1
|
Limonta P, Marchesi S, Giannitti G, Casati L, Fontana F. The biological function of extracellular vesicles in prostate cancer and their clinical application as diagnostic and prognostic biomarkers. Cancer Metastasis Rev 2024; 43:1611-1627. [PMID: 39316264 PMCID: PMC11554767 DOI: 10.1007/s10555-024-10210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and main causes of cancer-related deaths worldwide. It is characterized by high heterogeneity, ranging from slow-growing tumor to metastatic disease. Since both therapy selection and outcome strongly rely on appropriate patient stratification, it is crucial to differentiate benign from more aggressive conditions using new and improved diagnostic and prognostic biomarkers. Extracellular vesicles (EVs) are membrane-coated particles carrying a specific biological cargo composed of nucleic acids, proteins, and metabolites. Here, we provide an overview of the role of EVs in PCa, focusing on both their biological function and clinical value. Specifically, we summarize the oncogenic role of EVs in mediating the interactions with PCa microenvironment as well as the horizontal transfer of metastatic traits and drug resistance between PCa cells. Furthermore, we discuss the potential usage of EVs as innovative tools for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Sara Marchesi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Gaia Giannitti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Lavinia Casati
- Department of Health Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
2
|
Urabe F, Yamada Y, Yamamoto S, Tsuzuki S, Kimura S, Ochiya T, Kimura T. Extracellular vesicles and prostate cancer management: a narrative review. Transl Androl Urol 2024; 13:442-453. [PMID: 38590964 PMCID: PMC10999020 DOI: 10.21037/tau-23-533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/01/2024] [Indexed: 04/10/2024] Open
Abstract
Background and Objective Prostate cancer (PCa) is the second most common male cancer in the United States. Although new drugs have recently been approved, clinical challenges remain, notably the precise detection and prognostic implications of drug-resistant PCa. Extracellular vesicles (EVs), nanoscale lipid membrane vesicles, are actively secreted into the extracellular milieu by a variety of cell types. Over the past decade, interest in EVs has grown, and emerging evidence suggests that EVs play pivotal roles in cancer biology. In this review, we would like to summarize recent reports on EVs in PCa and discuss the potential clinical applications. Methods We performed a non-systematic literature review using the PubMed database to identify articles specifically related to EVs and PCa management. Key Content and Findings EVs contain pathogenic components, such as proteins, DNA fragments, mRNA, non-coding RNA, and lipids, all of which can trigger intercellular signaling within tumor microenvironments. Thereby, EVs exert significant effects on several stages of cancer progression, influencing the immune system, angiogenesis, and the establishment of pre-metastatic niches. Furthermore, as EVs are encapsulated, their contents are stable in bodily fluids, and thus EVs have recently attracted attention as a novel kind of liquid biopsy. Conclusions We have summarized recent research on how EVs may aid PCa management. To date, we have discovered only the tip of the iceberg. We anticipate that further research will yield innovative therapeutic modalities, thereby aiding all PCa patients.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuta Yamada
- Department of Urology, University of Tokyo, Tokyo, Japan
| | - Shutaro Yamamoto
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shoji Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Gao Y, Ren J, Chen K, Guan G. Construction and validation of a prognostic signature for mucinous colonic adenocarcinoma based on N7-methylguanosine-related long non-coding RNAs. J Gastrointest Oncol 2024; 15:203-219. [PMID: 38482248 PMCID: PMC10932661 DOI: 10.21037/jgo-23-980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Mucinous colonic adenocarcinoma remains a challenging disease due to its high propensity for metastasis and recurrence. N7-methylguanosine (m7G) and long non-coding RNA (lncRNA) are closely associated with the occurrence and progression of tumors. However, research on m7G-related lncRNA in mucinous colonic adenocarcinoma is lacking. Therefore, we sought to explore the prognostic impact of m7G-related lncRNAs in mucinous adenocarcinoma (MC) patients. METHODS In this study, Pearson analysis was used to identify m7G-related lncRNAs from transcriptome data in The Cancer Genome Atlas (TCGA). Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression were used to further screen m7G-related lncRNAs and incorporate them into a prognostic signature. Based on the risk model, patients were divided into low- and high-risk groups and randomly assigned to the training set and test sets in a 6:4 ratio. Kaplan-Meier, receiver operating characteristic (ROC) curve, multivariate regression, and nomogram analyses were used to confirm the accuracy of the signature. The CIBERSORT algorithm was used to calculate the degree of immune cell infiltration (ICI). Finally, the correlation of the prognostic signature with tumor mutational burden (TMB) and immunophenotype score (IPS) was evaluated. RESULTS A total of 432 m7G-related lncRNAs were identified by Pearson analysis. Univariate Cox regression, LASSO regression and survival analysis were performed to further select six m7G-related lncRNAs (P<0.05): AC254629.1, LINC01133, LINC01134, MHENCR, SMIM2-AS1, and XACT. Based on the risk model, heat maps, Kaplan-Meier curves, and ROC curves were constructed, and the results showed that there were significant differences in expression levels and survival status between the two risk groups. The area under the ROC curve (AUC) values for 3-, 5-, and 10-year survival in the training set were 0.944, 0.957, and 1.000, respectively. And in the test set were 0.964, 1.000, and 1.000, respectively. Subsequently, univariate and multivariate regression analyses of clinical characteristics and risk score were performed. The results of risk score were [hazard ratio (HR): 6.458, 95% confidence interval (CI): 2.708-15.403, P<0.001; HR: 7.280, 95% CI: 2.500-21.203, P<0.001], respectively. Using the risk score as an independent prognostic factor, the AUC of it over 3, 5, and 10 years was 0.911, 0.955, and 0.961, respectively. Calibration plots for the nomogram show that the model calibration line is very close to the ideal calibration line, indicating good calibration. The level of ICI was significantly different in the different risk groups. Survival analysis showed that, regardless of TMB risk, patients with MC and a high-risk score consistently had a poor overall survival (OS). CONCLUSIONS The m7G-related lncRNA prognostic signature has potential value for the prognosis of mucinous colonic adenocarcinoma.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Colorectal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Colorectal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinjin Ren
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guoxian Guan
- Department of Colorectal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Colorectal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Yang Z, Luo Y, Zhang F, Ma L. Exosome-derived lncRNA A1BG-AS1 attenuates the progression of prostate cancer depending on ZC3H13-mediated m6A modification. Cell Div 2024; 19:5. [PMID: 38351022 PMCID: PMC10863231 DOI: 10.1186/s13008-024-00110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Exosome-derived long non-coding RNAs (lncRNAs) and N6-methyladenosine (m6A) modifications of lncRNAs have been shown crucial functions in prostate cancer (PCa). Herein, we aim to investigate the detailed mechanism of exosome-derived lncRNA A1BG-AS1 in PCa process. METHODS PCa cell exosomes were extracted, exosomal marker proteins (CD63, CD9) were detected utilizing western blotting, and exosomes with overexpressing A1BG-AS1 were co-cultured with targeted PCa cells. qRT-PCR was used to detect A1BG-AS1 expression and m6A methyltransferase ZC3H13 in PCa. Transwell, colony formation and CCK-8 assays were utilized to assess the invasion, migration, and proliferation ability of PCa cells. Then, we performed actinomycin D and MeRIP assays to analyze the regulatory effect of ZC3H13 on A1BG-AS1 mRNA stability and m6A modification level. RESULTS We observed that A1BG-AS1 and ZC3H13 expression was restricted in PCa tumors. The invasion, proliferation and migratory capacities of PCa cells could be inhibited by up-regulating A1BG-AS1 or by co-culturing with exosomes that up-regulate A1BG-AS1. Additionally, ZC3H13 promoted stable A1BG-AS1 expression by regulating the m6A level of A1BG-AS1. CONCLUSION Exosomal A1BG-AS1 was m6A-modified by the m6A methyltransferase ZC3H13 to stabilize expression and thus prevent PCa cell malignancy. These findings offer a possible target for clinical therapy of PCa.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Yu Luo
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Fan Zhang
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Likun Ma
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
5
|
Alahdal M, Perera RA, Moschovas MC, Patel V, Perera RJ. Current advances of liquid biopsies in prostate cancer: Molecular biomarkers. Mol Ther Oncolytics 2023; 30:27-38. [PMID: 37575217 PMCID: PMC10415624 DOI: 10.1016/j.omto.2023.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Prostate cancer (PCa) incidence is increasing and endangers men's lives. Early detection of PCa could improve overall survival (OS) by preventing metastasis. The prostate-specific antigen (PSA) test is a popular screening method. Several advisory groups, however, warn against using the PSA test due to its high false positive rate, unsupported outcome, and limited benefit. The number of disease-related biopsies performed annually far outweighs the number of diagnoses. Thus, there is an urgent need to develop accurate diagnostic biomarkers to detect PCa and distinguish between aggressive and indolent cancers. Recently, non-coding RNA (ncRNA), circulating tumor DNA (ctDNA)/ctRNA, exosomes, and metabolomic biomarkers in the liquid biopsies (LBs) of patients with PCa showed significant differences and clinical benefits in diagnosis, prognosis, and monitoring response to therapy. The analysis of urinary exosomal ncRNA presented a substantial correlation among Exos-miR-375 downregulation, clinical T stage, and bone metastases of PCa. Furthermore, the expression of miR-532-5p in urine samples was a vital predictive biomarker of PCa progression. Thus, this review focuses on promising molecular and metabolomic biomarkers in LBs from patients with PCa. We thoroughly addressed the most recent clinical findings of LB biomarker use in diagnosing and monitoring PCa in early and advanced stages.
