinic endonuclease 1 (APE1)-mediated DNA incision. Consistent with these observations, we found that stable expression of WT, but not catalytically-inactive MUTYH, enhances MNNG cytotoxicity in Mutyh -/- MEFs and that MUTYH expression enhances MNNG-induced genomic strand breaks. Taken together, these results suggest that MUTYH enhances the rapid accumulation of AP-site intermediates by interacting with APE1, implicating MUTYH as a factor that modulates the delicate process of base-excision repair independently of its glycosylase activity.
Collapse
Affiliation(s)
- Alan G Raetz
- Department of Chemistry, University of California, Davis, California 95616
| | - Douglas M Banda
- Department of Chemistry, University of California, Davis, California 95616
| | - Xiaoyan Ma
- Department of Chemistry, University of California, Davis, California 95616
| | - Gege Xu
- Department of Chemistry, University of California, Davis, California 95616
| | - Anisha N Rajavel
- Department of Chemistry, University of California, Davis, California 95616
| | - Paige L McKibbin
- Department of Chemistry, University of California, Davis, California 95616
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, California 95616
| | - Sheila S David
- Department of Chemistry, University of California, Davis, California 95616.
| |
Collapse
|
23
|
Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 2020; 18:207-219. [PMID: 31993111 PMCID: PMC6974700 DOI: 10.1016/j.csbj.2019.12.013] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species are a constant threat to DNA as they modify bases with the risk of disrupting genome function, inducing genome instability and mutation. Such risks are due to primary oxidative DNA damage and also mediated by the repair process. This leads to a delicate decision process for the cell as to whether to repair a damaged base at a specific genomic location or better leave it unrepaired. Persistent DNA damage can disrupt genome function, but on the other hand it can also contribute to gene regulation by serving as an epigenetic mark. When such processes are out of balance, pathophysiological conditions could get accelerated, because oxidative DNA damage and resulting mutagenic processes are tightly linked to ageing, inflammation, and the development of multiple age-related diseases, such as cancer and neurodegenerative disorders. Recent technological advancements and novel data analysis strategies have revealed that oxidative DNA damage, its repair, and related mutations distribute heterogeneously over the genome at multiple levels of resolution. The involved mechanisms act in the context of genome sequence, in interaction with genome function and chromatin. This review addresses what we currently know about the genome distribution of oxidative DNA damage, repair intermediates, and mutations. It will specifically focus on the various methodologies to measure oxidative DNA damage distribution and discuss the mechanistic conclusions derived from the different approaches. It will also address the consequences of oxidative DNA damage, specifically how it gives rise to mutations, genome instability, and how it can act as an epigenetic mark.
Collapse
|
24
|
Naeli P, Pourhanifeh MH, Karimzadeh MR, Shabaninejad Z, Movahedpour A, Tarrahimofrad H, Mirzaei HR, Bafrani HH, Savardashtaki A, Mirzaei H, Hamblin MR. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 2020; 145:102854. [PMID: 31877535 PMCID: PMC6982584 DOI: 10.1016/j.critrevonc.2019.102854] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Both environmental and genetic factors are involved in the initiation and development of gastrointestinal cancer. Covalent closed circular RNAs (circRNAs) are produced by a mechanism called "back-splicing" from mRNAs. They are highly stable and show cell and tissue specific expression patterns. Although some functions such as "microRNA sponge" and "RNA binding protein sponge" have been reported for a small number of circRNAs, the function of thousands of other circRNAs is still unknown. Dysregulation of circRNAs has been reported in many GI cancers and are involved in metastasis and invasion. CircRNAs have been reported to be useful as prognostic markers and targets for developing new treatments. We first describe the properties and biogenesis of circRNAs. We then summarize recent reports about circRNA functions, expression status, and their potential to be used as biomarkers in GI cancers including, gastric cancer, colorectal cancer, esophageal cancer, hepatocellular carcinoma, gallbladder cancer and pancreatic cancer.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran.
| | | | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, TarbiatModares University, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Hassani Bafrani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
25
|
Nelson SR, Kathe SD, Hilzinger TS, Averill AM, Warshaw DM, Wallace SS, Lee AJ. Single molecule glycosylase studies with engineered 8-oxoguanine DNA damage sites show functional defects of a MUTYH polyposis variant. Nucleic Acids Res 2019; 47:3058-3071. [PMID: 30698731 PMCID: PMC6451117 DOI: 10.1093/nar/gkz045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 01/09/2023] Open
Abstract
Proper repair of oxidatively damaged DNA bases is essential to maintain genome stability. 8-Oxoguanine (7,8-dihydro-8-oxoguanine, 8-oxoG) is a dangerous DNA lesion because it can mispair with adenine (A) during replication resulting in guanine to thymine transversion mutations. MUTYH DNA glycosylase is responsible for recognizing and removing the adenine from 8-oxoG:adenine (8-oxoG:A) sites. Biallelic mutations in the MUTYH gene predispose individuals to MUTYH-associated polyposis (MAP), and the most commonly observed mutation in some MAP populations is Y165C. Tyr165 is a ‘wedge’ residue that intercalates into the DNA duplex in the lesion bound state. Here, we utilize single molecule fluorescence microscopy to visualize the real-time search behavior of Escherichia coli and Mus musculus MUTYH WT and wedge variant orthologs on DNA tightropes that contain 8-oxoG:A, 8-oxoG:cytosine, or apurinic product analog sites. We observe that MUTYH WT is able to efficiently find 8-oxoG:A damage and form highly stable bound complexes. In contrast, MUTYH Y150C shows decreased binding lifetimes on undamaged DNA and fails to form a stable lesion recognition complex at damage sites. These findings suggest that MUTYH does not rely upon the wedge residue for damage site recognition, but this residue stabilizes the lesion recognition complex.
