1
|
Grudzinski A, Tse B, Ombao R, Faughnan ME, Pavenski K. Red blood cell alloimmunization in transfused patients with hereditary hemorrhagic telangiectasia: A single centre retrospective study. Transfus Apher Sci 2024; 63:104019. [PMID: 39454475 DOI: 10.1016/j.transci.2024.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is a genetic blood vessel disorder which may lead to chronic bleeding and red blood cell (RBC) transfusions. Data on transfusion requirements and complications in HHT patients are sparse. STUDY DESIGN AND METHODS Retrospective chart review was conducted at St. Michael's Hospital (SMH) in Toronto, Canada. All adults with a definite clinical diagnosis of HHT AND inpatient hospital visits between January 1, 2011 and December 31, 2020 AND had undergone transfusion compatibility testing at SMH, were identified. Data were abstracted from electronic medical records. Simple descriptive statistics were used to analyze data. Institutional Research Ethics Board approval was obtained. RESULTS 63 HHT patients underwent compatibility testing and were subsequently transfused at SMH. Median patient age at data abstraction was 70 years (Interquartile Range [IQR]: 18) and 35 (56 %) were female. RBC alloantibodies were found in 23 transfused patients (36.5 %) and were predominantly directed against Rh and Kell antigens: Anti-E (65 %), Anti-K (39 %) and Anti-c (22 %) were most common. Excluding an outlier who received 611 RBC units during the study period, the mean number of RBC units transfused per HHT patient at SMH was 22.1 units (Standard Deviation: 40.9, IQR: 17). Six (9.5 %) transfused patients experienced at least one transfusion reaction. CONCLUSION RBC alloimmunization rate was 36.5 % in our cohort of transfused HHT patients; this is much higher than described in the general population and another transfused HHT cohort. The most commonly observed alloantibodies were Rh and Kell, supporting our policy of prophylactic phenotypic matching for these antigens for all transfused patients with HHT.
Collapse
Affiliation(s)
- Alexandra Grudzinski
- Division of Hematology-Oncology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| | - Brandon Tse
- Department of Laboratory Medicine, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8 Canada.
| | - Russel Ombao
- Department of Laboratory Medicine, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8 Canada.
| | - Marie E Faughnan
- Toronto HHT Centre, Division of Respirology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada; Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada; Division of Respirology, Department of Medicine, University of Toronto, 1 King's College Cir, Toronto, ON M5S 1A8, Canada.
| | - Katerina Pavenski
- Division of Hematology-Oncology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada; Department of Laboratory Medicine, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8 Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Shabani Z, Do Prado LB, Zhang R, Zhu W, Shaligram SS, Yadav A, Wang C, Su H. Increasing Endoglin Deletion in Endothelial Cells Exacerbates the Severity of Brain Arteriovenous Malformation in Mouse. Biomedicines 2024; 12:1691. [PMID: 39200156 PMCID: PMC11352040 DOI: 10.3390/biomedicines12081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Endoglin (ENG) mutation causes type 1 hereditary hemorrhagic telangiectasia (HHT1). HHT1 patients have arteriovenous malformations (AVMs) in multiple organs, including the brain. In mice, Eng deletion induced by R26RCreER or SM22αCre leads to AVM development in the brain and other organs. We hypothesized that an increase in Eng- negative ECs will enhance AVM severity. To increase EC Eng deletion, we used a codon-improved cre (icre), which is more potent in recombination of the floxed alleles than the wild-type (WT) cre. R26RCreER;Engf/f mice that have a Rosa promoter driving and tamoxifen (TM)-inducible WT cre expression globally, and PdgfbiCreER;Engf/f mice that have a Pdgfb promoter driving and TM-inducible icre expression in ECs were treated with three intra-peritoneal injections of TM (2.5 mg/25 g of body weight) to delete Eng globally or in the ECs. AAV-VEGF was stereotactically injected into the brain to induce brain focal angiogenesis and brain AVM. We found that icre caused more Eng deletion in the brain, indicated by a lower level of Eng proteins (p < 0.001) and fewer Eng-positive ECs (p = 0.01) than mice with WT cre. Mice with icre-mediated Eng deletion have more abnormal vessels (p = 0.02), CD68+ macrophages (p = 0.002), and hemorrhage (p = 0.04) and less vascular pericyte and smooth muscle coverage than mice with WT cre. In addition, arteriovenous shunts were detected in the intestines of icre mice, a phenotype that has not been detected in WT cre mice before. RNA-seq analysis showed that 8 out of the 10 top upregulated pathways identified by gene ontology (GO) analysis are related to inflammation. Therefore, the increase in Eng deletion in ECs exacerbates AVM severity, which is associated with enhanced inflammation. Strategies that can reduce Eng-negative ECs could be used to develop new therapies to reduce AVM severity for HHT1 patients.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Leandro Barbosa Do Prado
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Rui Zhang
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Sonali S. Shaligram
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Alka Yadav
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Calvin Wang
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (L.B.D.P.); (R.Z.); (W.Z.); (S.S.S.); (A.Y.); (C.W.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Villanueva B, Cerdà P, Torres-Iglesias R, Rocamora JL, Figueras A, Viñals F, Riera-Mestre A. Potential angiogenic biomarkers in hereditary hemorrhagic telangiectasia and other vascular diseases. Eur J Intern Med 2023; 115:10-17. [PMID: 37225595 DOI: 10.1016/j.ejim.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Biomarkers are new tools framed in precision and personalized medicine. Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic vascular disease with disturbances in the angiogenic pathways. Descriptive evidence supports that some angiogenesis-related molecules are differently detected in HHT patients compared to healthy subjects. These molecules are also related to diagnosis, prognosis, complications and therapy monitoring in other common vascular diseases. Despite the need for improving knowledge before applying them in daily clinical practice, there are good candidates to be considered as potential biomarkers in HHT and other vascular diseases. In the present review, the authors aim to summarize and discuss current evidence regarding the main putative angiogenic biomarkers by describing the biological role of each biomarker, the evidence related to HHT and their potential use in this and other common vascular diseases from a clinical point-of-view.