Collapse
Affiliation(s)
- Murad Alahdal
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
- Department of Oncology, Sydney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| | - Roshane A. Perera
- AdventHealth Celebration, 380 Celebration Place, Celebration, FL 34747, USA
| | | | - Vipul Patel
- AdventHealth Celebration, 380 Celebration Place, Celebration, FL 34747, USA
| | - Ranjan J. Perera
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
- Department of Oncology, Sydney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Kato T, Kawakami K, Mizutani K, Ando T, Sakai Y, Sakurai K, Toyota S, Ehara H, Ito H, Ito M. H19 in Serum Extracellular Vesicles Reflects Resistance to AR Axis-targeted Therapy Among CRPC Patients. Cancer Genomics Proteomics 2023; 20:456-468. [PMID: 37643783 PMCID: PMC10464938 DOI: 10.21873/cgp.20397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND/AIM We aimed to evaluate the changes of androgen receptor (AR) signaling-related long non-coding RNAs (lncRNAs) in serum extracellular vesicles (EVs) from prostate cancer (PC) patients, in order to identify novel biomarkers for AR axis-targeted therapy (ARAT)-resistance among castration-resistant PC (CRPC) patients. PATIENTS AND METHODS EVs were isolated from 2 patients before and after acquiring ARAT-resistance. RNA profiling of EVs was performed by RNA-sequencing. The expression levels of selected lncRNAs in EVs were analyzed by digital droplet PCR (ddPCR) in 58 localized and 14 metastatic PC patients at diagnosis, 7 ARAT-naïve and 6 ARAT-resistant CRPC patients. LncRNA H19 expression in PC tissue was examined using published data. In order to analyze the role of H19, the prognosis was analyzed in PC patients and proteomic analysis was performed in 22Rv1 PC cells. RESULTS RNA-sequencing revealed that AR-regulated RNAs were most enriched in EVs after acquiring ARAT-resistance. Among them, up-regulation of AR signaling-related lncRNAs (PCAT1, H19, HOXA-11AS, ZEB1-AS1, ARLNC1, PART1, CTBP1-AS and PCA3) was confirmed by ddPCR. H19 contained in EVs (EV-H19) was significantly increased among ARAT-resistant patients compared to ARAT-naïve CRPC or metastatic PC patients. In PC tissue, H19 was negatively correlated with AR protein and AR-activity score and up-regulated in neuroendocrine CRPC tissue with low AR expression. Furthermore, EV-H19 expression was significantly associated with worse outcome to androgen-deprivation therapy. Proteomic analysis demonstrated that H19 knockdown enhanced PC-related protein expression. CONCLUSION EV-H19 may negatively correlate with AR-signaling activity and could be a marker to diagnose ARAT-resistance among CRPC patients.
Collapse
Affiliation(s)
- Taku Kato
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan;
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Kyojiro Kawakami
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kosuke Mizutani
- Department of Urology, Central Japan International Medical Center, Gifu, Japan
| | - Tatsuya Ando
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuhiro Sakai
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kouhei Sakurai
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shohei Toyota
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Hidetoshi Ehara
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masafumi Ito
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
7
|
Diao Y, Zhu B, Ding T, Li R, Li J, Yang L, Zhou L, Hao X, Liu J. Tumor-derived extracellular vesicle nucleic acids as promising diagnostic biomarkers for prostate cancer. Front Oncol 2023; 13:1201554. [PMID: 37456240 PMCID: PMC10338955 DOI: 10.3389/fonc.2023.1201554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Liquid biopsy as a non-invasive method has a bright future in cancer diagnosis. Tumor-related extracellular vesicles (EVs) and their components (nucleic acids, proteins, and lipids) in biofluids may exert multiple functions in tumor growth, metastasis, immune escape, and angiogenesis. Among all the components, nucleic acids have attracted the most interest due to their simplicity of extraction and detection. In this review, the biological functions of EVs in prostate cancer (PCa) genesis and progression were summarized. Moreover, the diagnostic value of EV RNA markers found in clinical body fluid samples was reviewed, including their trends, challenging isolation methods, and diagnostic efficacy. Lastly, because relatively much progress has been made in PCa, studies on EV DNA markers are also discussed.
Collapse
|
8
|
The diagnostic role and mechanistic functions of exosomal lncRNAs in prostate cancer. Clin Transl Oncol 2023; 25:592-600. [PMID: 36266385 DOI: 10.1007/s12094-022-02982-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/10/2022] [Indexed: 10/24/2022]
Abstract
Exosomes are small membrane-enclosed vesicles that are released by most living cells and harbor a diverse array of proteins, nucleic acids, and lipid cargos. These exosomes offer valuable biomarkers that may offer insights regarding as a range of physiological and pathological processes, including immune responses, cancer development, pregnancy, and diseases of the central nervous system. With the development of high-throughput technologies, the vital functions of long non-coding RNAs (lncRNAs) have been gradually entered people's vision and become new research hotspots. Nowadays, lncRNAs can play important roles in cancer progression by combining with miRNAs, activating molecular targets and other ways, and are also related to the diagnosis, treatment and prognosis for cancer, such as prostate cancer. Current review focused on the summary of diagnostic roles and mechanistic functions about exosomal lncRNAs in prostate cancer.
Collapse
|
9
|
Maroni P, Gomarasca M, Lombardi G. Long non-coding RNAs in bone metastasis: progresses and perspectives as potential diagnostic and prognostic biomarkers. Front Endocrinol (Lausanne) 2023; 14:1156494. [PMID: 37143733 PMCID: PMC10153099 DOI: 10.3389/fendo.2023.1156494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In a precision medicine perspective, among the biomarkers potentially useful for early diagnosis of cancers, as well as to define their prognosis and eventually to identify novel and more effective therapeutic targets, there are the long non-coding RNAs (lncRNAs). The term lncRNA identifies a class of non-coding RNA molecules involved in the regulation of gene expression that intervene at the transcriptional, post-transcriptional, and epigenetic level. Metastasis is a natural evolution of some malignant tumours, frequently encountered in patients with advanced cancers. Onset and development of metastasis represents a detrimental event that worsen the patient's prognosis by profoundly influencing the quality of life and is responsible for the ominous progression of the disease. Due to the peculiar environment and the biomechanical properties, bone is a preferential site for the secondary growth of breast, prostate and lung cancers. Unfortunately, only palliative and pain therapies are currently available for patients with bone metastases, while no effective and definitive treatments are available. The understanding of pathophysiological basis of bone metastasis formation and progression, as well as the improvement in the clinical management of the patient, are central but challenging topics in basic research and clinical practice. The identification of new molecular species that may have a role as early hallmarks of the metastatic process could open the door to the definition of new, and more effective, therapeutic and diagnostic approaches. Non-coding RNAs species and, particularly, lncRNAs are promising compounds in this setting, and their study may bring to the identification of relevant processes. In this review, we highlight the role of lncRNAs as emerging molecules in mediating the formation and development of bone metastases, as possible biomarkers for cancer diagnosis and prognosis, and as therapeutic targets to counteract cancer spread.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- *Correspondence: Marta Gomarasca,
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
10
|
Chowdhury SG, Ray R, Karmakar P. Exosomal miRNAs-a diagnostic biomarker acting as a guiding light in the diagnosis of prostate cancer. Funct Integr Genomics 2022; 23:23. [PMID: 36574059 DOI: 10.1007/s10142-022-00951-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prostate cancer, one of the major causes of mortality globally is regarded as the second leading cause of mortality among men. It is known to affect the stromal cells surrounding it. Through the use of exosomes, the affected stromal cells can promote the growth and spread of the cancer. Exosomes are known to play a role not only in the development and progression of cancer but also contribute to the drug-resistance character of cancer cells. Recently, the discovery of the small non-coding RNAs or miRNA has attracted attention of cancer researchers as they can regulate the expression of different genes. Therefore, exosomal miRNA can be used as a novel and reliable biomarker for the diagnosis and treatment of prostate cancer. In addition, exosomal miRNAs can also be used as a potential treatment for prostate cancer. The goal of this review is to provide a comprehensive analysis of the current knowledge about the role of exosomal miRNAs in the treatment of patients with prostate cancer and their potential role in monitoring the disease.
Collapse
Affiliation(s)
| | - Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
11
|
Expression Analysis of Five Different Long Non-Coding Ribonucleic Acids in Nonsmall-Cell Lung Carcinoma Tumor and Tumor-Derived Exosomes. Diagnostics (Basel) 2022; 12:diagnostics12123209. [PMID: 36553216 PMCID: PMC9777400 DOI: 10.3390/diagnostics12123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Long non-coding ribonucleic acids (LncRNAs) are recently known for their role in regulating gene expression and the development of cancer. Controversial results indicate a correlation between the tissue expression of LncRNA and LncRNA content of extracellular vesicles. The present study aimed to evaluate the expression of different LncRNAs in non-small cell lung cancer (NSCLC) patients in tumor tissue, adjacent non-cancerous tissue (ANCT), and exosome-mediated lncRNA. Tumor and ANCT, as well as serum samples of 168 patient with NSCLC, were collected. The GHSROS, HNF1A-AS1, HOTAIR, HMlincRNA717, and LINCRNA-p21 relative expressions in tumor tissue, ANCT, and serum exosomes were evaluated in NSCLC patients. Among 168 NSCLC samples, the expressions of GHSROS (REx = 3.64, p = 0.028), HNF1A-AS1 (REx = 2.97, p = 0.041), and HOTAIR (REx = 2.9, p = 0.0389) were upregulated, and the expressions of HMlincRNA717 (REx = −4.56, p = 0.0012) and LINCRNA-p21 (REx = −5.14, p = 0.00334) were downregulated in tumor tissue in contrast to ANCT. Moreover, similar statistical differences were seen in the exosome-derived RNA of tumor tissues in contrast to ANCT samples. A panel of the five lncRNAs demonstrated that the area under the curve (AUC) for exosome and tumor was 0.937 (standard error: 0.012, p value < 0.0001). LncRNAs GHSROS, HNF1A-AS1, and HOTAIR showed high expression in tumor tissue and exosome content in NSCLC, and a panel that consisted of all five lncRNAs improved diagnosis of NSCLC.