Collapse
Affiliation(s)
- Shane R Nelson
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Scott D Kathe
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Thomas S Hilzinger
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Andrea J Lee
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
26
|
Huang HI, Chen CH, Wang SH, Wang LH, Lin YC. Effects of APE1 Asp148Glu polymorphisms on OPMD malignant transformation, and on susceptibility to and overall survival of oral cancer in Taiwan. Head Neck 2019; 41:1557-1564. [PMID: 30652382 DOI: 10.1002/hed.25576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/13/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The associations between malignant transformation of oral potentially malignant disorders (OPMDs), oral cancer development and prognosis, and apurinic/apyrimidinic endonuclease 1 (APE1) functional polymorphisms are unclear. METHODS Patients with OPMDs, patients with oral cancer, and healthy controls from the community were recruited to determine the effects of APE1 polymorphisms on malignant transformation, overall survival, and genetic susceptibility, respectively. RESULTS The APE1 Asp148Glu polymorphisms significantly correlated with a high hazard ratio for OPMD malignant transformation (adjusted hazard ratio [AHR] = 2.29; 95% confidence interval [CI] = 1.44-3.74) and low overall survival in oral cancer patients (AHR = 1.71, 95% CI = 1.11-2.56) according to follow-up and survival analysis. However, APE1 polymorphisms did not significantly correlate with development of oral cancer in the case-control study and logistic regression analysis. CONCLUSIONS These results indicate that APE1 Asp148Glu polymorphisms may have indirect roles in increasing the OPMD malignant transformation rate and in decreasing overall survival in oral cancer patients.
Collapse
Affiliation(s)
- Hsin-I Huang
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Ho Chen
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sheng-Hung Wang
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Hsuan Wang
- Division of Molecular Diagnosis, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
McDonnell KJ, Chemler JA, Bartels PL, O'Brien E, Marvin ML, Ortega J, Stern RH, Raskin L, Li GM, Sherman DH, Barton JK, Gruber SB. A human MUTYH variant linking colonic polyposis to redox degradation of the [4Fe4S] 2+ cluster. Nat Chem 2018; 10:873-880. [PMID: 29915346 PMCID: PMC6060025 DOI: 10.1038/s41557-018-0068-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 04/20/2018] [Indexed: 12/26/2022]
Abstract
The human DNA repair enzyme MUTYH excises mispaired adenine residues in oxidized DNA. Homozygous MUTYH mutations underlie the autosomal, recessive cancer syndrome MUTYH-associated polyposis. We report a MUTYH variant, p.C306W (c.918C>G), with a tryptophan residue in place of native cysteine, that ligates the [4Fe4S] cluster in a patient with colonic polyposis and family history of early age colon cancer. In bacterial MutY, the [4Fe4S] cluster is redox active, allowing rapid localization to target lesions by long-range, DNA-mediated signalling. In the current study, using DNA electrochemistry, we determine that wild-type MUTYH is similarly redox-active, but MUTYH C306W undergoes rapid oxidative degradation of its cluster to [3Fe4S]+, with loss of redox signalling. In MUTYH C306W, oxidative cluster degradation leads to decreased DNA binding and enzyme function. This study confirms redox activity in eukaryotic DNA repair proteins and establishes MUTYH C306W as a pathogenic variant, highlighting the essential role of redox signalling by the [4Fe4S] cluster.
Collapse
Affiliation(s)
- Kevin J McDonnell
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Joseph A Chemler
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Phillip L Bartels
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elizabeth O'Brien
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Monica L Marvin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph H Stern
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Departments of Medicinal Chemistry, Chemistry and Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Stephen B Gruber
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Tan SC. Low penetrance genetic polymorphisms as potential biomarkers for colorectal cancer predisposition. J Gene Med 2018; 20:e3010. [PMID: 29424105 DOI: 10.1002/jgm.3010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is a leading form of cancer in both males and females. Early detection of individuals at risk of colorectal cancer allows proper treatment and management of the disease to be implemented, which can potentially reduce the burden of colorectal cancer incidence, morbidity and mortality. In recent years, the role of genetic susceptibility factors in mediating predisposition to colorectal cancer has become more and more apparent. Identification of high-frequency, low-penetrance genetic polymorphisms associated with the cancer has therefore emerged as an important approach which can potentially aid prediction of colorectal cancer risk. However, the overwhelming amount of genetic epidemiology data generated over the past decades has made it difficult for one to assimilate the information and determine the exact genetic polymorphisms that can potentially be used as biomarkers for colorectal cancer. This review comprehensively consolidates, based primarily on results from meta-analyses, the recent progresses in the search of colorectal cancer-associated genetic polymorphisms, and discusses the possible mechanisms involved.