Collapse
Affiliation(s)
- B Villanueva
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Cerdà
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - R Torres-Iglesias
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - J L Rocamora
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - A Figueras
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - F Viñals
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain; Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - A Riera-Mestre
- HHT Unit. Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Arthur HM, Roman BL. An update on preclinical models of hereditary haemorrhagic telangiectasia: Insights into disease mechanisms. Front Med (Lausanne) 2022; 9:973964. [PMID: 36250069 PMCID: PMC9556665 DOI: 10.3389/fmed.2022.973964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Endoglin (ENG) is expressed on the surface of endothelial cells (ECs) where it efficiently binds circulating BMP9 and BMP10 ligands to initiate activin A receptor like type 1 (ALK1) protein signalling to protect the vascular architecture. Patients heterozygous for ENG or ALK1 mutations develop the vascular disorder known as hereditary haemorrhagic telangiectasia (HHT). Many patients with this disorder suffer from anaemia, and are also at increased risk of stroke and high output heart failure. Recent work using animal models of HHT has revealed new insights into cellular and molecular mechanisms causing this disease. Loss of the ENG (HHT1) or ALK1 (HHT2) gene in ECs leads to aberrant arteriovenous connections or malformations (AVMs) in developing blood vessels. Similar phenotypes develop following combined EC specific loss of SMAD1 and 5, or EC loss of SMAD4. Taken together these data point to the essential role of the BMP9/10-ENG-ALK1-SMAD1/5-SMAD4 pathway in protecting the vasculature from AVMs. Altered directional migration of ECs in response to shear stress and increased EC proliferation are now recognised as critical factors driving AVM formation. Disruption of the ENG/ALK1 signalling pathway also affects EC responses to vascular endothelial growth factor (VEGF) and crosstalk between ECs and vascular smooth muscle cells. It is striking that the vascular lesions in HHT are both localised and tissue specific. Increasing evidence points to the importance of a second genetic hit to generate biallelic mutations, and the sporadic nature of such somatic mutations would explain the localised formation of vascular lesions. In addition, different pro-angiogenic drivers of AVM formation are likely to be at play during the patient’s life course. For example, inflammation is a key driver of vessel remodelling in postnatal life, and may turn out to be an important driver of HHT disease. The current wealth of preclinical models of HHT has led to increased understanding of AVM development and revealed new therapeutic approaches to treat AVMs, and form the topic of this review.
Collapse
Affiliation(s)
- Helen M. Arthur
- Biosciences Institute, Centre for Life, University of Newcastle, Newcastle, United Kingdom
- *Correspondence: Helen M. Arthur,
| | - Beth L. Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Perez Akly MS, Vazquez C, Besada CH, Rodriguez MJ, Conde MF, Cajal AR, Peuchot VA, Dardik D, Baccanelli MM, Serra MM. Prevalence of Intracranial Aneurysms in Hereditary Hemorrhagic Telangiectasia: Report from a Single Reference Center. AJNR Am J Neuroradiol 2022; 43:844-849. [PMID: 35589139 DOI: 10.3174/ajnr.a7505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Neurologic manifestations in hereditary hemorrhagic telangiectasia include an increased incidence of brain abscesses and ischemic strokes due to paradoxic embolization in addition to a wide spectrum of symptoms and complications due to typical brain vascular malformations. Intracranial aneurysms are not part of this brain vascular malformation spectrum. The aim of this study was to determine their prevalence in patients with hereditary hemorrhagic telangiectasia. MATERIALS AND METHODS This was a single-center, retrospective study. Adult patients from the institutional Hereditary Hemorrhagic Telangiectasia registry with a definitive diagnosis of hereditary hemorrhagic telangiectasia and an available report or angiographic imaging study were included and reviewed to determine the intracranial aneurysm prevalence. In addition, the morphologic characteristics of intracranial aneurysms and possible associated risk factors were collected. RESULTS Two hundred twenty-eight patients were analyzed. Thirty-seven aneurysms in 33 patients (14.5%; 95% CI, 9.9%-19%) were found. The median diameter of intracranial aneurysms was 3.2 mm (interquartile range, 2.6-4.4 mm). No association between intracranial aneurysm and sex, age, or genetic background was noted. There were no subarachnoid hemorrhagic events due to intracranial aneurysm rupture. CONCLUSIONS Due to the high prevalence of intracranial aneurysms in adult patients with hereditary hemorrhagic telangiectasia, further studies regarding bleeding risks and monitoring should be addressed.
