1
|
Shah S, Yu S, Zhang C, Ali I, Wang X, Qian Y, Xiao T. Retrotransposon SINEs in age-related diseases: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 101:102539. [PMID: 39395576 DOI: 10.1016/j.arr.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Retrotransposons are self-replicating genomic elements that move from one genomic location to another using a "copy-and-paste" method involving RNA intermediaries. One family of retrotransposon that has garnered considerable attention for its association with age-related diseases and anti-aging interventions is the short interspersed nuclear elements (SINEs). This review summarizes current knowledge on the roles of SINEs in aging processes and therapies. To underscore the significant research on the involvement of SINEs in aging-related diseases, we commence by outlining compelling evidence on the classification and mechanism, highlighting implications in age-related phenomena. The intricate relationship between SINEs and diseases such as neurodegenerative disorders, heart failure, high blood pressure, atherosclerosis, type 2 diabetes mellitus, osteoporosis, visual system dysfunctions, and cancer is explored, emphasizing their roles in various age-related diseases. Recent investigations into the anti-aging potential of SINE-targeted treatments are examined, with particular attention to how SINE antisense RNA mitigate age-related alterations at the cellular and molecular levels, offering insights into potential therapeutic targets for age-related pathologies. This review aims to compile the most recent advances on the multifaceted roles of SINE retrotransposons in age-related diseases and anti-aging interventions, providing valuable insights into underlying mechanisms and therapeutic avenues for promoting healthy aging.
Collapse
Affiliation(s)
- Suleman Shah
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chen Zhang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Ilyas Ali
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang 050017, China
| | - Youhui Qian
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tian Xiao
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
3
|
Visconti VV, Cariati I, Fittipaldi S, Iundusi R, Gasbarra E, Tarantino U, Botta A. DNA Methylation Signatures of Bone Metabolism in Osteoporosis and Osteoarthritis Aging-Related Diseases: An Updated Review. Int J Mol Sci 2021; 22:ijms22084244. [PMID: 33921902 PMCID: PMC8072687 DOI: 10.3390/ijms22084244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methylation is one of the most studied epigenetic mechanisms that play a pivotal role in regulating gene expression. The epigenetic component is strongly involved in aging-bone diseases, such as osteoporosis and osteoarthritis. Both are complex multi-factorial late-onset disorders that represent a globally widespread health problem, highlighting a crucial point of investigations in many scientific studies. In recent years, new findings on the role of DNA methylation in the pathogenesis of aging-bone diseases have emerged. The aim of this systematic review is to update knowledge in the field of DNA methylation associated with osteoporosis and osteoarthritis, focusing on the specific tissues involved in both pathological conditions.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Ida Cariati
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| |
Collapse
|
4
|
Stenz L. The L1-dependant and Pol III transcribed Alu retrotransposon, from its discovery to innate immunity. Mol Biol Rep 2021; 48:2775-2789. [PMID: 33725281 PMCID: PMC7960883 DOI: 10.1007/s11033-021-06258-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The 300 bp dimeric repeats digestible by AluI were discovered in 1979. Since then, Alu were involved in the most fundamental epigenetic mechanisms, namely reprogramming, pluripotency, imprinting and mosaicism. These Alu encode a family of retrotransposons transcribed by the RNA Pol III machinery, notably when the cytosines that constitute their sequences are de-methylated. Then, Alu hijack the functions of ORF2 encoded by another transposons named L1 during reverse transcription and integration into new sites. That mechanism functions as a complex genetic parasite able to copy-paste Alu sequences. Doing that, Alu have modified even the size of the human genome, as well as of other primate genomes, during 65 million years of co-evolution. Actually, one germline retro-transposition still occurs each 20 births. Thus, Alu continue to modify our human genome nowadays and were implicated in de novo mutation causing diseases including deletions, duplications and rearrangements. Most recently, retrotransposons were found to trigger neuronal diversity by inducing mosaicism in the brain. Finally, boosted during viral infections, Alu clearly interact with the innate immune system. The purpose of that review is to give a condensed overview of all these major findings that concern the fascinating physiology of Alu from their discovery up to the current knowledge.