Collapse
Affiliation(s)
- Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Pathology and genetics of hereditary colorectal cancer. Pathology 2018; 50:49-59. [DOI: 10.1016/j.pathol.2017.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
|
30
|
Bartels PL, Stodola JL, Burgers PM, Barton JK. A Redox Role for the [4Fe4S] Cluster of Yeast DNA Polymerase δ. J Am Chem Soc 2017; 139:18339-18348. [PMID: 29166001 PMCID: PMC5881389 DOI: 10.1021/jacs.7b10284] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A [4Fe4S]2+ cluster in the C-terminal domain of the catalytic subunit of the eukaryotic B-family DNA polymerases is essential for the formation of active multi-subunit complexes. Here we use a combination of electrochemical and biochemical methods to assess the redox activity of the [4Fe4S]2+ cluster in Saccharomyces cerevisiae polymerase (Pol) δ, the lagging strand DNA polymerase. We find that Pol δ bound to DNA is indeed redox-active at physiological potentials, generating a DNA-mediated signal electrochemically with a midpoint potential of 113 ± 5 mV versus NHE. Moreover, biochemical assays following electrochemical oxidation of Pol δ reveal a significant slowing of DNA synthesis that can be fully reversed by reduction of the oxidized form. A similar result is apparent with photooxidation using a DNA-tethered anthraquinone. These results demonstrate that the [4Fe4S] cluster in Pol δ can act as a redox switch for activity, and we propose that this switch can provide a rapid and reversible way to respond to replication stress.
Collapse
Affiliation(s)
- Phillip L. Bartels
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Joseph L. Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Peter M.J. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
31
|
Repair of UV-Induced DNA Damage Independent of Nucleotide Excision Repair Is Masked by MUTYH. Mol Cell 2017; 68:797-807.e7. [PMID: 29149600 DOI: 10.1016/j.molcel.2017.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/05/2017] [Accepted: 10/17/2017] [Indexed: 02/05/2023]
Abstract
DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.
Collapse
|
32
|
Kunrath-Lima M, Repolês BM, Alves CL, Furtado C, Rajão MA, Macedo AM, Franco GR, Pena SDJ, Valenzuela L, Wisnovsky S, Kelley SO, Galanti N, Cabrera G, Machado CR. Characterization of Trypanosoma cruzi MutY DNA glycosylase ortholog and its role in oxidative stress response. INFECTION GENETICS AND EVOLUTION 2017; 55:332-342. [PMID: 28970112 DOI: 10.1016/j.meegid.2017.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
Trypanosoma cruzi is a protozoan parasite and the causative agent of Chagas disease. Like most living organisms, it is susceptible to oxidative stress, and must adapt to distinct environments. Hence, DNA repair is essential for its survival and the persistence of infection. Therefore, we studied whether T. cruzi has a homolog counterpart of the MutY enzyme (TcMYH), important in the DNA Base Excision Repair (BER) mechanism. Analysis of T. cruzi genome database showed that this parasite has a putative MutY DNA glycosylase sequence. We performed heterologous complementation assays using this genomic sequence. TcMYH complemented the Escherichia coli MutY- strain, reducing the mutation rate to a level similar to wild type. In in vitro assays, TcMYH was able to remove an adenine that was opposite to 8-oxoguanine. We have also constructed a T. cruzi lineage that overexpresses MYH. Although in standard conditions this lineage has similar growth to control cells, the overexpressor is more sensitive to hydrogen peroxide and glucose oxidase than the control, probably due to accumulation of AP sites in its DNA. Localization experiments with GFP-fused TcMYH showed this enzyme is present in both nucleus and mitochondrion. QPCR and MtOX results reinforce the presence and function of TcMYH in these two organelles. Our data suggest T. cruzi has a functional MYH DNA glycosylase, which participates in nuclear and mitochondrial DNA Base Excision Repair.
Collapse
Affiliation(s)
- Marianna Kunrath-Lima
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Ceres Luciana Alves
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Carolina Furtado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Matheus Andrade Rajão
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil.
| | - Sérgio Danilo Junho Pena
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil.
| | - Lucía Valenzuela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Simon Wisnovsky
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil.
| |
Collapse
|
33
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
34
|
Banda DM, Nuñez NN, Burnside MA, Bradshaw KM, David SS. Repair of 8-oxoG:A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine. Free Radic Biol Med 2017; 107:202-215. [PMID: 28087410 PMCID: PMC5457711 DOI: 10.1016/j.freeradbiomed.2017.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species (RONS) may infringe on the passing of pristine genetic information by inducing DNA inter- and intra-strand crosslinks, protein-DNA crosslinks, and chemical alterations to the sugar or base moieties of DNA. 8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the most prevalent DNA lesions formed by RONS and is repaired through the base excision repair (BER) pathway involving the DNA repair glycosylases OGG1 and MUTYH in eukaryotes. MUTYH removes adenine (A) from 8-oxoG:A mispairs, thus mitigating the potential of G:C to T:A transversion mutations from occurring in the genome. The paramount role of MUTYH in guarding the genome is well established in the etiology of a colorectal cancer predisposition syndrome involving variants of MUTYH, referred to as MUTYH-associated polyposis (MAP). In this review, we highlight recent advances in understanding how MUTYH structure and related function participate in the manifestation of human disease such as MAP. Here we focus on the importance of MUTYH's metal cofactor sites, including a recently discovered "Zinc linchpin" motif, as well as updates to the catalytic mechanism. Finally, we touch on the insight gleaned from studies with MAP-associated MUTYH variants and recent advances in understanding the multifaceted roles of MUTYH in the cell, both in the prevention of mutagenesis and tumorigenesis.