Collapse
Affiliation(s)
- M S Perez Akly
- From the Department of Radiology (M.S.P.A., C.H.B., M.J.R., C.M.F.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
| | - C Vazquez
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Department of Internal Medicine (C.V., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
| | - C H Besada
- From the Department of Radiology (M.S.P.A., C.H.B., M.J.R., C.M.F.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
| | - M J Rodriguez
- From the Department of Radiology (M.S.P.A., C.H.B., M.J.R., C.M.F.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - M F Conde
- From the Department of Radiology (M.S.P.A., C.H.B., M.J.R., C.M.F.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - A R Cajal
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
- Translational Medicine and Biomedical Engineering Institute (A.R.C.), Buenos Aires, Argentina
- University Institute (A.R.C., M.M.B., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
| | - V A Peuchot
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Internal Medicine Research Area (V.A.P.), Hospital Italiano, Buenos Aires, Argentina
| | - D Dardik
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- From the Department of Radiology (D.D.), Clínica Instituto de Diagnóstico Sociedad Anónima (INDISA), Santiago, Chile
| | - M M Baccanelli
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Department of Neurosurgery (M.M.B.), Hospital Italiano, Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
- University Institute (A.R.C., M.M.B., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
| | - M M Serra
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Department of Internal Medicine (C.V., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
- University Institute (A.R.C., M.M.B., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
| |
Collapse
|
7
|
Identification of Key Determinants of Cerebral Malaria Development and Inhibition Pathways. mBio 2022; 13:e0370821. [PMID: 35073748 PMCID: PMC8787489 DOI: 10.1128/mbio.03708-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cerebral malaria (CM), coma caused by Plasmodium falciparum-infected red blood cells (iRBCs), is the deadliest complication of malaria. The mechanisms that lead to CM development are incompletely understood. Here we report on the identification of activation and inhibition pathways leading to mouse CM with supporting evidence from the analysis of human specimens. We find that CM suppression can be induced by vascular injury when sporozoites exit the circulation to infect the liver and that CM suppression is mediated by the release of soluble factors into the circulation. Among these factors is insulin like growth factor 1 (IGF1), administration of which inhibits CM development in mice. IMPORTANCE Liver infection by Plasmodium sporozoites is a required step for infection of the organism. We found that alternate pathways of sporozoite liver infection differentially influence cerebral malaria (CM) development. CM is one of the primary causes of death following malaria infection. To date, CM research has focused on how CM phenotypes develop but no successful therapeutic treatment or prognostic biomarkers are available. Here we show for the first time that sporozoite liver invasion can trigger CM-inhibitory immune responses. Importantly, we identified a number of early-stage prognostic CM inhibitory biomarkers, many of which had never been associated with CM development. Serological markers identified using a mouse model are directly relevant to human CM.
Collapse
|
8
|
Jargielo A, Rycyk A, Kasztelan-Szczerbinska B, Cichoz-Lach H. A Rare Case of Upper Gastrointestinal Bleeding: Osler-Weber-Rendu Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:333. [PMID: 35334510 PMCID: PMC8951266 DOI: 10.3390/medicina58030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
Osler-Weber-Rendu disease, also known as hereditary hemorrhagic telangiectasia (HHT), is a rare, autosomal dominant condition that affects approximately 1 in 5000 patients causing abnormal blood vessel formation. HHT patients have mucocutaneous telangiectasias and arteriovenous malformations in various organs. The most prominent symptom of HHT is epistaxis, which, together with gastrointestinal bleeding, may cause iron deficiency anemia. This study is a case report of a 62-year-old patient who was admitted to the Department of Gastroenterology due to acute upper gastrointestinal bleeding and a history of recurrent epistaxis and melena for 4 days, which was confirmed in digital rectal examination. Urgent upper gastrointestinal endoscopy revealed active bleeding from multiple angioectatic spots with bright-looking salmon-colored patches in the antrum and the body suggestive of HHT. The bleeding from two angioectatic spots was stopped by argon plasma coagulation, and four clips were placed to provide good hemostasis. The patient was treated with a proton pomp inhibitor infusion and iron infusion. She was discharged with no signs of GI bleeding, normalized iron levels and a diagnosis of HHT. She was referred to further genetic testing, including evaluation of first-degree relatives. She also had performed unenhanced thin-cut computed tomography (CT) with angiography to exclude the presence of pulmonary arteriovenous malformations (PAVMs). Due to the fact that the patient did not manifest any other HHT-related symptoms and that the instrumental screening discloses no silent AVMs in other organs, the "watch-and-wait strategy" was applied. Although, Osler-Weber-Rendu syndrome is widely described in the medical literature, effective treatment of gastrointestinal telangiectasias is not always available and still lacks standardization to date, which makes the management of gastroenterological involvement still a challenging issue.
Collapse
Affiliation(s)
- Anna Jargielo
- Banacha Campus, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland;
| | - Anna Rycyk
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8 St., 20-954 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8 St., 20-954 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8 St., 20-954 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| |
Collapse
|
9
|
Menarim BC, El-Sheikh Ali H, Loux SC, Scoggin KE, Kalbfleisch TS, MacLeod JN, Dahlgren LA. Transcriptional and Histochemical Signatures of Bone Marrow Mononuclear Cell-Mediated Resolution of Synovitis. Front Immunol 2021; 12:734322. [PMID: 34956173 PMCID: PMC8692379 DOI: 10.3389/fimmu.2021.734322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) may result from impaired ability of synovial macrophages to resolve joint inflammation. Increasing macrophage counts in inflamed joints through injection with bone marrow mononuclear cells (BMNC) induces lasting resolution of synovial inflammation. To uncover mechanisms by which BMNC may affect resolution, in this study, differential transcriptional signatures of BMNC in response to normal (SF) and inflamed synovial fluid (ISF) were analyzed. We demonstrate the temporal behavior of co-expressed gene networks associated with traits from related in vivo and in vitro studies. We also identified activated and inhibited signaling pathways and upstream regulators, further determining their protein expression in the synovium of inflamed joints treated with BMNC or DPBS controls. BMNC responded to ISF with an early pro-inflammatory response characterized by a short spike in the expression of a NF-ƙB- and mitogen-related gene network. This response was associated with sustained increased expression of two gene networks comprising known drivers of resolution (IL-10, IGF-1, PPARG, isoprenoid biosynthesis). These networks were common to SF and ISF, but more highly expressed in ISF. Most highly activated pathways in ISF included the mevalonate pathway and PPAR-γ signaling, with pro-resolving functional annotations that improve mitochondrial metabolism and deactivate NF-ƙB signaling. Lower expression of mevalonate kinase and phospho-PPARγ in synovium from inflamed joints treated with BMNC, and equivalent IL-1β staining between BMNC- and DPBS-treated joints, associates with accomplished resolution in BMNC-treated joints and emphasize the intricate balance of pro- and anti-inflammatory mechanisms required for resolution. Combined, our data suggest that BMNC-mediated resolution is characterized by constitutively expressed homeostatic mechanisms, whose expression are enhanced following inflammatory stimulus. These mechanisms translate into macrophage proliferation optimizing their capacity to counteract inflammatory damage and improving their general and mitochondrial metabolism to endure oxidative stress while driving tissue repair. Such effect is largely achieved through the synthesis of several lipids that mediate recovery of homeostasis. Our study reveals candidate mechanisms by which BMNC provide lasting improvement in patients with OA and suggests further investigation on the effects of PPAR-γ signaling enhancement for the treatment of arthritic conditions.