Collapse
|
12
|
The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1390-1400. [PMID: 36138197 PMCID: PMC9535014 DOI: 10.1038/s12276-022-00855-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Exosomes are vesicles encompassed by a lipid bilayer that are released by various living cells. Exosomal proteins are encapsulated within the membrane or embedded on the surface. As an important type of exosome cargo, exosomal proteins can reflect the physiological status of the parent cell and play an essential role in cell-cell communication. Exosomal proteins can regulate tumor development, including tumor-related immune regulation, microenvironment reconstruction, angiogenesis, epithelial-mesenchymal transition, metastasis, etc. The features of exosomal proteins can provide insight into exosome generation, targeting, and biological function and are potential sources of markers for cancer diagnosis, prognosis, and treatment. Here, we summarize the effects of exosomal proteins on cancer biology, the latest progress in the application of exosomal proteins in cancer diagnosis and prognosis, and the potential contribution of exosomal proteins in cancer therapeutics and vaccines.
Collapse
|
13
|
Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14184412. [PMID: 36139572 PMCID: PMC9496870 DOI: 10.3390/cancers14184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between prostate stroma and its epithelium is essential to tissue homeostasis. Likewise, reciprocal signaling between tumor cells and the stromal compartment is required in tumor progression to facilitate or stimulate key processes such as cell proliferation and invasion. The aim of the present work was to review the current state of knowledge on the significance of tumor stroma in the genesis, progression and therapeutic response of prostate carcinoma. Additionally, we addressed the future therapeutic opportunities. Abstract Prostate cancer (PCa) is a common cancer among males globally, and its occurrence is growing worldwide. Clinical decisions about the combination of therapies are becoming highly relevant. However, this is a heterogeneous disease, ranging widely in prognosis. Therefore, new approaches are needed based on tumor biology, from which further prognostic assessments can be established and complementary strategies can be identified. The knowledge of both the morphological structure and functional biology of the PCa stroma compartment can provide new diagnostic, prognostic or therapeutic possibilities. In the present review, we analyzed the aspects related to the tumor stromal component (both acellular and cellular) in PCa, their influence on tumor behavior and the therapeutic response and their consideration as a new therapeutic target.
Collapse
|
14
|
Huang Y, Yi Q, Feng J, Xie W, Sun W, Sun W. The role of lincRNA-p21 in regulating the biology of cancer cells. Hum Cell 2022; 35:1640-1649. [PMID: 35969349 DOI: 10.1007/s13577-022-00768-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a type of multifunctional endogenous RNA transcript. The dysregulation of lncRNAs is considered to play a role in the initiation and progression of cancer. One such lncRNA, long intergenic non-coding RNA-p21 (lincRNA-p21), was identified in 2010 as a regulator in the p53 pathway and is gradually being identified to play crucial roles in diverse cellular processes. In this review, we have summarised the diverse regulatory functions of lincRNA-p21. For example, lincRNA-p21 has been reported to function as a protein decoy, act as a competitive endogenous RNA, regulate the transcription, regulate the translation processes and exist in the secreted exosomes. Furthermore, we highlight the emerging roles of lincRNA-p21 in cancer cell regulation. Various types of cancers, including colorectal carcinoma, hepatocellular carcinoma and non-small cell lung carcinoma, aberrantly express lincRNA-p21. However, the current understanding of the roles of lincRNA-p21 in cancer remains limited. Therefore, considering its potential as a valuable therapeutic target or biomarker for cancer, more research should be conducted to understand the role of lincRNA-p21 in cancer and other diseases.
Collapse
Affiliation(s)
- Yan Huang
- Department of Dermatology, Suining First People's Hospital, Suining, 629000, Sichuan, China
| | - Qian Yi
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, China.,Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China. .,The Central Laboratory, Shenzhen Second People' Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
15
|
Cui X, Fu Q, Wang X, Xia P, Cui X, Bai X, Lu Z. Molecular mechanisms and clinical applications of exosomes in prostate cancer. Biomark Res 2022; 10:56. [PMID: 35906674 PMCID: PMC9338661 DOI: 10.1186/s40364-022-00398-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PC) is a common tumor in men, and the incidence rate is high worldwide. Exosomes are nanosized vesicles released by all types of cells into multiple biological fluid types. These vesicles contribute to intercellular communication by delivering both nucleic acids and proteins to recipient cells. In recent years, many studies have explored the mechanisms by which exosomes mediate the epithelial-mesenchymal transition, angiogenesis, tumor microenvironment establishment, and drug resistance acquisition in PC, and the mechanisms that have been identified and the molecules involved have provided new perspectives for the possible discovery of novel diagnostic markers in PC. Furthermore, the excellent biophysical properties of exosomes, such as their high stability, high biocompatibility and ability to cross biological barriers, have made exosomes promising candidates for use in novel targeted drug delivery system development. In this review, we summarize the roles of exosomes in the growth and signal transmission in PC and show the promising future of exosome contributions to PC diagnostics and treatment.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xianglun Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaohui Bai
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
16
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Mousavi SM, Amin Mahdian SM, Ebrahimi MS, Taghizadieh M, Vosough M, Sadri Nahand J, Hosseindoost S, Vousooghi N, Javar HA, Larijani B, Hadjighassem MR, Rahimian N, Hamblin MR, Mirzaei H. Microfluidics for detection of exosomes and microRNAs in cancer: State of the art. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:758-791. [PMID: 35664698 PMCID: PMC9130092 DOI: 10.1016/j.omtn.2022.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes are small extracellular vesicles with sizes ranging from 30-150 nanometers that contain proteins, lipids, mRNAs, microRNAs, and double-stranded DNA derived from the cells of origin. Exosomes can be taken up by target cells, acting as a means of cell-to-cell communication. The discovery of these vesicles in body fluids and their participation in cell communication has led to major breakthroughs in diagnosis, prognosis, and treatment of several conditions (e.g., cancer). However, conventional isolation and evaluation of exosomes and their microRNA content suffers from high cost, lengthy processes, difficult standardization, low purity, and poor yield. The emergence of microfluidics devices with increased efficiency in sieving, trapping, and immunological separation of small volumes could provide improved detection and monitoring of exosomes involved in cancer. Microfluidics techniques hold promise for advances in development of diagnostic and prognostic devices. This review covers ongoing research on microfluidics devices for detection of microRNAs and exosomes as biomarkers and their translation to point-of-care and clinical applications.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Exosomal LINC01213 Plays a Role in the Transition of Androgen-Dependent Prostate Cancer Cells into Androgen-Independent Manners. JOURNAL OF ONCOLOGY 2022; 2022:8058770. [PMID: 35310913 PMCID: PMC8930242 DOI: 10.1155/2022/8058770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022]
Abstract
Background Castration-resistant prostate cancer (CRPC), one of the prostate cancers, is a medical conundrum around the world. Some studies have demonstrated that many long noncoding RNAs in exosomes are very important in many types of cancer, including prostate cancer. However, until now, the function of exosomes in the occurrence and development of CRPC has not been reported. Methods In vitro, cell coculture was used in LNCap cells and PC-3 cells, while the isolation and purification of exosomes and the subsequent treatment assays were used in functional studies. In vitro assays were performed to detect the transformation of ADPC cells (androgen-dependent prostate cancer) into AIPC cells (androgen-independent prostate cancer). Subsequently, a lncRNA-sequencing assay was performed to detect different lncRNA expression profiles in ADPC cells cocultured with or without AIPC exosomes. The role of LINC01213 was analysed by a TCGA database after silencing the expression of LINC01213. CCK-8, qRT-PCR, and Western blotting studies were performed to analyse the possible mechanism by which exosomes participate in prostate cancer progression. Results In the coculture system, ADPC cells acquired androgen deprivation tolerance through exosome-mediated intercellular communication. Exosomes secreted by AIPC cells can promote the transformation of ADPC cells into androgen-independent cells in vitro and in vivo. lncRNA sequencing showed that LINC01213 was upregulated in exosomes derived from AIPC cell lines. The rescue experiments were preformed, and the results revealed that most of the functions of LINC01213 were performed by Wnt/β-catenin. Conclusions All the findings showed that exosomes play a key role in CRPC progression by upregulating LINC01213 and activating Wnt/β-catenin signalling.
Collapse
|
19
|
Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, Soekmadji C, Tasken KA, Llorente A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 2022; 126:331-350. [PMID: 34811504 PMCID: PMC8810769 DOI: 10.1038/s41416-021-01610-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Aija Line
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elena S Martens-Uzunova
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Urology, Laboratory of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kristin Austlid Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
20
|
Wang N, Yuan S, Fang C, Hu X, Zhang YS, Zhang LL, Zeng XT. Nanomaterials-Based Urinary Extracellular Vesicles Isolation and Detection for Non-invasive Auxiliary Diagnosis of Prostate Cancer. Front Med (Lausanne) 2022; 8:800889. [PMID: 35096890 PMCID: PMC8795515 DOI: 10.3389/fmed.2021.800889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are natural nanoparticles secreted by cells in the body and released into the extracellular environment. They are associated with various physiological or pathological processes, and considered as carriers in intercellular information transmission, so that EVs can be used as an important marker of liquid biopsy for disease diagnosis and prognosis. EVs are widely present in various body fluids, among which, urine is easy to obtain in large amount through non-invasive methods and has a small dynamic range of proteins, so it is a good object for studying EVs. However, most of the current isolation and detection of EVs still use traditional methods, which are of low purity, time consuming, and poor efficiency; therefore, more efficient and highly selective techniques are urgently needed. Recently, inspired by the nanoscale of EVs, platforms based on nanomaterials have been innovatively explored for isolation and detection of EVs from body fluids. These newly developed nanotechnologies, with higher selectivity and sensitivity, greatly improve the precision of isolation target EVs from urine. This review focuses on the nanomaterials used in isolation and detection of urinary EVs, discusses the advantages and disadvantages between traditional methods and nanomaterials-based platforms, and presents urinary EV-derived biomarkers for prostate cancer (PCa) diagnosis. We aim to provide a reference for researchers who want to carry out studies about nanomaterial-based platforms to identify urinary EVs, and we hope to summarize the biomarkers in downstream analysis of urinary EVs for auxiliary diagnosis of PCa disease in detail.