Collapse
Affiliation(s)
- Douglas M Banda
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Nicole N Nuñez
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Michael A Burnside
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Katie M Bradshaw
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Sheila S David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
35
|
Abstract
A DNA electrochemistry platform has been developed to probe proteins bound to DNA electrically. Here gold electrodes are modified with thiol-modified DNA, and DNA charge transport chemistry is used to probe DNA binding and enzymatic reaction both with redox-silent and redox-active proteins. For redox-active proteins, the electrochemistry permits the determination of redox potentials in the DNA-bound form, where comparisons to DNA-free potentials can be made using graphite electrodes without DNA modification. Importantly, electrochemistry on the DNA-modified electrodes facilitates reaction under aqueous, physiological conditions with a sensitive electrical measurement of binding and activity.
Collapse
Affiliation(s)
| | | | - Yingxin Deng
- California Institute of Technology, Pasadena, CA, United States
| | | |
Collapse
|
36
|
A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer. EBioMedicine 2017; 20:39-49. [PMID: 28551381 PMCID: PMC5478212 DOI: 10.1016/j.ebiom.2017.04.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/17/2023] Open
Abstract
8-Oxoguanine, a common mutagenic DNA lesion, generates G:C>T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C>T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strong sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. The occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.
Collapse
|
37
|
Sharbeen G, Youkhana J, Mawson A, McCarroll J, Nunez A, Biankin A, Johns A, Goldstein D, Phillips P. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity. Oncotarget 2017; 8:9216-9229. [PMID: 27999205 PMCID: PMC5354726 DOI: 10.18632/oncotarget.13985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.
Collapse
Affiliation(s)
- George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Amanda Mawson
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Joshua McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| | - Andrea Nunez
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Andrew Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Amber Johns
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Phoebe Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
38
|
Zhang L, Reyes A, Wang X. The Role of DNA Repair in Maintaining Mitochondrial DNA Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:85-105. [PMID: 29178071 DOI: 10.1007/978-981-10-6674-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are vital double-membrane organelles that act as a "powerhouse" inside the cell and have essential roles to maintain cellular functions, e.g., ATP production, iron-sulfur synthesis metabolism, and steroid synthesis. An important difference with other organelles is that they contain their own mitochondrial DNA (mtDNA). Such powerful organelles are also sensitive to both endogenous and exogenous factors that can cause lesions to their structural components and their mtDNA, resulting in gene mutations and eventually leading to diseases. In this review, we will mainly focus on mammalian mitochondrial DNA repair pathways that safeguard mitochondrial DNA integrity and several important factors involved in the repair process, especially on an essential pathway, base excision repair. We eagerly anticipate to explore more methods to treat related diseases by constantly groping for these complexes and precise repair mechanisms.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
39
|
Ricci MT, Miccoli S, Turchetti D, Bondavalli D, Viel A, Quaia M, Giacomini E, Gismondi V, Sanchez-Mete L, Stigliano V, Martayan A, Mazzei F, Bignami M, Bonelli L, Varesco L. Type and frequency of MUTYH variants in Italian patients with suspected MAP: a retrospective multicenter study. J Hum Genet 2016; 62:309-315. [PMID: 27829682 DOI: 10.1038/jhg.2016.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
To determine prevalence, spectrum and genotype-phenotype correlations of MUTYH variants in Italian patients with suspected MAP (MUTYH-associated polyposis), a retrospective analysis was conducted to identify patients who had undergone MUTYH genetic testing from September 2002 to February 2014. Results of genetic testing and patient clinical characteristics were collected (gender, number of polyps, age at polyp diagnosis, presence of colorectal cancer (CRC) and/or other cancers, family data). The presence of large rearrangements of the MUTYH gene was evaluated by Multiplex Ligation-dependent Probe Amplification analysis. In all, 299 patients with colorectal neoplasia were evaluated: 61.2% were males, the median age at polyps or cancer diagnosis was 50 years (16-80 years), 65.2% had <100 polyps and 51.8% had CRC. A total of 36 different MUTYH variants were identified: 13 (36.1%) were classified as pathogenetic, whereas 23 (63.9%) were variants of unknown significance (VUS). Two pathogenetic variants were observed in 78 patients (26.1%). A large homozygous deletion of exon 15 was found in one patient (<1.0%). MAP patients were younger than those with negative MUTYH testing at polyps diagnosis (P<0.0001) and at first cancer diagnosis (P=0.007). MAP patients carrying the p.Glu480del variant presented with a younger age at polyp diagnosis as compared to patients carrying p.Gly396Asp and p.Tyr179Cys variants. A high heterogeneity of MUTYH variants and a high rate of VUS were identified in a cohort of Italian patients with suspected MAP. Genotype-phenotype analysis suggests that the p.Glu480del variant is associated with a severe phenotype.