Collapse
Affiliation(s)
- Bruno C Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shavahn C Loux
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Theodore S Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - James N MacLeod
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Wetzel-Strong SE, Weinsheimer S, Nelson J, Pawlikowska L, Clark D, Starr MD, Liu Y, Kim H, Faughnan ME, Nixon AB, Marchuk DA. Pilot investigation of circulating angiogenic and inflammatory biomarkers associated with vascular malformations. Orphanet J Rare Dis 2021; 16:372. [PMID: 34479577 PMCID: PMC8414780 DOI: 10.1186/s13023-021-02009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
Background Vascular malformations in the central nervous system are difficult to monitor and treat due to their inaccessible location. Angiogenic and inflammatory proteins are secreted into the bloodstream and may serve as useful biomarkers for identifying patients at risk for complications or with certain disease phenotypes.
Methods A validated multiplex protein array consisting of 26 angiogenic and inflammatory biomarkers (Angiome) was assessed in plasma isolated from healthy controls and patients with either sporadic brain arteriovenous malformation (BAVM), familial cerebral cavernous malformation (CCM), or hereditary hemorrhagic telangiectasia (HHT). These samples were obtained from archives of ongoing research studies at the University of California San Francisco and through prospective collection at the Toronto HHT Centre at St. Michael’s Hospital. Results We compared circulating biomarker levels from each patient group to healthy controls and analyzed each pairwise combination of patient groups for differences in biomarker levels. Additionally, we analyzed the HHT samples to determine the association between biomarker levels and the following HHT-specific phenotypes, BAVM, pulmonary arteriovenous malformation (PAVM), liver vascular malformation (LVM), and gastrointestinal (GI) bleeding. Compared to controls, levels of SDF1 were significantly elevated in HHT patients (Proportional Increase [PI] = 1.87, p < 0.001, q = 0.011). Levels of sENG were significantly reduced in HHT patients compared to controls (PI = 0.56, p < 0.001, q < 0.001), reflecting the prevalence of HHT1 patients in this cohort. Levels of IL6 (PI = 3.22, p < 0.001, q < 0.001) and sTGFβR3 (PI = 0.70, p = 0.001, q < 0.029) differed significantly in CCM patients compared to controls. Compared to controls, ten of the biomarkers were significantly different in sporadic BAVM patients (q-values < 0.05). Among the pairwise combinations of patient groups, a significant elevation was observed in TGFβ1 in CCM patients compared to sporadic BAVM patients (PI = 2.30, p < 0.001, q = 0.034). When examining the association of circulating biomarker levels with HHT-specific phenotypes, four markers were significantly lower in HHT patients with BAVM (q-values < 0.05), and four markers were significantly higher in patients with LVM (q-values < 0.05). Conclusions This pilot study suggests that the profile of circulating angiogenic and inflammatory biomarkers may be unique to each type of vascular malformation. Furthermore, this study indicates that circulating biomarkers may be useful for assessing phenotypic traits of vascular malformations. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02009-7.
Collapse
Affiliation(s)
- Sarah E Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 265 CARL Bldg., Box #3175 DUMC, Durham, NC, 27710, USA
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey Nelson
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Ludmila Pawlikowska
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Dewi Clark
- Toronto HHT Centre, St. Michael's Hospital and the Li Ka Shing Knowledge Institute, Toronto, Canada
| | - Mark D Starr
- Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Yingmiao Liu
- Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Marie E Faughnan
- Toronto HHT Centre, St. Michael's Hospital and the Li Ka Shing Knowledge Institute, Toronto, Canada.,Division of Respirology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Andrew B Nixon
- Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 265 CARL Bldg., Box #3175 DUMC, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Menarim BC, MacLeod JN, Dahlgren LA. Bone marrow mononuclear cells for joint therapy: The role of macrophages in inflammation resolution and tissue repair. World J Stem Cells 2021; 13:825-840. [PMID: 34367479 PMCID: PMC8316866 DOI: 10.4252/wjsc.v13.i7.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease causing major disability and medical expenditures. Synovitis is a central feature of OA and is primarily driven by macrophages. Synovial macrophages not only drive inflammation but also its resolution, through a coordinated, simultaneous expression of pro- and anti-inflammatory mechanisms that are essential to counteract damage and recover homeostasis. Current OA therapies are largely based on anti-inflammatory principles and therefore block pro-inflammatory mechanisms such as prostaglandin E2 and Nuclear factor-kappa B signaling pathways. However, such mechanisms are also innately required for mounting a pro-resolving response, and their blockage often results in chronic low-grade inflammation. Following minor injury, macrophages shield the damaged area and drive tissue repair. If the damage is more extensive, macrophages incite inflammation recruiting more macrophages from the bone marrow to maximize tissue repair and ultimately resolve inflammation. However, sustained damage and inflammation often overwhelms pro-resolving mechanisms of synovial macrophages leading to the chronic inflammation and related tissue degeneration observed in OA. Recently, experimental and clinical studies have shown that joint injection with autologous bone marrow mononuclear cells replenishes inflamed joints with macrophage and hematopoietic progenitors, enhancing mechanisms of inflammation resolution, providing remarkable and long-lasting effects. Besides creating an ideal environment for resolution with high concentrations of interleukin-10 and anabolic growth factors, macrophage progenitors also have a direct role in tissue repair. Macrophages constitute a large part of the early granulation tissue, and further transdifferentiate from myeloid into a mesenchymal phenotype. These cells, characterized as fibrocytes, are essential for repairing osteochondral defects. Ongoing “omics” studies focused on identifying key drivers of macrophage-mediated resolution of joint inflammation and those required for efficient osteochondral repair, have the potential to uncover ways for developing engineered macrophages or off-the-shelf pro-resolving therapies that can benefit patients suffering from many types of arthropaties, not only OA.