Collapse
Affiliation(s)
- Na Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuai Yuan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Hu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Sen Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling-Ling Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Akbar A, Malekian F, Baghban N, Kodam SP, Ullah M. Methodologies to Isolate and Purify Clinical Grade Extracellular Vesicles for Medical Applications. Cells 2022; 11:186. [PMID: 35053301 PMCID: PMC8774122 DOI: 10.3390/cells11020186] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The use of extracellular vesicles (EV) in nano drug delivery has been demonstrated in many previous studies. In this study, we discuss the sources of extracellular vesicles, including plant, salivary and urinary sources which are easily available but less sought after compared with blood and tissue. Extensive research in the past decade has established that the breadth of EV applications is wide. However, the efforts on standardizing the isolation and purification methods have not brought us to a point that can match the potential of extracellular vesicles for clinical use. The standardization can open doors for many researchers and clinicians alike to experiment with the proposed clinical uses with lesser concerns regarding untraceable side effects. It can make it easier to identify the mechanism of therapeutic benefits and to track the mechanism of any unforeseen effects observed.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Neda Baghban
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
22
|
Jiang Y, Zhao H, Chen Y, Li K, Li T, Chen J, Zhang B, Guo C, Qing L, Shen J, Liu X, Gu P. Exosomal long noncoding RNA HOXD-AS1 promotes prostate cancer metastasis via miR-361-5p/FOXM1 axis. Cell Death Dis 2021; 12:1129. [PMID: 34864822 PMCID: PMC8643358 DOI: 10.1038/s41419-021-04421-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022]
Abstract
Development of distant metastasis is the main cause of deaths in prostate cancer (PCa) patients. Understanding the mechanism of PCa metastasis is of utmost importance to improve its prognosis. The role of exosomal long noncoding RNA (lncRNA) has been reported not yet fully understood in the metastasis of PCa. Here, we discovered an exosomal lncRNA HOXD-AS1 is upregulated in castration resistant prostate cancer (CRPC) cell line derived exosomes and serum exosomes from metastatic PCa patients, which correlated with its tissue expression. Further investigation confirmed exosomal HOXD-AS1 promotes prostate cancer cell metastasis in vitro and in vivo by inducing metastasis associated phenotype. Mechanistically exosomal HOXD-AS1 was internalized directly by PCa cells, acting as competing endogenous RNA (ceRNA) to modulate the miR-361-5p/FOXM1 axis, therefore promoting PCa metastasis. In addition, we found that serum exosomal HOXD-AS1 was upregulated in metastatic PCa patients, especially those with high volume disease. And it is correlated closely with Gleason Score, distant and nodal metastasis, Prostatic specific antigen (PSA) recurrence free survival, and progression free survival (PFS). This sheds a new insight into the regulation of PCa distant metastasis by exosomal HOXD-AS1 mediated miR-361-5p/FOXM1 axis, and provided a promising liquid biopsy biomarker to guide the detection and treatment of metastatic PCa.
Collapse
Affiliation(s)
- Yongming Jiang
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,grid.415444.40000 0004 1800 0367Department of Urology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101 China
| | - Hui Zhao
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Yuxiao Chen
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Kangjian Li
- Department of Urology, The Second People’s Hospital of Qujing City, Qujing City, Yunnan Province 655000 China
| | - Tianjie Li
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China
| | - Jianheng Chen
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Baiyu Zhang
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Caifen Guo
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China
| | - Liangliang Qing
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China
| | - Jihong Shen
- grid.285847.40000 0000 9588 0960Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032 China ,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032 China
| | - Xiaodong Liu
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032, China. .,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032, China.
| | - Peng Gu
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650032, China. .,Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, 650032, China.
| |
Collapse
|
23
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
24
|
Jeyaraman M, Muthu S, Gulati A, Jeyaraman N, G.S P, Jain R. Mesenchymal Stem Cell-Derived Exosomes: A Potential Therapeutic Avenue in Knee Osteoarthritis. Cartilage 2021; 13:1572S-1585S. [PMID: 33016114 PMCID: PMC8808857 DOI: 10.1177/1947603520962567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Knee osteoarthritis is the leading cause of functional disability in adults. The goals of knee osteoarthritis management are directed toward symptomatic pain relief along with the attainment of the functional quality of life. The treatment strategy ranges from conservative to surgical management with reparative and restorative techniques. The emergence of cell-based therapies has paved the way for the usage of mesenchymal stem cells (MSCs) in cartilage disorders. Currently, global researchers are keen on their research on nanomedicine and targeted drug delivery. MSC-derived exosomes act as a directed therapy to halt the disease progression and to provide a pain-free range of movements with increased quality of cartilage on regeneration. International Society for Extracellular Vesicles and the European Network on Microvesicles and Exosomes in Health and Disease have formed guidelines to foster the use of the growing therapeutic potential of exosomal therapy in osteoarthritis. Although regenerative therapies with MSC are being seen to hold a future in the management of osteoarthritis, extracellular vesicle-based technology holds the key to unlock the potential toward knee preservation and regeneration. The intricate composition and uncertain functioning of exosomes are inquisitive facets warranting further exploration.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopedics, School of
Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh,
India
- Madhan Jeyaraman, Department of Orthopedics,
School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar
Pradesh, 201306, India.
| | - Sathish Muthu
- Government Hospital, Velayuthampalayam,
Karur, Tamil Nadu, India
| | - Arun Gulati
- Kalpana Chawla Government Medical
College, Karnal, Haryana, India
| | | | - Prajwal G.S
- JJM Medical College, Davangere,
Karnataka, India
| | - Rashmi Jain
- School of Medical Sciences and Research,
Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
25
|
Immunomodulatory Actions of Mesenchymal Stromal Cells (MSCs) in Osteoarthritis of the Knee. OSTEOLOGY 2021. [DOI: 10.3390/osteology1040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular therapy offers regeneration which curbs osteoarthritis of the knee. Among cellular therapies, mesenchymal stromal cells (MSCs) are readily isolated from various sources as culture expanded and unexpanded cellular population which are used as therapeutic products. Though MSCs possess a unique immunological and regulatory profile through cross-talk between MSCs and immunoregulatory cells (T cells, NK cells, dendritic cells, B cells, neutrophils, monocytes, and macrophages), they provide an immunotolerant environment when transplanted to the site of action. Immunophenotypic profile allows MSCs to escape immune surveillance and promotes their hypoimmunogenic or immune-privileged status. MSCs do not elicit a proliferative response when co-cultured with allogeneic T cells in vitro. MSCs secrete a wide range of anti-inflammatory mediators such as PGE-2, IDO, IL-1Ra, and IL-10. They also stimulate the resilient chondrogenic progenitors and enhance the chondrocyte differentiation by secretion of BMPs and TGFβ1. We highlight the various mechanisms of MSCs during tissue healing signals, their interaction with the immune system, and the impact of their lifespan in the management of osteoarthritis of the knee. A better understanding of the immunobiology of MSC renders them as an efficient therapeutic product for the management of osteoarthritis of the knee.
Collapse
|
26
|
Chen S, Fang Y, Sun L, He R, He B, Zhang S. Long Non-Coding RNA: A Potential Strategy for the Diagnosis and Treatment of Colorectal Cancer. Front Oncol 2021; 11:762752. [PMID: 34778084 PMCID: PMC8578871 DOI: 10.3389/fonc.2021.762752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC), being one of the most commonly diagnosed cancers worldwide, endangers human health. Because the pathological mechanism of CRC is not fully understood, there are many challenges in the prevention, diagnosis, and treatment of this disease. Long non-coding RNAs (lncRNAs) have recently drawn great attention for their potential roles in the different stages of CRC formation, invasion, and progression, including regulation of molecular signaling pathways, apoptosis, autophagy, angiogenesis, tumor metabolism, immunological responses, cell cycle, and epithelial-mesenchymal transition (EMT). This review aims to discuss the potential mechanisms of several oncogenic lncRNAs, as well as several suppressor lncRNAs, in CRC occurrence and development to aid in the discovery of new methods for CRC diagnosis, treatment, and prognosis assessment.
Collapse
Affiliation(s)
- Shanshan Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyu Sun
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruonan He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Su Q, Wu H, Zhang Z, Lu C, Zhang L, Zuo L. Exosome-Derived Long Non-Coding RNAs as Non-Invasive Biomarkers of Bladder Cancer. Front Oncol 2021; 11:719863. [PMID: 34490118 PMCID: PMC8417445 DOI: 10.3389/fonc.2021.719863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 01/23/2023] Open
Abstract
Objective As a result of the inconsistency between reports, a meta-analysis was designed to appraise the clinical implications of long non-coding RNAs (lncRNAs) in exosomes for the diagnosis of bladder cancer. Methods The PubMed, EMBASE, and Cochrane library databases were searched to identify the relevant literature on lncRNAs in exosomes for bladder cancer diagnosis from database inception to May 2021. The literature was screened according to the inclusion and exclusion criteria, and the Quality Assessment of Diagnostic Accuracy Studies-2 entry tool was applied to evaluate the quality of the literature, and the sources of heterogeneity were explored using meta-regression and subgroup analysis. Stata 14.0 and RevMan 5.3 software were used for statistical analysis. Results A total of 23 studies described in 10 articles were included, with a total of 1883 patients with bladder cancer and 1721 patients in the non-cancerous control group. The exosome-derived lncRNAs performed better in the diagnosis of bladder cancer with a pooled sensitivity of 0.74 (95% CI, 0.69-0.77), specificity of 0.76 (95% CI, 0.72-0.80), and area under the curve of 0.83. The heterogeneity between studies was partly as a result of differences in specimen type, number of lncRNAs, lncRNA expression form, and reference gene type. Subgroup analysis showed that the detection efficacy based on the combination of multiple lncRNAs (0.86, 95% CI, 0.82-0.88) was higher than that based on a single lncRNA (0.81, 95% CI, 0.78-0.85), and exosomal lncRNAs with blood as the detection sample had a high diagnostic efficacy (0.86, 95% CI, 0.82-0.86). Conclusions Exosome-derived lncRNAs hold great promise as non-invasive diagnostic biomarkers of bladder cancer. However, their clinical value needs to be examined in further comprehensive prospective studies.