Collapse
Affiliation(s)
| | - Sara Miccoli
- Research Center on Hereditary Cancer, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniela Turchetti
- Research Center on Hereditary Cancer, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Alessandra Viel
- Funcional Onco-genomics and Genetics, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Michele Quaia
- Funcional Onco-genomics and Genetics, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Elisa Giacomini
- Funcional Onco-genomics and Genetics, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Viviana Gismondi
- Unit of Hereditary Cancer, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Lupe Sanchez-Mete
- Division of Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute-IRCCS, Rome, Italy
| | - Vittoria Stigliano
- Division of Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute-IRCCS, Rome, Italy
| | - Aline Martayan
- Clinical Pathology Unit, Regina Elena National Cancer Institute-IRCCS, Rome, Italy
| | - Filomena Mazzei
- Unit of Experimental and Computational Carcinogenesis, Istituto Superiore di Sanità, Rome, Italy
| | - Margherita Bignami
- Unit of Experimental and Computational Carcinogenesis, Istituto Superiore di Sanità, Rome, Italy
| | - Luigina Bonelli
- Unit of Clinical Epidemiology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Liliana Varesco
- Unit of Hereditary Cancer, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
40
|
Biskup E, Naym DG, Gniadecki R. Small-molecule inhibitors of Ataxia Telangiectasia and Rad3 related kinase (ATR) sensitize lymphoma cells to UVA radiation. J Dermatol Sci 2016; 84:239-247. [PMID: 27743911 DOI: 10.1016/j.jdermsci.2016.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Psoralen plus ultraviolet A (PUVA) photochemotherapy is a combination treatment used for inflammatory and neoplastic skin diseases such as mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma (CTCL). However, 30% of MF patients do not respond sufficiently to PUVA and require more aggressive therapies. OBJECTIVE The aim of this project was to investigate whether inhibition of Ataxia Telangiectasia and Rad3 related kinase (ATR) may enhance efficacy of phototherapy. METHODS CTCL cell lines (MyLa2000, SeAx and Mac2a) served as in vitro cell models. ATR and Chk1 were inhibited by small molecule antagonists VE-821, VE-822 or Chir-124, or by small interfering RNAs (siRNAs). Cell cycle and viability were assessed by flow cytometry. RESULTS Small molecule inhibitors of ATR and Chk1 potently sensitized all cell lines to PUVA and, importantly, also to UVA, which by itself did not cause apoptotic response. VE-821/2 blocked ATR pathway activation and released the cells from the G2/M block caused by UVA and PUVA, but did not affect apoptosis caused by other chemotherapeutics (etoposide, gemcitabine, doxorubicine) or by hydrogen peroxide. Knockdown of ATR and Chk1 with siRNA also blocked the ATR pathway and released the cells from G2/M block but did not sensitize the cells to UVA as observed with the small molecule inhibitors. The latter suggested that the synergism between VE-821/2 or Chir-124 and UVA was not solely caused by specific blocking of ATR kinase but also ATR-independent photosensitization. This hypothesis was further verified by administrating VE-821/2 or Chir-124 before and after UVA irradiation, as well as comparing their activity with other ATR and Chk1 inhibitors (AZD6738 and MK8776). We found that only VE-821/2 and Chir-124 kinase inhibitors had synergistic effect with UVA, and only if applied before treatment with UVA. CONCLUSION Small molecule ATR and Chk1 inhibitors potently sensitize lymphoma cells to UVA radiation and induce a prominent apoptotic response. Interestingly, this effect is due to the dual (kinase inhibiting and photosensitizing) mode of action of these compounds.
Collapse
Affiliation(s)
- Edyta Biskup
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark.
| | - David Gram Naym
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Robert Gniadecki
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark; Faculty of Health Sciences, University of Copenhagen, Denmark; Division of Dermatology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
41
|
AbdulSalam SF, Thowfeik FS, Merino EJ. Excessive Reactive Oxygen Species and Exotic DNA Lesions as an Exploitable Liability. Biochemistry 2016; 55:5341-52. [PMID: 27582430 DOI: 10.1021/acs.biochem.6b00703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the terms "excessive reactive oxygen species (ROS)" and "oxidative stress" are widely used, the implications of oxidative stress are often misunderstood. ROS are not a single species but a variety of compounds, each with unique biochemical properties and abilities to react with biomolecules. ROS cause activation of growth signals through thiol oxidation and may lead to DNA damage at elevated levels. In this review, we first discuss a conceptual framework for the interplay of ROS and antioxidants. This review then describes ROS signaling using FLT3-mediated growth signaling as an example. We then focus on ROS-mediated DNA damage. High concentrations of ROS result in various DNA lesions, including 8-oxo-7,8-dihydro-guanine, oxazolone, DNA-protein cross-links, and hydantoins, that have unique biological impacts. Here we delve into the biochemistry of nine well-characterized DNA lesions. Within each lesion, the types of repair mechanisms, the mutations induced, and their effects on transcription and replication are discussed. Finally, this review will discuss biochemically inspired implications for cancer therapy. Several teams have put forward designs to harness the excessive ROS and the burdened DNA repair systems of tumor cells for treating cancer. We discuss inhibition of the antioxidant system, the targeting of DNA repair, and ROS-activated prodrugs.