Collapse
Affiliation(s)
- Bruno C Menarim
- Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, United States
| | - James N MacLeod
- Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, United States
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, United States
| |
Collapse
|
12
|
Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel) 2021; 13:1552. [PMID: 33800564 PMCID: PMC8038031 DOI: 10.3390/cancers13071552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.
Collapse
Affiliation(s)
| | | | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Group of Physiopathology of the Vascular Endothelium (ENDOVAS), Biomedical Research Institute of Salamanca (IBSAL), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (C.O.-I.); (B.A.-Í.)
| |
Collapse
|
13
|
Bofarid S, Hosman AE, Mager JJ, Snijder RJ, Post MC. Pulmonary Vascular Complications in Hereditary Hemorrhagic Telangiectasia and the Underlying Pathophysiology. Int J Mol Sci 2021; 22:3471. [PMID: 33801690 PMCID: PMC8038106 DOI: 10.3390/ijms22073471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we discuss the role of transforming growth factor-beta (TGF-β) in the development of pulmonary vascular disease (PVD), both pulmonary arteriovenous malformations (AVM) and pulmonary hypertension (PH), in hereditary hemorrhagic telangiectasia (HHT). HHT or Rendu-Osler-Weber disease is an autosomal dominant genetic disorder with an estimated prevalence of 1 in 5000 persons and characterized by epistaxis, telangiectasia and AVMs in more than 80% of cases, HHT is caused by a mutation in the ENG gene on chromosome 9 encoding for the protein endoglin or activin receptor-like kinase 1 (ACVRL1) gene on chromosome 12 encoding for the protein ALK-1, resulting in HHT type 1 or HHT type 2, respectively. A third disease-causing mutation has been found in the SMAD-4 gene, causing a combination of HHT and juvenile polyposis coli. All three genes play a role in the TGF-β signaling pathway that is essential in angiogenesis where it plays a pivotal role in neoangiogenesis, vessel maturation and stabilization. PH is characterized by elevated mean pulmonary arterial pressure caused by a variety of different underlying pathologies. HHT carries an additional increased risk of PH because of high cardiac output as a result of anemia and shunting through hepatic AVMs, or development of pulmonary arterial hypertension due to interference of the TGF-β pathway. HHT in combination with PH is associated with a worse prognosis due to right-sided cardiac failure. The treatment of PVD in HHT includes medical or interventional therapy.
Collapse
Affiliation(s)
- Sala Bofarid
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
| | - Anna E. Hosman
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Johannes J. Mager
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Repke J. Snijder
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Marco C. Post
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
- Department of Cardiology, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
14
|
Han Z, Shaligram S, Faughnan ME, Clark D, Sun Z, Su H. Reduction of endoglin receptor impairs mononuclear cell-migration. EXPLORATION OF MEDICINE 2020; 1:136-148. [PMID: 32954380 PMCID: PMC7500529 DOI: 10.37349/emed.2020.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To test if the impairment of mononuclear cell (MNC) migration in patients with hereditary hemorrhagic telangiectasia (HHT) is due to the reduction of the endoglin (ENG) receptor on the cell surface and oxidative stress. Methods: MNCs of HHT patients and normal controls were subjected to migration assay. Fractions of MNCs were pre-incubated with antibodies specific to HHT causative genes ENG [hereditary hemorrhagic telangiectasia type 1 (HHT1)] or activin receptor-like kinase 1 [ALK1, hereditary hemorrhagic telangiectasia type 2 (HHT2)], AMD3100 or Diprotin-A to block ENG, ALK1 C-X-C chemokine receptor 4 (CXCR4) or CD26 (increased in HHT1 MNCs) before migration assay. The MNCs were allowed to migrate toward stromal cell-derived factor-1α (SDF-1α) for 18 h. The expression of CXCR4, CD26, superoxide dismutase 1 (SOD1) and glutathione peroxidase 1 (GPX1) in MNCs and nitric oxide levels in the plasma were analyzed. Results: Compared to the controls, fewer HHT1 MNCs and similar number of HHT2 MNCs migrated toward SDF-1α. Diprotin-A pre-treatment improved HHT1 MNC-migration, but had no effect on normal and HHT2 MNCs. Pre-incubation with an anti-ENG antibody reduced the migration of normal MNCs. Diprotin-A did not improve the migration of ENG antibody pre-treated MNCs. Anti-ALK1 antibody had no effect on MNC-migration. AMD3100 treatment reduced normal and HHT MNC-migration. ENG mRNA level was reduced in HHT1 and HHT2 MNCs. ALK1 mRNA was reduced in HHT2 MNCs only. CD26 expression was higher in HHT1 MNCs. Pre-treatment of MNCs with anti-ENG or anti-ALK1 antibody had no effect on CD26 and CXCR4 expression. The expression of antioxidant enzymes, SOD1, was reduced in HHT1 MNCs, which was accompanied with an increase of ROS in HHT MNCs and nitric oxide in HHT1 plasma. Conclusions: Reduction of ENG receptor on MNC surface reduced monocyte migration toward SDF-1α independent of CD26 expression. Increased oxidative stress could alter HHT MNC migration behavior.