Collapse
Affiliation(s)
- Quanxin Su
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Hao Wu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Ziyi Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Chao Lu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lifeng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
28
|
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J, Du G. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B 2021; 11:2783-2797. [PMID: 34589397 PMCID: PMC8463268 DOI: 10.1016/j.apsb.2021.01.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are cell-derived nanovesicles with diameters from 30 to 150 nm, released upon fusion of multivesicular bodies with the cell surface. They can transport nucleic acids, proteins, and lipids for intercellular communication and activate signaling pathways in target cells. In cancers, exosomes may participate in growth and metastasis of tumors by regulating the immune response, blocking the epithelial-mesenchymal transition, and promoting angiogenesis. They are also involved in the development of resistance to chemotherapeutic drugs. Exosomes in liquid biopsies can be used as non-invasive biomarkers for early detection and diagnosis of cancers. Because of their amphipathic structure, exosomes are natural drug delivery vehicles for cancer therapy.
Collapse
Key Words
- ABCA3, ATP-binding cassette transporter A3
- APCs, antigen-presenting cells
- Biomarkers
- CAFs, cancer-associated fibroblasts
- CCRCC, clear-cell renal cell carcinoma
- CD-UPRT, cytosine deaminase-uracil phosphoribosyltransferase
- CDH3, cadherin 3
- CRC, colorectal cancer
- DC, dendritic cells
- DEXs, DC-derived exosomes
- DLBCL, diffuse large B-cell lymphoma
- DNM3, dynamin 3
- Del-1, developmental endothelial locus-1
- Drug delivery
- Drug resistance
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- ESCRT, endosomal sorting complex required for transport
- Exosomes
- GPC1, glypican-1
- HA, hyaluronic acid
- HCC, hepatocellular carcinoma
- HIF1, hypoxia-inducible factor 1
- HTR, hormone therapy-resistant
- HUVECs, human umbilical vein endothelial cells
- ILVs, intraluminal vesicles
- MDSCs, myeloid-derived suppressor cells
- MIF, migration inhibitory factor
- MSC, mesenchymal stem cells
- MVB, multivesicular body
- NKEXOs, natural killer cell-derived exosomes
- NNs, nanoparticles
- NSCLC, non-small cell lung cancer
- PA, phosphatidic acid
- PCC, pheochromocytoma
- PD-L1, programmed cell death receptor ligand 1
- PDAC, pancreatic ductal adenocarcinoma
- PGL, paraganglioma
- PI, phosphatidylinositol
- PS, phosphatidylserine
- PTRF, polymerase I and transcript release factor
- RCC, renal cell carcinoma
- SM, sphingomyelin
- SNARE, soluble NSF-attachment protein receptor
- TEX, tumor-derived exosomes
- TSG101, tumor susceptibility gene 101
- Tumor immunity
- Tumor metastasis
- circRNAs, circular RNAs
- dsDNA, double stranded DNA
- hTERT, human telomerase reverse transcriptase
- lamp2b, lysosome-associated membrane glycoprotein 2b
- lncRNAs, long non-coding RNAs
- miRNA, microRNA
- mtDNA, mitochondrial DNA
- ncRNA, non-coding RNAs
Collapse
Affiliation(s)
- Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
29
|
Extracellular Vesicles: New Tools for Early Diagnosis of Breast and Genitourinary Cancers. Int J Mol Sci 2021; 22:ijms22168430. [PMID: 34445131 PMCID: PMC8395117 DOI: 10.3390/ijms22168430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancers and cancers of the genitourinary tract are the most common malignancies among men and women and are still characterized by high mortality rates. In order to improve the outcomes, early diagnosis is crucial, ideally by applying non-invasive and specific biomarkers. A key role in this field is played by extracellular vesicles (EVs), lipid bilayer-delimited structures shed from the surface of almost all cell types, including cancer cells. Subcellular structures contained in EVs such as nucleic acids, proteins, and lipids can be isolated and exploited as biomarkers, since they directly stem from parental cells. Furthermore, it is becoming even more evident that different body fluids can also serve as sources of EVs for diagnostic purposes. In this review, EV isolation and characterization methods are described. Moreover, the potential contribution of EV cargo for diagnostic discovery purposes is described for each tumor.
Collapse
|
30
|
He X, Ma Y, Xie H, Rao G, Yang Z, Zhang J, Feng Z. Biomimetic Nanostructure Platform for Cancer Diagnosis Based on Tumor Biomarkers. Front Bioeng Biotechnol 2021; 9:687664. [PMID: 34336803 PMCID: PMC8320534 DOI: 10.3389/fbioe.2021.687664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and its clinical use have attracted considerable attention since early cancer diagnosis can significantly decrease mortality. Cancer biomarkers include a wide range of biomolecules, such as nucleic acids, proteins, metabolites, sugars, and cytogenetic substances present in human biofluids. Except for free-circulating biomarkers, tumor-extracellular vesicles (tEVs) and circulating tumor cells (CTCs) can serve as biomarkers for the diagnosis and prognosis of various cancers. Considering the potential of tumor biomarkers in clinical settings, several bioinspired detection systems based on nanotechnologies are in the spotlight for detection. However, tremendous challenges remain in detection because of massive contamination, unstable signal-to-noise ratios due to heterogeneity, nonspecific bindings, or a lack of efficient amplification. To date, many approaches are under development to improve the sensitivity and specificity of tumor biomarker isolation and detection. Particularly, the exploration of natural materials in biological frames has encouraged researchers to develop new bioinspired and biomimetic nanostructures, which can mimic the natural processes to facilitate biomarker capture and detection in clinical settings. These platforms have substantial influence in biomedical applications, owing to their capture ability, significant contrast increase, high sensitivity, and specificity. In this review, we first describe the potential of tumor biomarkers in a liquid biopsy and then provide an overview of the progress of biomimetic nanostructure platforms to isolate and detect tumor biomarkers, including in vitro and in vivo studies. Capture efficiency, scale, amplification, sensitivity, and specificity are the criteria that will be further discussed for evaluating the capability of platforms. Bioinspired and biomimetic systems appear to have a bright future to settle obstacles encountered in tumor biomarker detection, thus enhancing effective cancer diagnosis.
Collapse
Affiliation(s)
- Xiping He
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Haotian Xie
- Department of Mathematics, The Ohio State University, Columbus, OH, United States
| | - Gaofeng Rao
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Zhong Feng
- Department of Neurology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| |
Collapse
|
31
|
Li Z, Hou G. LincRNA-p21 Inhibits Cisplatin-Induced Apoptosis of Human Renal Proximal Tubular Epithelial Cells by Sponging miR-449a. Kidney Blood Press Res 2021; 46:495-501. [PMID: 34218230 DOI: 10.1159/000509229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/06/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION LincRNA-p21 is predicted to interact with miR-449a, which plays a protective role in cisplatin-induced acute kidney injury (CIA). OBJECTIVE This study aimed to analyze the involvement of lincRNA-p21 in breast cancer patients with CIA. METHODS Levels of lincRNA-p21 in plasma from CIA, triple negative breast cancer, and control groups were measured by performing RT-qPCR. The potential interaction between lincRNA-p21 and miR-449a was first predicted by RT-qPCR. The relationship between lincRNA-p21 and miR-449a was analyzed by overexpression experiment. RESULTS We found that lincRNA-p21 is downregulated in CIA. Dual luciferase activity assay showed that lincRNA-p21 and miR-449a can interact with each other, while overexpression of lincRNA-p21 and miR-449a failed to affect the expression of each other. In human renal proximal tubular epithelial cells (HRPTEpCs), cisplatin led to the upregulated miR-449a but downregulated lincRNA-p21. Interestingly, lincRNA-p21 overexpression led to reduced enhancing effects of miR-449a on the cisplatin-induced apoptosis of HRPTEpCs. CONCLUSION Therefore, lincRNA-p21 is downregulated in CIA and may sponge miR-449a to inhibit cisplatin-induced apoptosis of HRPTEpCs.
Collapse
Affiliation(s)
- Zhen Li
- Emergency Department, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Gang Hou
- Emergency Department, Zaozhuang Municipal Hospital, Zaozhuang, China
| |
Collapse
|
32
|
Luo R, Liu M, Yang Q, Cheng H, Yang H, Li M, Bai X, Wang Y, Zhang H, Wang S, Xie T, Tian Q. Emerging Diagnostic Potential of Tumor-derived Exosomes. J Cancer 2021; 12:5035-5045. [PMID: 34234872 PMCID: PMC8247367 DOI: 10.7150/jca.59391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes carry genetic information originating from their parental cells, raising their possibility as novel noninvasive biomarkers for cancer. Tumor-derived exosomes (TEXs) have a variety of endogenous cargos that reflect the pathophysiology status and information of tumor cells. TEXs are increasingly being recognized as potential biomarkers for cancer diagnosis prognosis, and monitoring. It is important to develop a variety of sensitive methods, including probes and biomaterials to isolate exosomes. A variety of approaches for detecting exosomes have been established. By combining exosome DNA and RNA sequencing tools, exosome proteomics analysis and immunoassay technology, it is expected that exosomes will gain widespread use in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruhua Luo
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengmeng Liu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qian Yang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huijuan Cheng
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huimin Yang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Minhui Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xue Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yue Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuling Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
33
|
Wu Y, Zeng H, Yu Q, Huang H, Fervers B, Chen ZS, Lu L. A Circulating Exosome RNA Signature Is a Potential Diagnostic Marker for Pancreatic Cancer, a Systematic Study. Cancers (Basel) 2021; 13:cancers13112565. [PMID: 34073722 PMCID: PMC8197236 DOI: 10.3390/cancers13112565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Most patients with pancreatic cancer are diagnosed at an advanced stage due to the lack of tools with high sensitivity and specificity for early detection. Aberrant gene expression occurs in pancreatic cancer, which can be packaged into nanoparticles (also known as exosomes or nano-sized extracellular vesicles) and then released into blood. In this study, we aimed to evaluate the diagnostic value of a circulating exosome RNA signature in pancreatic cancer. Our findings indicate that the circulating exosome RNA signature is a potential marker for the early detection or diagnosis of pancreatic cancer. Abstract Several exosome proteins, miRNAs and KRAS mutations have been investigated in the hope of carrying out the early detection of pancreatic cancer with high sensitivity and specificity, but they have proven to be insufficient. Exosome RNAs, however, have not been extensively evaluated in the diagnosis of pancreatic cancer. The purpose of this study was to investigate the potential of circulating exosome RNAs in pancreatic cancer detection. By retrieving RNA-seq data from publicly accessed databases, differential expression and random-effects meta-analyses were performed. The results showed that pancreatic cancer had a distinct circulating exosome RNA signature in healthy individuals, and that the top 10 candidate exosome RNAs could distinguish patients from healthy individuals with an area under the curve (AUC) of 1.0. Three (HIST2H2AA3, LUZP6 and HLA-DRA) of the 10 genes in exosomes had similar differential patterns to those in tumor tissues based on RNA-seq data. In the validation dataset, the levels of these three genes in exosomes displayed good performance in distinguishing cancer from both chronic pancreatitis (AUC = 0.815) and healthy controls (AUC = 0.8558), whereas a slight difference existed between chronic pancreatitis and healthy controls (AUC = 0.586). Of the three genes, the level of HIST2H2AA3 was positively associated with KRAS status. However, there was no significant difference in the levels of the three genes across the disease stages (stages I–IV). These findings indicate that circulating exosome RNAs have a potential early detection value in pancreatic cancer, and that a distinct exosome RNA signature exists in distinguishing pancreatic cancer from healthy individuals.