Collapse
Affiliation(s)
- Safnas F AbdulSalam
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Fathima Shazna Thowfeik
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Edward J Merino
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
42
|
de Faria RC, Vila-Nova LG, Bitar M, Resende BC, Arantes LS, Rebelato AB, Azevedo VAC, Franco GR, Machado CR, Santos LLD, de Oliveira Lopes D. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro. INFECTION GENETICS AND EVOLUTION 2016; 44:318-329. [PMID: 27456281 DOI: 10.1016/j.meegid.2016.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/07/2016] [Accepted: 07/21/2016] [Indexed: 01/30/2023]
Abstract
Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis, a disease that predominantly affects small ruminants, causing significant economic losses worldwide. As a facultative intracellular pathogen, this bacterium is exposed to an environment rich in reactive oxygen species (ROS) within macrophages. To ensure its genetic stability, C. pseudotuberculosis relies on efficient DNA repair pathways for excision of oxidative damage such as 8-oxoguanine, a highly mutagenic lesion. MutY is an adenine glycosylase involved in adenine excision from 8-oxoG:A mismatches avoiding genome mutation incorporation. The purpose of this study was to characterize MutY protein from C. pseudotuberculosis and determine its involvement with DNA repair. In vivo functional complementation assay employing mutY gene deficient Escherichia coli transformed with CpmutY showed a 13.5-fold reduction in the rate of spontaneous mutation, compared to cells transformed with empty vector. Also, under oxidative stress conditions, CpMutY protein favored the growth of mutY deficient E. coli, relative to the same strain in the absence of CpMutY. To demonstrate the involvement of this enzyme in recognition and excision of 8-oxoguanine lesion, an in vitro assay was performed. CpMutY protein was capable of recognizing and excising 8-oxoG:A but not 8-oxoG:C presenting evidences of glycosylase/AP lyase activity in vitro. In silico structural characterization revealed the presence of preserved motifs related to the MutY activity on DNA repair, such as catalytic residues involved in glycosylase/AP lyase activity and structural DNA-binding elements, such as the HhH motif and the [4Fe-4S] cluster. The three-dimensional structure of CpMutY, generated by comparative modeling, exhibits a catalytic domain very similar to that of E. coli MutY. Taken together, these results indicate that the CpmutY encodes a functional protein homologous to MutY from E. coli and is involved in the prevention of mutations and the repair of oxidative DNA lesions.
Collapse
Affiliation(s)
- Rafael Cançado de Faria
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Liliane Gonçalves Vila-Nova
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Mainá Bitar
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Bruno Carvalho Resende
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Larissa Sousa Arantes
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Arnaldo Basso Rebelato
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Vasco Ariston Carvalho Azevedo
- Laboratory of Cell and Molecular Genetics, Department of General Biology, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Glória Regina Franco
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Carlos Renato Machado
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Luciana Lara Dos Santos
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Débora de Oliveira Lopes
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| |
Collapse
|
43
|
DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond. Int J Mol Sci 2016; 17:ijms17060856. [PMID: 27258260 PMCID: PMC4926390 DOI: 10.3390/ijms17060856] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia and autism spectrum disorder (ASD) are multi-factorial and multi-symptomatic psychiatric disorders, each affecting 0.5%-1% of the population worldwide. Both are characterized by impairments in cognitive functions, emotions and behaviour, and they undermine basic human processes of perception and judgment. Despite decades of extensive research, the aetiologies of schizophrenia and ASD are still poorly understood and remain a significant challenge to clinicians and scientists alike. Adding to this unsatisfactory situation, patients with schizophrenia or ASD often develop a variety of peripheral and systemic disturbances, one prominent example of which is cancer, which shows a direct (but sometimes inverse) comorbidity in people affected with schizophrenia and ASD. Cancer is a disease characterized by uncontrolled proliferation of cells, the molecular origin of which derives from mutations of a cell's DNA sequence. To counteract such mutations and repair damaged DNA, cells are equipped with intricate DNA repair pathways. Oxidative stress, oxidative DNA damage, and deficient repair of oxidative DNA lesions repair have been proposed to contribute to the development of schizophrenia and ASD. In this article, we summarize the current evidence of cancer comorbidity in these brain disorders and discuss the putative roles of oxidative stress, DNA damage and DNA repair in the aetiopathology of schizophrenia and ASD.