Collapse
Affiliation(s)
- Zhenying Han
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA
| | - Sonali Shaligram
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA
| | - Marie E Faughnan
- Toronto HHT Centre, Division of Respirology, Department of Medicine, St. Michael's Hospital, University of Toronto, Ontario M5B 1W8, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Ontario M5B 1W8, Canada
| | - Dewi Clark
- Toronto HHT Centre, Division of Respirology, Department of Medicine, St. Michael's Hospital, University of Toronto, Ontario M5B 1W8, Canada
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, CA 94143, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Schoonderwoerd MJA, Goumans MJTH, Hawinkels LJAC. Endoglin: Beyond the Endothelium. Biomolecules 2020; 10:biom10020289. [PMID: 32059544 PMCID: PMC7072477 DOI: 10.3390/biom10020289] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Keywords: endoglin; CD105 TGF-β; BMP9; ALK-1; TRC105; tumor microenvironment.
Collapse
Affiliation(s)
- Mark J. A. Schoonderwoerd
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Lukas J. A. C. Hawinkels
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-526-6736
| |
Collapse
|
16
|
Menarim BC, Gillis KH, Oliver A, Mason C, Ngo Y, Werre SR, Barrett SH, Luo X, Byron CR, Dahlgren LA. Autologous bone marrow mononuclear cells modulate joint homeostasis in an equine in vivo model of synovitis. FASEB J 2019; 33:14337-14353. [PMID: 31665925 DOI: 10.1096/fj.201901684rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is characterized by macrophage-driven synovitis. Macrophages promote synovial health but become inflammatory when their regulatory functions are overwhelmed. Bone marrow mononuclear cells (BMNCs) are a rich source of macrophage progenitors used for treating chronic inflammation and produce essential molecules for cartilage metabolism. This study investigated the response to autologous BMNC injection in normal and inflamed joints. Synovitis was induced in both radiocarpal joints of 6 horses. After 8 h, 1 inflamed radiocarpal and 1 normal tarsocrural joint received BMNC injection. Contralateral joints were injected with saline. Synovial fluid was collected at 24, 96, and 144 h for cytology, cytokine quantification, and flow cytometry. At 144 h, horses were euthanatized, joints were evaluated, and synovium was harvested for histology and immunohistochemistry. Four days after BMNC treatment, inflamed joints had 24% higher macrophage counts with 10% more IL-10+ cells than saline-treated controls. BMNC-treated joints showed gross and analytical improvements in synovial fluid and synovial membrane, with increasing regulatory macrophages and synovial fluid IL-10 concentrations compared with saline-treated controls. BMNC-treated joints were comparable to healthy joints histologically, which remained abnormal in saline-treated controls. Autologous BMNCs are readily available, regulate synovitis through macrophage-associated effects, and can benefit thousands of patients with OA.-Menarim, B. C., Gillis, K. H., Oliver, A., Mason, C., Ngo, Y., Werre, S. R., Barrett, S. H., Luo, X., Byron, C. R., Dahlgren, L. A. Autologous bone marrow mononuclear cells modulate joint homeostasis in an equine in vivo model of synovitis.
Collapse
Affiliation(s)
- Bruno C Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Kiersten H Gillis
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Andrea Oliver
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Caitlin Mason
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Ying Ngo
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Stephen R Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA; and
| | - Sarah H Barrett
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xin Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Christopher R Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
17
|
Cannavicci A, Zhang Q, Dai SC, Faughnan ME, Kutryk MJB. Decreased levels of miR-28-5p and miR-361-3p and increased levels of insulin-like growth factor 1 mRNA in mononuclear cells from patients with hereditary hemorrhagic telangiectasia 1. Can J Physiol Pharmacol 2018; 97:562-569. [PMID: 30512964 DOI: 10.1139/cjpp-2018-0508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disorder inherited in an autosomal dominant manner. Patients with HHT can develop vascular dysplasias called telangiectasias and arteriovenous malformations (AVMs). Our objective was to profile and characterize micro-RNAs (miRNAs), short noncoding RNAs that regulate gene expression posttranscriptionally, in HHT patient-derived peripheral blood mononuclear cells (PBMCs). PBMCs, comprised mostly of lymphocytes and monocytes, have been reported to be dysfunctional in HHT. A total of 40 clinically confirmed HHT patients and 22 controls were enrolled in this study. PBMCs were isolated from 16 mL of peripheral blood and purified for total RNA. MiRNA expression profiling was conducted with a human miRNA array analysis. Select dysregulated miRNAs and miRNA targets were validated with reverse transcription-quantitative polymerase chain reaction. Of the 377 miRNAs screened, 41 dysregulated miRNAs were identified. Both miR-28-5p and miR-361-3p, known to target insulin-like growth factor 1 (IGF1), a potent angiogenic growth factor, were found to be significantly downregulated in HHT patients. Consequently, IGF1 mRNA levels were found to be significantly elevated. Our research successfully identified miRNA dysregulation and elevated IGF1 mRNA levels in PBMCs from HHT patients. This novel discovery represents a potential pathogenic mechanism that could be targeted to alleviate clinical manifestations of HHT.