Collapse
Affiliation(s)
- Yixing Wu
- Department of Endocrinology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China;
| | - Hongmei Zeng
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Qing Yu
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington, DC 20010, USA;
| | - Huatian Huang
- Department of Imaging, Guizhou Qianxinan People’s Hospital, Xingyi 652400, China;
| | - Beatrice Fervers
- Département Prévention Cancer Environnement, Centre Léon Bérard—Université Lyon 1, 69008 Lyon, France;
- UMR Inserm 1296 “Radiations: Défense, Santé, Environnement”, Centre Léon Bérard, 69008 Lyon, France
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John’s University, New York, NY 11439, USA;
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, New Haven, CT 06520, USA
- Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
- Correspondence:
| |
Collapse
|
34
|
Massey AE, Malik S, Sikander M, Doxtater KA, Tripathi MK, Khan S, Yallapu MM, Jaggi M, Chauhan SC, Hafeez BB. Clinical Implications of Exosomes: Targeted Drug Delivery for Cancer Treatment. Int J Mol Sci 2021; 22:ijms22105278. [PMID: 34067896 PMCID: PMC8156384 DOI: 10.3390/ijms22105278] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nanoscale vesicles generated by cells for intercellular communication. Due to their composition, significant research has been conducted to transform these particles into specific delivery systems for various disease states. In this review, we discuss the common isolation and loading methods of exosomes, some of the major roles of exosomes in the tumor microenvironment, as well as discuss recent applications of exosomes as drug delivery vessels and the resulting clinical implications.
Collapse
Affiliation(s)
- Andrew E. Massey
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA;
| | - Shabnam Malik
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Mohammad Sikander
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Kyle A. Doxtater
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Manish K. Tripathi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
- Correspondence: (S.C.C.); (B.B.H.)
| | - Bilal B. Hafeez
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
- Correspondence: (S.C.C.); (B.B.H.)
| |
Collapse
|
35
|
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:148-174. [PMID: 39703905 PMCID: PMC11656527 DOI: 10.20517/evcna.2021.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2024]
Abstract
Liquid biopsy is a minimally invasive biopsy method that uses molecules in body fluids as biomarkers, and it has attracted attention as a new cancer therapy tool. Liquid biopsy has considerable clinical application potential, such as in early diagnosis, pathological condition monitoring, and tailored treatment development based on cancer biology and the predicted treatment response of individual patients. Extracellular vesicles (EVs) are lipid membranous vesicles released from almost all cell types, and they represent a novel liquid biopsy resource. EVs carry complex molecular cargoes, such as proteins, RNAs [e.g., mRNA and noncoding RNAs (microRNA, transfer RNA, circular RNA and long noncoding RNA)], and DNA fragments; these cargoes are delivered to recipient cells and serve as a cell-to-cell communication system. The molecular contents of EVs largely reflect the cell of origin and thus show cell-type specificity. In particular, cancer-derived EVs contain cancer-specific molecules expressed in parental cancer cells. Therefore, analysis of cancer-derived EVs might indicate the presence and nature of cancer. High-speed analytical technologies, such as mass spectrometry and high-throughput sequencing, have generated large data sets for EV cargoes that can be used to identify many candidate EV-associated biomarkers. Here, we will discuss the challenges and prospects of EV-based liquid biopsy compared to other biological resources (e.g., circulating tumor cells and cell-free DNA) and summarize the novel studies that have identified the remarkable potential of EVs as a cancer biomarker.
Collapse
Affiliation(s)
- Takaaki Tamura
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| |
Collapse
|
36
|
Zhang Y, Chen L, Ye X, Wu Z, Zhang Z, Sun B, Fu H, Fu C, Liang X, Jiang H. Expression and mechanism of exosome-mediated A FOXM1 related long noncoding RNA in gastric cancer. J Nanobiotechnology 2021; 19:133. [PMID: 33971889 PMCID: PMC8111998 DOI: 10.1186/s12951-021-00873-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Forkhead box protein M1 (FOXM1) is an oncogene regulating tumor growth and metastasis. Exosome was suggested to mediate cell communication by delivering active molecules in cancers. However, the existence of FOXM1 in circulating exosomes and the role of exosome FOXM1 in gastric cancer (GC) were not clear. This study aims to investigate the potential role of FOXM1 related long noncoding RNA (FRLnc1) in exosomes in GC. RESULTS The prepared CD63 immunomagnetic beads (CD63-IMB) had the characteristics of good dispersity and high magnetic response. The isolated exosomes were presented with elliptical membranous particles under a transmission electron microscope (TEM), with the particle size of 89.78 ± 4.8 nm. Western blot (WB) results showed that the exosomes were rich in CD9 and CD81. The Dil-labeled exosomes were distributed around cytoplasm and nucleus of cells by imaging flow cytometry (IFC) analysis. The results of quantitative real-time PCR (qRT-PCR) revealed that the FRLnc1 expressions were up-regulated in GC cells, tumor tissues, and serum of GC patients. An obviously up-regulated FRLnc1 expression was found in serum exosomes of GC patients. Up-regulation of FRLnc1 expression was closely correlated to lymph node metastasis (LNM) and TNM stage with the combination of relevant clinicopathological parameter analysis. The in vitro functional analyses demonstrated that FRLnc1 knockdown by RNA interference suppressed cell proliferation and migration in HGC-27 cells, whereas FRLnc1 overexpression promoted cell proliferation and migration in MKN45 cells. After exosome treatment, the FRLnc1 expression was significantly increased in MKN45 cells, and the MKN45 cells showed increased ability of proliferation and migration. CONCLUSION GC cells-derived exosomes played roles in promoting the growth and metastasis of GC by transporting FRLnc1, suggesting that FRLnc1 in the exosomes may be a potential biomarker for the diagnosis and treatment of GC. The delivery of FRLnc1 by the exosomes may provide a new way for the treatment of GC. Trial registration 2020-KYSB-094. Registered 23 March 2020-Retrospectively registered.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Lin Chen
- Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xuanting Ye
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhixiong Wu
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Zeyu Zhang
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Biaofeng Sun
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Hong Fu
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Chuangang Fu
- Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Xiaofei Liang
- Huzhou Lieyuan Medical Laboratory Company Ltd., No. 800, Rujiadian Rd., Huzhou, 313000, China.
| | - Hong Jiang
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China.
| |
Collapse
|
37
|
Salmond N, Williams KC. Isolation and characterization of extracellular vesicles for clinical applications in cancer - time for standardization? NANOSCALE ADVANCES 2021; 3:1830-1852. [PMID: 36133088 PMCID: PMC9419267 DOI: 10.1039/d0na00676a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 05/08/2023]
Abstract
Extracellular vesicles (EVs) are nanometer sized lipid enclosed particles released by all cell types into the extracellular space and biological fluids in vivo, and into cell culture media in vitro. An important physiological role of EVs is cell-cell communication. EVs interact with, and deliver, their contents to recipient cells in a functional capacity; this makes EVs desirable vehicles for the delivery of therapeutic cargoes. In addition, as EVs contain proteins, lipids, glycans, and nucleic acids that reflect their cell of origin, their potential utility in disease diagnosis and prognostication is of great interest. The number of published studies analyzing EVs and their contents in the pre-clinical and clinical setting is rapidly expanding. However, there is little standardization as to what techniques should be used to isolate, purify and characterize EVs. Here we provide a comprehensive literature review encompassing the use of EVs as diagnostic and prognostic biomarkers in cancer. We also detail their use as therapeutic delivery vehicles to treat cancer in pre-clinical and clinical settings and assess the EV isolation and characterization strategies currently being employed. Our report details diverse isolation strategies which are often dependent upon multiple factors such as biofluid type, sample volume, and desired purity of EVs. As isolation strategies vary greatly between studies, thorough EV characterization would be of great importance. However, to date, EV characterization in pre-clinical and clinical studies is not consistently or routinely adhered to. Standardization of EV characterization so that all studies image EVs, quantitate protein concentration, identify the presence of EV protein markers and contaminants, and measure EV particle size and concentration is suggested. Additionally, the use of RNase, DNase and protease EV membrane protection control experiments is recommended to ensure that the cargo being investigated is truly EV associated. Overall, diverse methodology for EV isolation is advantageous as it can support different sample types and volumes. Nevertheless, EV characterization is crucial and should be performed in a rigorous manor.