Collapse
|
44
|
The MUTYH base excision repair gene protects against inflammation-associated colorectal carcinogenesis. Oncotarget 2016; 6:19671-84. [PMID: 26109431 PMCID: PMC4637313 DOI: 10.18632/oncotarget.4284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/05/2015] [Indexed: 12/19/2022] Open
Abstract
MUTYH DNA glycosylase removes mismatched adenine opposite 7, 8-dihydro-8-oxoguanine (8-oxoG), which is the major mutagenic lesion induced by oxidative stress. Biallelic mutations in MUTYH are associated with MUTYH-Associated polyposis (MAP) and increased risk in colorectal cancer (CRC). We investigated cancer susceptibility associated with MUTYH inactivation in a mouse model of inflammation-dependent carcinogenesis induced by azoxymethane (AOM) and dextran sulphate (DSS). Mutyh−/− mice were more sensitive than wild-type (WT) animals to AOM/DSS toxicity and accumulated DNA 8-oxoG in their gastrointestinal tract. AOM/DSS-induced colonic adenomas were significantly more numerous in Mutyh−/− than in WT animals, and frequently showed a tubulo-villous feature along with high-grade dysplasia and larger size lesions. This condition resulted in a greater propensity to develop adenocarcinomas. The colon of untreated Mutyh−/− mice expressed higher basal levels of pro-inflammatory cytokines GM-CSF and IFNγ, and treatment with AOM/DSS induced an early decrease in circulating CD4+ and CD8+ T lymphocytes and an increase in myeloid-derived suppressor cells (MDSCs). Adenomas from Mutyh−/− mice had a greater infiltrate of Foxp3+ T regulatory cells, granulocytes, macrophages, MDSCs and strong expression of TGF-β-latency-associated peptide and IL6. Our findings indicate that MUTYH loss is associated with an increase in CRC risk, which involves immunosuppression and altered inflammatory response. We propose that the AOM/DSS initiation/promotion protocol in Mutyh−/− mice provides a good model for MAP.
Collapse
|
45
|
Prakash A, Doublié S. Base Excision Repair in the Mitochondria. J Cell Biochem 2016; 116:1490-9. [PMID: 25754732 DOI: 10.1002/jcb.25103] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
The 16.5 kb human mitochondrial genome encodes for 13 polypeptides, 22 tRNAs and 2 rRNAs involved in oxidative phosphorylation. Mitochondrial DNA (mtDNA), unlike its nuclear counterpart, is not packaged into nucleosomes and is more prone to the adverse effects of reactive oxygen species (ROS) generated during oxidative phosphorylation. The past few decades have witnessed an increase in the number of proteins observed to translocate to the mitochondria for the purposes of mitochondrial genome maintenance. The mtDNA damage produced by ROS, if not properly repaired, leads to instability and can ultimately manifest in mitochondrial dysfunction and disease. The base excision repair (BER) pathway is employed for the removal and consequently the repair of deaminated, oxidized, and alkylated DNA bases. Specialized enzymes called DNA glycosylases, which locate and cleave the damaged base, catalyze the first step of this highly coordinated repair pathway. This review focuses on members of the four human BER DNA glycosylase superfamilies and their subcellular localization in the mitochondria and/or the nucleus, as well as summarizes their structural features, biochemical properties, and functional role in the excision of damaged bases.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, Vermont
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, Vermont
| |
Collapse
|
46
|
Arantes LS, Nova LGV, Resende BC, Bitar M, Coelho IEV, Miyoshi A, Azevedo VA, Lara dos Santos L, Machado CR, de Oliveira Lopes D. The Corynebacterium pseudotuberculosis genome contains two formamidopyrimidine-DNA glycosylase enzymes, only one of which recognizes and excises 8-oxoguanine lesion. Gene 2016; 575:233-43. [DOI: 10.1016/j.gene.2015.08.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/11/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
|
47
|
LI FEIFENG, LIU ZHENG, YAN PENG, SHAO XIN, DENG XIA, SAM CHRISTINE, CHEN YINGGANG, XU YONGPENG, WANG XISHAN, WANG GUIYU, LIU SHULIN. Identification of a novel mutation associated with familial adenomatous polyposis and colorectal cancer. Int J Mol Med 2015; 36:1049-56. [DOI: 10.3892/ijmm.2015.2303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/13/2015] [Indexed: 11/06/2022] Open
|
48
|
Burak MJ, Guja KE, Garcia-Diaz M. Nucleotide binding interactions modulate dNTP selectivity and facilitate 8-oxo-dGTP incorporation by DNA polymerase lambda. Nucleic Acids Res 2015. [PMID: 26220180 PMCID: PMC4652769 DOI: 10.1093/nar/gkv760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
8-Oxo-7,8,-dihydro-2'-deoxyguanosine triphosphate (8-oxo-dGTP) is a major product of oxidative damage in the nucleotide pool. It is capable of mispairing with adenosine (dA), resulting in futile, mutagenic cycles of base excision repair. Therefore, it is critical that DNA polymerases discriminate against 8-oxo-dGTP at the insertion step. Because of its roles in oxidative DNA damage repair and non-homologous end joining, DNA polymerase lambda (Pol λ) may frequently encounter 8-oxo-dGTP. Here, we have studied the mechanisms of 8-oxo-dGMP incorporation and discrimination by Pol λ. We have solved high resolution crystal structures showing how Pol λ accommodates 8-oxo-dGTP in its active site. The structures indicate that when mispaired with dA, the oxidized nucleotide assumes the mutagenic syn-conformation, and is stabilized by multiple interactions. Steady-state kinetics reveal that two residues lining the dNTP binding pocket, Ala(510) and Asn(513), play differential roles in dNTP selectivity. Specifically, Ala(510) and Asn(513) facilitate incorporation of 8-oxo-dGMP opposite dA and dC, respectively. These residues also modulate the balance between purine and pyrimidine incorporation. Our results shed light on the mechanisms controlling 8-oxo-dGMP incorporation in Pol λ and on the importance of interactions with the incoming dNTP to determine selectivity in family X DNA polymerases.