Collapse
Affiliation(s)
- Anthony Cannavicci
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Qiuwang Zhang
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Si-Cheng Dai
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Marie E Faughnan
- c Division of Respirology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael J B Kutryk
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
18
|
Gallardo-Vara E, Tual-Chalot S, Botella LM, Arthur HM, Bernabeu C. Soluble endoglin regulates expression of angiogenesis-related proteins and induction of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia. Dis Model Mech 2018; 11:dmm.034397. [PMID: 30108051 PMCID: PMC6176985 DOI: 10.1242/dmm.034397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
Endoglin is a transmembrane glycoprotein expressed in vascular endothelium that plays a key role in angiogenesis. Mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1 (HHT1), characterized by arteriovenous malformations (AVMs) in different organs. These vascular lesions derive from abnormal processes of angiogenesis, whereby aberrant vascular remodeling leads to focal loss of capillaries. Current treatments for HHT1 include antiangiogenic therapies. Interestingly, a circulating form of endoglin (also known as soluble endoglin, sEng), proteolytically released from the membrane-bound protein and displaying antiangiogenic activity, has been described in several endothelial-related pathological conditions. Using human and mouse endothelial cells, we find that sEng downregulates several pro-angiogenic and pro-migratory proteins involved in angiogenesis. However, this effect is much reduced in endothelial cells that lack endogenous transmembrane endoglin, suggesting that the antiangiogenic activity of sEng is dependent on the presence of endogenous transmembrane endoglin protein. In fact, sEng partially restores the phenotype of endoglin-silenced endothelial cells to that of normal endothelial cells. Moreover, using an established neonatal retinal model of HHT1 with depleted endoglin in the vascular endothelium, sEng treatment decreases the number of AVMs and has a normalizing effect on the vascular phenotype with respect to vessel branching, vascular density and migration of the vascular plexus towards the retinal periphery. Taken together, these data show that circulating sEng can influence vascular development and AVMs by modulating angiogenesis, and that its effect on endothelial cells depends on the expression of endogenous endoglin. This article has an associated First Person interview with the first author of the paper. Summary: Soluble endoglin regulates vascular development and arteriovenous malformations by modulating angiogenesis, and its effect on endothelial cells depends on expression of endogenous membrane-bound endoglin.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Luisa M Botella
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Helen M Arthur
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| |
Collapse
|
19
|
Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031989. [PMID: 28348038 DOI: 10.1101/cshperspect.a031989] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Mécale (INSERM), U1036, 38000 Grenoble, France.,Laboratoire Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,University of Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
20
|
Abstract
Endoglin (ENG, also known as CD105) is a transforming growth factor β (TGFβ) associated receptor and is required for both vasculogenesis and angiogenesis. Angiogenesis is important in the development of cerebral vasculature and in the pathogenesis of cerebral vascular diseases. ENG is an essential component of the endothelial nitric oxide synthase activation complex. Animal studies showed that ENG deficiency impairs stroke recovery. ENG deficiency also impairs the regulation of vascular tone, which contributes to the pathogenesis of brain arteriovenous malformation (bAVM) and vasospasm. In human, functional haploinsufficiency of ENG gene causes type I hereditary hemorrhagic telangiectasia (HHT1), an autosomal dominant disorder. Compared to normal population, HHT1 patients have a higher prevalence of AVM in multiple organs including the brain. Vessels in bAVM are fragile and tend to rupture, causing hemorrhagic stroke. High prevalence of pulmonary AVM in HHT1 patients are associated with a higher incidence of paradoxical embolism in the cerebral circulation causing ischemic brain injury. Therefore, HHT1 patients are at risk for both hemorrhagic and ischemic stroke. This review summarizes the possible mechanism of ENG in the pathogenesis of cerebrovascular diseases in experimental animal models and in patients.
Collapse
Affiliation(s)
- Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Li Ma
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Rui Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Dupuis-Girod S, Cottin V, Shovlin CL. The Lung in Hereditary Hemorrhagic Telangiectasia. Respiration 2017; 94:315-330. [PMID: 28850955 DOI: 10.1159/000479632] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a dominantly inherited genetic vascular disorder with an estimated prevalence of 1 in 6,000, characterized by recurrent epistaxis, cutaneous telangiectasia, and arteriovenous malformations (AVMs) that affect many organs including the lungs, gastrointestinal tract, liver, and brain. Its diagnosis is based on the Curaçao criteria, and is considered definite if at least 3 of the 4 following criteria are fulfilled: (1) spontaneous and recurrent epistaxis, (2) telangiectasia, (3) a family history, and (4) pulmonary, liver, cerebral, spinal, or gastrointestinal AVMs. The focus of this review is on delineating how HHT affects the lung.
Collapse
Affiliation(s)
- Sophie Dupuis-Girod
- Service de génétique - centre de référence national pour la maladie de Rendu-Osler, Hôpital Femme-Mère-Enfants, Hospices Civils de Lyon, Bron, France
| | | | | |
Collapse
|
22
|
Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 2017; 21:933-947. [PMID: 28796572 DOI: 10.1080/14728222.2017.1365839] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hereditary Haemorrhagic Telangiectasia (HHT) is as an autosomal dominant trait characterized by frequent nose bleeds, mucocutaneous telangiectases, arteriovenous malformations (AVMs) of the lung, liver and brain, and gastrointestinal bleedings due to telangiectases. HHT is originated by mutations in genes whose encoded proteins are involved in the transforming growth factor β (TGF-β) family signalling of vascular endothelial cells. In spite of the great advances in the diagnosis as well as in the molecular, cellular and animal models of HHT, the current treatments remain just at the palliative level. Areas covered: Pathogenic mutations in genes coding for the TGF-β receptors endoglin (ENG) (HHT1) or the activin receptor-like kinase-1 (ACVRL1 or ALK1) (HHT2), are responsible for more than 80% of patients with HHT. Therefore, ENG and ALK1 are the main potential therapeutic targets for HHT and the focus of this review. The current status of the preclinical and clinical studies, including the anti-angiogenic strategy, have been addressed. Expert opinion: Endoglin and ALK1 are attractive therapeutic targets in HHT. Because haploinsufficiency is the pathogenic mechanism in HHT, several therapeutic approaches able to enhance protein expression and/or function of endoglin and ALK1 are keys to find novel and efficient treatments for the disease.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Eunate Gallardo-Vara
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Elisa Rossi
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - David M Smadja
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - Luisa M Botella
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Carmelo Bernabeu
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| |
Collapse
|
23
|
Ollauri-Ibáñez C, López-Novoa JM, Pericacho M. Endoglin-based biological therapy in the treatment of angiogenesis-dependent pathologies. Expert Opin Biol Ther 2017; 17:1053-1063. [PMID: 28656781 DOI: 10.1080/14712598.2017.1346607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Alterations in the process of angiogenesis, either by excess or by defect, are present in different common pathologies. For this reason, great efforts are being made toward the development of pro- and anti-angiogenic therapies. Since endoglin levels are enhanced in tissues undergoing angiogenesis, and changes in its expression lead to alterations in vessel formation, endoglin has become an ideal target for these types of therapies. Areas covered: In this review, the role of endoglin in angiogenesis is summarized. In addition, the authors review pro- and anti-angiogenic therapies that are currently being used and new approaches that target endoglin. The article includes therapies that are both in preclinical and clinical development. Expert opinion: Endoglin is a very good target for anti-angiogenic therapy, as demonstrated by the positive results obtained with anti-endoglin antibodies. However, although endoglin in pro-angiogenic therapies has been successful in vitro, its use has not yet reached clinical settings. Moreover, the authors believe that establishing the exact role of endoglin in angiogenesis is essential and that this should be the next step in this field in the coming years.