Collapse
Affiliation(s)
- Nikki Salmond
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| | - Karla C Williams
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| |
Collapse
|
38
|
Hatano K, Fujita K. Extracellular vesicles in prostate cancer: a narrative review. Transl Androl Urol 2021; 10:1890-1907. [PMID: 33968677 PMCID: PMC8100827 DOI: 10.21037/tau-20-1210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Over the past decade, there has been remarkable progress in prostate cancer biomarker discovery using urine- and blood-based assays. A liquid biopsy is a minimally invasive procedure to investigate the cancer-related molecules in circulating tumor cells (CTCs), cell-free DNA, and extracellular vesicles (EVs). Liquid biopsies have the advantage of detecting heterogeneity as well as acquired resistance in cancer. EVs are cell-derived vesicles enclosed by a lipid bilayer and contain various molecules, such as nucleic acids, proteins, and lipids. In patients with cancer, EVs derived from tumors can be isolated from urine, plasma, and serum. The advances in isolation techniques provide the opportunity to use EVs as biomarkers in the clinic. Emerging evidence suggests that EVs can be useful biomarkers for the diagnosis of prostate cancer, especially high-grade cancer. EVs can also be potent biomarkers for the prediction of disease progression in patients with castration-resistant prostate cancer (CRPC). EVs shed from cancer and stromal cells are involved in the development of tumor microenvironments, enhancing cancer progression, metastasis, and drug resistance. Here, we provide an overview of the use of EVs for the diagnosis of clinically significant prostate cancer as well as for predicting disease progression. We also discuss the biological function of EVs, which regulate cancer progression.
Collapse
Affiliation(s)
- Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
39
|
Akoto T, Saini S. Role of Exosomes in Prostate Cancer Metastasis. Int J Mol Sci 2021; 22:3528. [PMID: 33805398 PMCID: PMC8036381 DOI: 10.3390/ijms22073528] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer remains a life-threatening disease among men worldwide. The majority of PCa-related mortality results from metastatic disease that is characterized by metastasis of prostate tumor cells to various distant organs, such as lung, liver, and bone. Bone metastasis is most common in prostate cancer with osteoblastic and osteolytic lesions. The precise mechanisms underlying PCa metastasis are still being delineated. Intercellular communication is a key feature underlying prostate cancer progression and metastasis. There exists local signaling between prostate cancer cells and cells within the primary tumor microenvironment (TME), in addition to long range signaling wherein tumor cells communicate with sites of future metastases to promote the formation of pre-metastatic niches (PMN) to augment the growth of disseminated tumor cells upon metastasis. Over the last decade, exosomes/ extracellular vesicles have been demonstrated to be involved in such signaling. Exosomes are nanosized extracellular vesicles (EVs), between 30 and 150 nm in thickness, that originate and are released from cells after multivesicular bodies (MVB) fuse with the plasma membrane. These vesicles consist of lipid bilayer membrane enclosing a cargo of biomolecules, including proteins, lipids, RNA, and DNA. Exosomes mediate intercellular communication by transferring their cargo to recipient cells to modulate target cellular functions. In this review, we discuss the contribution of exosomes/extracellular vesicles in prostate cancer progression, in pre-metastatic niche establishment, and in organ-specific metastases. In addition, we briefly discuss the clinical significance of exosomes as biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
40
|
Zong L, Huang P, Song Q, Kang Y. Bone marrow mesenchymal stem cells-secreted exosomal H19 modulates lipopolysaccharides-stimulated microglial M1/M2 polarization and alleviates inflammation-mediated neurotoxicity. Am J Transl Res 2021; 13:935-951. [PMID: 33841631 PMCID: PMC8014338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Neuroinflammation is the most common cause of neurological diseases. Exosomes derived from mesenchymal stem cells (MSCs-exos) have been reported to reduce inflammation and neuronal injury. Its underlying mechanism remains poorly unknown. In this study, identification of bone marrow MSCs-derived exosomes (BMSCs-exos) was conducted by nanosight tracking analysis, transmission electron microscope, and western blot assay. Enzyme-linked immunosorbent (ELISA) was used to analyze microglial M1/M2 polarization and detect levels of inflammatory factors. Cell viability was determined by Cell Counting Kit (CCK)-8 assay. Cell apoptosis was assessed by flow cytometry, caspase-3 activity assay, and DNA fragmentation assay. Quantitative real-time polymerase chain reaction was used to detect gene expression. Luciferase reporter and RNA pull-down assays were exploited to validate the interaction between genes. BMSCs-exos promoted M2 polarization while inhibited M1 polarization in LPS-stimulated BV-2 cells. BMSCs-exos inhibited the secretion of interleukin (IL)-1β, IL-6, and TNF-α, while increased the levels of IL-10. BMSCs-exos resisted the cytotoxicity and apoptosis induced by LPS in HT22 cells. BMSCs-exosomal long noncoding RNA (lncRNA) H19 enhanced the anti-inflammatory ability of BMSCs-exos in BV-2 microglia following LPS stimulation, and strengthened the neuroprotective effect of BMSCs-exos on HT22 cells in the presence of LPS. Moreover, H19 functioned as a sponge for miR-29b-3p. miR-29b-3p mimics abolished the effects of BMSCs-exosomal H19 on M1/M2 polarization and inflammation in LPS-stimulated BV-2 cells. The neuroprotective function of BMSCs-exosomal H19 was attenuated by miR-29b-3p mimics in LPS-stimulated HT22 cells. BMSCs-exosomal H19 modulates LPS-stimulated microglial M1/M2 polarization and alleviates inflammation-mediated neurotoxicity by sponging miR-29b-3p.
Collapse
Affiliation(s)
- Lu Zong
- Department of Obstetrics, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Pu Huang
- Department of Obstetrics, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Qing Song
- Department of Obstetrics, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Yan Kang
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nan 250014, Shandong, China
| |
Collapse
|
41
|
Brisotto G, Guerrieri R, Colizzi F, Steffan A, Montico B, Fratta E. Long Noncoding RNAs as Innovative Urinary Diagnostic Biomarkers. Methods Mol Biol 2021; 2292:73-94. [PMID: 33651353 DOI: 10.1007/978-1-0716-1354-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The characterization of circulating tumor cells (CTCs) is now widely studied as a promising source of cancer-derived biomarkers because of their role in tumor formation and progression. However, CTCs analysis presents some limitations and no standardized method for CTCs isolation from urine has been defined so far. In fact, besides blood, urine represents an ideal source of noninvasive biomarkers, especially for the early detection of genitourinary tumors. Besides CTCs, long noncoding RNAs (lncRNAs) have also been proposed as potential noninvasive biomarkers, and the evaluation of the diagnostic accuracy of urinary lncRNAs has dramatically increased over the last years, with many studies being published. Therefore, this review provides an update on the clinical utility of urinary lncRNAs as novel biomarkers for the diagnosis of bladder and prostate cancers.
Collapse
Affiliation(s)
- Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
42
|
Huang X, Liu X, Du B, Liu X, Xue M, Yan Q, Wang X, Wang Q. LncRNA LINC01305 promotes cervical cancer progression through KHSRP and exosome-mediated transfer. Aging (Albany NY) 2021; 13:19230-19242. [PMID: 33638945 PMCID: PMC8386557 DOI: 10.18632/aging.202565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Cervical cancer (CC) is one of the deadliest female malignancies worldwide. Long non-coding RNAs (lncRNAs) are essential regulators for cancer progression. This study aimed to elucidate the role of lncRNA LINC01305 in the progression of CC. We found where LINC01305 was expressed in CC tissues and its correlation with the survival rate of CC patients. Functional experiments were performed to elucidate the effect of LINC01305 on CC. The results showed that LINC01305 was increased in CC tumor tissues and was correlated with a lower survival rate. The overexpression and knockdown of LINC01305 enhanced and inhibited the progression of CC, respectively. Additionally, the upregulation of LINC01305 promoted tumor growth in xenograft mice. Moreover, the effect of LINC01305 on CC was mediated through interacting with the RNA-binding protein, KHSRP. Furthermore, LINC01305 was mainly distributed in exosomes and was transferred to recipient cells to enhance CC progression. Lastly, LINC01305 may participate in the regulation of the stemness of CC. Taken together, the results suggest that LINC01305 promotes the progression of CC through KHSRP and that LINC01305 is released through exosomes and is involved in the stemness of CC. This study sheds light on the molecular mechanism underlying the progression of CC.
Collapse
Affiliation(s)
- Xianxia Huang
- Department of Obstetrics and Gynecology, Jinan People's Hospital Affiliated to Shandong First Medical University (Jinan City People's Hospital), Jinan 271199, Shandong, P.R. China
| | - Xuemei Liu
- Department of Obstetrics and Gynecology, Jinan People's Hospital Affiliated to Shandong First Medical University (Jinan City People's Hospital), Jinan 271199, Shandong, P.R. China
| | - Bo Du
- Department of Obstetrics and Gynecology, Jinan People's Hospital Affiliated to Shandong First Medical University (Jinan City People's Hospital), Jinan 271199, Shandong, P.R. China
| | - Xueling Liu
- Department of Obstetrics and Gynecology, Jinan People's Hospital Affiliated to Shandong First Medical University (Jinan City People's Hospital), Jinan 271199, Shandong, P.R. China
| | - Mei Xue
- Department of Obstetrics and Gynecology, Jinan People's Hospital Affiliated to Shandong First Medical University (Jinan City People's Hospital), Jinan 271199, Shandong, P.R. China
| | - Qingxin Yan
- Department of Obstetrics and Gynecology, Jinan People's Hospital Affiliated to Shandong First Medical University (Jinan City People's Hospital), Jinan 271199, Shandong, P.R. China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Jinan People's Hospital Affiliated to Shandong First Medical University (Jinan City People's Hospital), Jinan 271199, Shandong, P.R. China
| | - Qian Wang
- Department of Obstetrics and Gynecology, the Fifth People's Hospital of Jinan, Jinan 250022, Shandong, P.R. China
| |
Collapse
|
43
|
Wang J, Li X, Li H, Li X. LncRNA HOXA11-AS regulates the proliferation and epithelial to mesenchymal transition of human skin cancer cells. 3 Biotech 2021; 11:12. [PMID: 33442511 DOI: 10.1007/s13205-020-02557-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
LncRNA HOXA11-AS functions as regulator of tumorigenesis of several human cancers. The present study was intended to explore its regulatory control in human skin cancer with emphasis on understanding the underlying molecular mechanism. The results showed significant (P < 0.05) upregulation of lncRNA HOXA11-AS transcript levels in human skin cancer tissues and cell lines. The knockdown of HOXA11-AS significantly (P < 0.05) inhibited the proliferation and colony formation of A375 and HMCB skin cancer cells. Flow cytometry showed that HOXA11-AS knockdown triggered arrest of the A375 and HMCB cells at G2/M check point of cell cycle by inhibiting the expression of cyclin B1. Additionally, western blot analysis showed that HOXA11-AS knockdown resulted in the deactivation of PI3K/AKT/mTOR signaling pathway. The silencing of HOXA11-AS significantly (P < 0.05) inhibited the migration and invasion of the A375 and HMCB skin cancer cells. This was also accompanied by increase in E-cadherin and decrease in N-cadherin expression. Collectively, the results indicate that lncRNA HOXA11-AS regulates the proliferation, migration and invasion of human skin cancer and may exhibit therapeutic potential in the treatment of skin cancer.