Collapse
Affiliation(s)
- Ludwig Stenz
- Department of Genetic Medicine and Development, Faculty of Medicine, Geneva University, Geneva, Switzerland. .,Swiss Centre for Applied Human Toxicology, University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Pourrajab F, Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials). Heliyon 2021; 7:e06029. [PMID: 33532648 PMCID: PMC7829209 DOI: 10.1016/j.heliyon.2021.e06029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
There is a concept proposing that the primitive lineages of prokaryotes, eukaryotes, and viruses emerged from the primordial pool of primitive genetic elements. In this genetic pool, transposable elements (TEs) became a source of raw material for primitive genomes, tools of genetic innovation, and ancestors of modern genes (e.g. ncRNAs, tRNAs, and rRNAs). TEs contributed directly to the genome evolution of three forms of life on the earth. TEs now appear as tools that were used to giving rise to sexual dimorphism and sex determination, lineage-specific expression of genes and tissue differentiation and finally genome stability and lifespan determination.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Dato S, Rose G, Crocco P, Monti D, Garagnani P, Franceschi C, Passarino G. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mech Ageing Dev 2017; 165:147-155. [DOI: 10.1016/j.mad.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/04/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
7
|
Morgan RG, Venturelli M, Gross C, Tarperi C, Schena F, Reggiani C, Naro F, Pedrinolla A, Monaco L, Richardson RS, Donato AJ. Age-Associated ALU Element Instability in White Blood Cells Is Linked to Lower Survival in Elderly Adults: A Preliminary Cohort Study. PLoS One 2017; 12:e0169628. [PMID: 28060910 PMCID: PMC5218400 DOI: 10.1371/journal.pone.0169628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND ALU element instability could contribute to gene function variance in aging, and may partly explain variation in human lifespan. OBJECTIVE To assess the role of ALU element instability in human aging and the potential efficacy of ALU element content as a marker of biological aging and survival. DESIGN Preliminary cohort study. METHODS We measured two high frequency ALU element subfamilies, ALU-J and ALU-Sx, by a single qPCR assay and compared ALU-J/Sx content in white blood cell (WBCs) and skeletal muscle cell (SMCs) biopsies from twenty-three elderly adults with sixteen healthy sex-balanced young adults; all-cause survival rates of elderly adults predicted by ALU-J/Sx content in both tissues; and cardiovascular disease (CVD)- and cancer-specific survival rates of elderly adults predicted by ALU-J/Sx content in both tissues, as planned subgroup analyses. RESULTS We found greater ALU-J/Sx content variance in WBCs from elderly adults than young adults (P < 0.001) with no difference in SMCs (P = 0.94). Elderly adults with low WBC ALU-J/Sx content had worse four-year all-cause and CVD-associated survival than those with high ALU-J/Sx content (both P = 0.03 and hazard ratios (HR) ≥ 3.40), while WBC ALU-J/Sx content had no influence on cancer-associated survival (P = 0.42 and HR = 0.74). SMC ALU-J/Sx content had no influence on all-cause, CVD- or cancer -associated survival (all P ≥ 0.26; HR ≤ 2.07). CONCLUSIONS These initial findings demonstrate that ALU element instability occurs with advanced age in WBCs, but not SMCs, and imparts greater risk of all-cause mortality that is likely driven by an increased risk for CVD and not cancer.
Collapse
Affiliation(s)
- R. Garrett Morgan
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Massimo Venturelli
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Cole Gross
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Cantor Tarperi
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Fabio Naro
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University, Rome, Italy
| | | | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Russell S. Richardson
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, Utah, United States of America
| | - Anthony J. Donato
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
8
|
Karimov DD, Erdman VV, Nasibullin TR, Tuktarova IA, Somova RS, Timasheva YR, Mustafina OE. Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: The analysis of association with longevity. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun 2014; 5:5011. [PMID: 25247314 PMCID: PMC4185372 DOI: 10.1038/ncomms6011] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/18/2014] [Indexed: 02/08/2023] Open
Abstract
L1 retrotransposons are an abundant class of transposable elements which pose a threat to genome stability and may play a role in age-related pathologies such as cancer. Recent evidence indicates that L1s become more active in somatic tissues during the course of aging; the mechanisms underlying this phenomenon remain unknown, however. Here we report that the longevity regulating protein, SIRT6, is a powerful repressor of L1 activity. Specifically, SIRT6 binds to the 5′UTR of L1 loci, where it mono-ADP ribosylates the nuclear corepressor protein, KAP1, and facilitates KAP1 interaction with the heterochromatin factor, HP1α, thereby contributing to the packaging of L1 elements into transcriptionally repressive heterochromatin. During the course of aging, and also in response to DNA damage, however, we find that SIRT6 is depleted from L1 loci, allowing for the activation of these previously silenced retroelements.
Collapse
|
10
|
Moskalev AA, Pasyukova EG. From theories of aging to anti-aging interventions. Front Genet 2014; 5:276. [PMID: 25177344 PMCID: PMC4132295 DOI: 10.3389/fgene.2014.00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/27/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexey A Moskalev
- Radiation Ecology, Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of RAS Syktyvkar, Russia ; Syktyvkar State University Syktyvkar, Russia ; Moscow Institute of Physics and Technology (State University) Dolgoprudny, Russia
| | - Elena G Pasyukova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|