Collapse
Affiliation(s)
- Claudia Ollauri-Ibáñez
- a Department of Physiology and Pharmacology , University of Salamanca , Salamanca , Spain.,b Biomedical Research Institute of Salamanca (IBSAL) , Salamanca , Spain
| | - José M López-Novoa
- a Department of Physiology and Pharmacology , University of Salamanca , Salamanca , Spain.,b Biomedical Research Institute of Salamanca (IBSAL) , Salamanca , Spain
| | - Miguel Pericacho
- a Department of Physiology and Pharmacology , University of Salamanca , Salamanca , Spain.,b Biomedical Research Institute of Salamanca (IBSAL) , Salamanca , Spain
| |
Collapse
|
24
|
Affiliation(s)
- Gerard Pasterkamp
- From the Laboratory of Experimental Cardiology, Department of Cardiology and Laboratory of Clinical Chemistry, University Medical Center Utrecht, The Netherlands (G.P.); and Department of Molecular Cell Biology, Leiden University Medical Center, The Netherlands (M.J.G.)
| | - Marie José Goumans
- From the Laboratory of Experimental Cardiology, Department of Cardiology and Laboratory of Clinical Chemistry, University Medical Center Utrecht, The Netherlands (G.P.); and Department of Molecular Cell Biology, Leiden University Medical Center, The Netherlands (M.J.G.)
| |
Collapse
|
25
|
Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C, Bernabéu C, López-Novoa JM. The role of endoglin in post-ischemic revascularization. Angiogenesis 2016; 20:1-24. [PMID: 27943030 DOI: 10.1007/s10456-016-9535-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.
Collapse
Affiliation(s)
- Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, Spanish National Research Council (CIB, CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain. .,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
26
|
Zhang R, Han Z, Degos V, Shen F, Choi EJ, Sun Z, Kang S, Wong M, Zhu W, Zhan L, Arthur HM, Oh SP, Faughnan ME, Su H. Persistent infiltration and pro-inflammatory differentiation of monocytes cause unresolved inflammation in brain arteriovenous malformation. Angiogenesis 2016; 19:451-461. [PMID: 27325285 DOI: 10.1007/s10456-016-9519-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
Abstract
An abnormally high number of macrophages are present in human brain arteriovenous malformations (bAVM) with or without evidence of prior hemorrhage, causing unresolved inflammation that may enhance abnormal vascular remodeling and exacerbate the bAVM phenotype. The reasons for macrophage accumulation at the bAVM sites are not known. We tested the hypothesis that persistent infiltration and pro-inflammatory differentiation of monocytes in angiogenic tissues increase the macrophage burden in bAVM using two mouse models and human monocytes. Mouse bAVM was induced through deletion of AVM causative genes, Endoglin (Eng) globally or Alk1 focally, plus brain focal angiogenic stimulation. An endothelial cell and vascular smooth muscle cell co-culture system was used to analyze monocyte differentiation in the angiogenic niche. After angiogenic stimulation, the Eng-deleted mice had fewer CD68(+) cells at 2 weeks (P = 0.02), similar numbers at 4 weeks (P = 0.97), and more at 8 weeks (P = 0.01) in the brain angiogenic region compared with wild-type (WT) mice. Alk1-deficient mice also had a trend toward more macrophages/microglia 8 weeks (P = 0.064) after angiogenic stimulation and more RFP(+) bone marrow-derived macrophages than WT mice (P = 0.01). More CD34(+) cells isolated from peripheral blood of patients with ENG or ALK1 gene mutation differentiated into macrophages than those from healthy controls (P < 0.001). These data indicate that persistent infiltration and pro-inflammatory differentiation of monocytes might contribute to macrophage accumulation in bAVM. Blocking macrophage homing to bAVM lesions should be tested as a strategy to reduce the severity of bAVM.
Collapse
Affiliation(s)
- Rui Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhenying Han
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Degos
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.,INSERM, U676, Hôpital Robert Debré, Paris, France
| | - Fanxia Shen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Eun-Jung Choi
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Shuai Kang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Wong
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Lei Zhan
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Helen M Arthur
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, United Kingdom
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Marie E Faughnan
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Kurakula K, Goumans MJ, Ten Dijke P. Regulatory RNAs controlling vascular (dys)function by affecting TGF-ß family signalling. EXCLI JOURNAL 2015; 14:832-50. [PMID: 26862319 PMCID: PMC4743484 DOI: 10.17179/excli2015-423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Over the last few years, microRNAs (miRNAs) have emerged as master regulators of gene expression in cardiovascular biology and disease. miRNAs are small endogenous non-coding RNAs that usually bind to 3′ untranslated region (UTR) of their target mRNAs and inhibit mRNA stability or translation of their target genes. miRNAs play a dynamic role in the pathophysiology of many CVDs through their effects on target mRNAs in vascular cells. Recently, numerous miRNAs have been implicated in the regulation of the transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signalling pathway which plays crucial roles in diverse biological processes, and is involved in pathogenesis of many diseases including CVD. This review gives an overview of current literature on the role of miRNAs targeting TGF-β/BMP signalling in vascular cells, including endothelial cells and smooth muscle cells. We also provide insight into how this miRNA-mediated regulation of TGF-β/BMP signalling might be used to harness CVD.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Jose Goumans
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|