Collapse
Affiliation(s)
| | | | - Miguel Garcia-Diaz
- To whom correspondence should be addressed. Tel: +1 631 444 3054; Fax: +1 631 4449749;
| |
Collapse
|
49
|
Hwang BJ, Jin J, Gao Y, Shi G, Madabushi A, Yan A, Guan X, Zalzman M, Nakajima S, Lan L, Lu AL. SIRT6 protein deacetylase interacts with MYH DNA glycosylase, APE1 endonuclease, and Rad9-Rad1-Hus1 checkpoint clamp. BMC Mol Biol 2015; 16:12. [PMID: 26063178 PMCID: PMC4464616 DOI: 10.1186/s12867-015-0041-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
Background SIRT6, a member of the NAD+-dependent histone/protein deacetylase family, regulates genomic stability, metabolism, and lifespan. MYH glycosylase and APE1 are two base excision repair (BER) enzymes involved in mutation avoidance from oxidative DNA damage. Rad9–Rad1–Hus1 (9–1–1) checkpoint clamp promotes cell cycle checkpoint signaling and DNA repair. BER is coordinated with the checkpoint machinery and requires chromatin remodeling for efficient repair. SIRT6 is involved in DNA double-strand break repair and has been implicated in BER. Here we investigate the direct physical and functional interactions between SIRT6 and BER enzymes. Results We show that SIRT6 interacts with and stimulates MYH glycosylase and APE1. In addition, SIRT6 interacts with the 9-1-1 checkpoint clamp. These interactions are enhanced following oxidative stress. The interdomain connector of MYH is important for interactions with SIRT6, APE1, and 9–1–1. Mutagenesis studies indicate that SIRT6, APE1, and Hus1 bind overlapping but different sequence motifs on MYH. However, there is no competition of APE1, Hus1, or SIRT6 binding to MYH. Rather, one MYH partner enhances the association of the other two partners to MYH. Moreover, APE1 and Hus1 act together to stabilize the MYH/SIRT6 complex. Within human cells, MYH and SIRT6 are efficiently recruited to confined oxidative DNA damage sites within transcriptionally active chromatin, but not within repressive chromatin. In addition, Myh foci induced by oxidative stress and Sirt6 depletion are frequently localized on mouse telomeres. Conclusions Although SIRT6, APE1, and 9-1-1 bind to the interdomain connector of MYH, they do not compete for MYH association. Our findings indicate that SIRT6 forms a complex with MYH, APE1, and 9-1-1 to maintain genomic and telomeric integrity in mammalian cells. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0041-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Ying Gao
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA. .,School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing, 100084, China.
| | - Guoli Shi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,University of Maryland School of Nursing, 655 West Lombard Street, Baltimore, MD, 21201, USA.
| | - Amrita Madabushi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,Department of Natural and Physical Sciences, Life Sciences Institute, Baltimore City Community College, 801 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Austin Yan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Xin Guan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Michal Zalzman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw Street, Baltimore, MD, 21201, USA.
| | - Satoshi Nakajima
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
50
|
Hwang BJ, Jin J, Gunther R, Madabushi A, Shi G, Wilson GM, Lu AL. Association of the Rad9-Rad1-Hus1 checkpoint clamp with MYH DNA glycosylase and DNA. DNA Repair (Amst) 2015; 31:80-90. [PMID: 26021743 DOI: 10.1016/j.dnarep.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022]
Abstract
Cell cycle checkpoints provide surveillance mechanisms to activate the DNA damage response, thus preserving genomic integrity. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) clamp is a DNA damage response sensor and can be loaded onto DNA. 9-1-1 is involved in base excision repair (BER) by interacting with nearly every enzyme in BER. Here, we show that individual 9-1-1 components play distinct roles in BER directed by MYH DNA glycosylase. Analyses of Hus1 deletion mutants revealed that the interdomain connecting loop (residues 134-155) is a key determinant of MYH binding. Both the N-(residues 1-146) and C-terminal (residues 147-280) halves of Hus1, which share structural similarity, can interact with and stimulate MYH. The Hus1(K136A) mutant retains physical interaction with MYH but cannot stimulate MYH glycosylase activity. The N-terminal domain, but not the C-terminal half of Hus1 can also bind DNA with moderate affinity. Intact Rad9 expressed in bacteria binds to and stimulates MYH weakly. However, Rad9(1-266) (C-terminal truncated Rad9) can stimulate MYH activity and bind DNA with high affinity, close to that displayed by heterotrimeric 9(1-266)-1-1 complexes. Conversely, Rad1 has minimal roles in stimulating MYH activity or binding to DNA. Finally, we show that preferential recruitment of 9(1-266)-1-1 to 5'-recessed DNA substrates is an intrinsic property of this complex and is dependent on complex formation. Together, our findings provide a mechanistic rationale for unique contributions by individual 9-1-1 subunits to MYH-directed BER based on subunit asymmetry in protein-protein interactions and DNA binding events.
Collapse
Affiliation(s)
- Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Randall Gunther
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Amrita Madabushi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Natural and Physical Sciences, Life Sciences Institute; Baltimore City Community College, Baltimore, MD 21201, United States
| | - Guoli Shi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; University of Maryland School of Nursing, Baltimore, MD 21201, United States
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|