Collapse
Affiliation(s)
- Jigang Wang
- Department of Burn and Plastic Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001 Hebei China
| | - Xiuli Li
- Department of Burn and Plastic Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001 Hebei China
| | - Hui Li
- Department of Burn and Plastic Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001 Hebei China
| | - Xin Li
- Department of Burn and Plastic Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001 Hebei China
| |
Collapse
|
44
|
Tezerjani MD, Kalantar SM. Unraveling the dark matter, long non-coding RNAs, in male reproductive diseases: A narrative review. Int J Reprod Biomed 2020; 18:921-934. [PMID: 33349800 PMCID: PMC7749978 DOI: 10.18502/ijrm.v13i11.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/10/2020] [Accepted: 06/28/2020] [Indexed: 12/09/2022] Open
Abstract
Recent advances in human transcriptome have revealed the fundamental and functional roles of long non-coding RNA in the susceptibility to diverse diseases and pathological conditions. They participate in wide range of biological processes such as the modulating of chromatin structure, transcription, translation, and post-translation modification. In addition, based on their unique expression profiles and their association with clinical abnormalities such as those of related to male reproductive diseases, they can be used to develop therapeutic methods and biomarkers for screening of the diseases. In this study, we will review the identified lncRNAs and their molecular functions in the pathogenesis of male reproductive diseases such as prostate cancer, benign prostatic hyperplasia, prostatitis, testicular cancer, varicocele, and sperm abnormalities.
Collapse
Affiliation(s)
- Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.,Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
45
|
Zhu Z, Wang H, Pang Y, Hu H, Zhang H, Wang W. Exosomal long non-coding RNA UCA1 functions as growth inhibitor in esophageal cancer. Aging (Albany NY) 2020; 12:20523–20539. [PMID: 33122449 PMCID: PMC7655204 DOI: 10.18632/aging.103911] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Esophageal cancer is a highly lethal and broad-spreading malignant tumor worldwide. Exosome-carrying lncRNAs play an essential role in the pathogenesis of various cancers. RESULTS The results revealed that the expression of UCA1 was decreased in esophageal cancer tissues and plasma exosomes. UCA1 was enriched in exosomes, and exosomal UCA1 was a promising biomarker for the diagnosis of esophageal cancer with 86.7% sensitivity and 70.2% specificity. Overexpression of UCA1 played anticancer roles in esophageal cancer cells through inhibiting cell proliferation, invasion and migration, and colony formation. Also, exosomal UCA1 was taken up by esophageal cancer cells and inhibited the progression of esophageal cancer in vitro and tumor growth in vivo. Furthermore, exosomal UCA1 could directly target miRNA-613 in esophageal cancer cells. CONCLUSIONS The results suggested that exosomal UCA1 inhibits tumorigenesis and progression of esophageal cancer in vitro and in vivo, and might be a promising biomarker for esophageal cancer. PATIENT AND METHODS In this study, we determined the expression of UCA1 in esophageal cancer tissues, plasma exosomes of patients with esophageal cancer. We determined the potential of exosomal UCA1 as a biomarker and its effect on the pathogenesis and progression of esophageal cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Zijiang Zhu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Huilin Wang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yao Pang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hongxia Hu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hongyi Zhang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenhao Wang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
46
|
Role of extracellular vesicles in tumour microenvironment. Cell Commun Signal 2020; 18:163. [PMID: 33081785 PMCID: PMC7574205 DOI: 10.1186/s12964-020-00643-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, it has been demonstrated that extracellular vesicles (EVs) can be released by almost all cell types, and detected in most body fluids. In the tumour microenvironment (TME), EVs serve as a transport medium for lipids, proteins, and nucleic acids. EVs participate in various steps involved in the development and progression of malignant tumours by initiating or suppressing various signalling pathways in recipient cells. Although tumour-derived EVs (T-EVs) are known for orchestrating tumour progression via systemic pathways, EVs from non-malignant cells (nmEVs) also contribute substantially to malignant tumour development. Tumour cells and non-malignant cells typically communicate with each other, both determining the progress of the disease. In this review, we summarise the features of both T-EVs and nmEVs, tumour progression, metastasis, and EV-mediated chemoresistance in the TME. The physiological and pathological effects involved include but are not limited to angiogenesis, epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) remodelling, and immune escape. We discuss potential future directions of the clinical application of EVs, including diagnosis (as non-invasive biomarkers via liquid biopsy) and therapeutic treatment. This may include disrupting EV biogenesis and function, thus utilising the features of EVs to repurpose them as a therapeutic tool in immunotherapy and drug delivery systems. We also discuss the overall findings of current studies, identify some outstanding issues requiring resolution, and propose some potential directions for future research. Video abstract.
Collapse
|
47
|
Meng Q, Pu L, Luo X, Wang B, Li F, Liu B. Regulatory Roles of Related Long Non-coding RNAs in the Process of Atherosclerosis. Front Physiol 2020; 11:564604. [PMID: 33192561 PMCID: PMC7604474 DOI: 10.3389/fphys.2020.564604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis (AS) is the main cause of coronary heart disease, cerebral infarction, and peripheral vascular disease, which comprise serious hazards to human health. Atherosclerosis is characterized by the deposition of lipids on the interior walls of blood vessels, causing an inflammatory response of immune cells, endothelial cells, and smooth muscle cells, and a proliferation cascade reaction. Despite years of research, the underlying pathogenesis of AS is not fully defined. Recent advances in our understanding of the molecular mechanisms by which non-coding RNA influences the initiation and progression of AS have shown that long non-coding RNAs (lncRNAs) regulate important stages in the atherosclerotic process. In this review, we summarize current knowledge of lncRNAs, which influence the development of AS. We review the regulatory processes of lncRNAs on core stages of atherosclerotic progression, including lipid metabolism, inflammation, vascular cell proliferation, apoptosis, adhesion and migration, and angiogenesis. A growing body of evidence suggests that lncRNAs have great potential as new therapeutic targets for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Xizi Luo
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Baisen Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Exosomal Long Non-coding RNAs: Emerging Players in the Tumor Microenvironment. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1371-1383. [PMID: 33738133 PMCID: PMC7940039 DOI: 10.1016/j.omtn.2020.09.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in exosome biology have uncovered a significant role of exosomes in cancer and make them a determining factor in intercellular communication. Exosomes are types of extracellular vesicles that are involved in the communication between cells by exchanging various signaling molecules between the surrounding cells. Among various signaling molecules, long non-coding RNAs (lncRNAs), a type of non-coding RNA having a size of more than 200 nt in length and lacking protein-coding potential, have emerged as crucial regulators of intercellular communication. Tumor-derived exosomes containing various lncRNAs, known as exosomal lncRNAs, reprogram the microenvironment by regulating numerous cellular functions, including the regulation of gene transcription that favors cancer growth and progression, thus significantly determining the biological effects of exosomes. In addition, deregulated expression of lncRNAs is found in various human cancers and serves as a diagnostic biomarker to predict cancer type. The present review discusses the role of exosomal lncRNAs in the crosstalk between tumor cells and the surrounding cells of the microenvironment. Furthermore, we also discuss the involvement of exosomal lncRNAs within the tumor microenvironment in favoring tumor growth, metabolic reprogramming of tumor cells, and tumor-supportive autophagy. Therefore, lncRNAs can be used as a therapeutic target in the treatment of various human cancers.
Collapse
|
49
|
Cao Z, Yao F, Lang Y, Feng X. Elevated Circulating LINC-P21 Serves as a Diagnostic Biomarker of Type 2 Diabetes Mellitus and Regulates Pancreatic β-cell Function by Sponging miR-766-3p to Upregulate NR3C2. Exp Clin Endocrinol Diabetes 2020; 130:156-164. [PMID: 33007789 DOI: 10.1055/a-1247-4978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the clinical value and biological function of long non-coding RNA (lncRNA) LINC-P21 in type 2 diabetes mellitus (T2DM), and explore the underlying mechanisms. METHODS The expression of LINC-P21 was estimated using quantitative real-time PCR. The functional role of LINC-P21 was explored by gain- and loss-of-function experiments. INS-1 cell proliferation was analyzed using a cell counting kit-8 (CCK-8)assay, and the glucose-stimulated insulin secretion was measured using an ELISA kit. The miRNAs that might be sponged by LINC-P21 were analyzed, and the subsequent target genes were predicted and assessed in INS-1 cells. RESULTS Serum expression of LINC-P21 was elevated in T2DM patients, which was correlated with fasting blood glucose levels and disease diagnosis. The glucose-stimulated insulin secretion and the proliferation of INS-1 cells were enhanced by LINC-P21 knockdown, but the overexpression of LINC-P21 led to opposite effects. miR-766-3p could be directly inhibited by LINC-P21 in INS-1 cells and reverse the effects of LINC-P21 on β-cell function. Additionally, NR3C2 was determined as a target of miR-766-3p, which could be positively regulated by LINC-P21 and had same effects with LINC-P21 on INS-1 cell proliferation and insulin secretion. CONCLUSION All the data demonstrated that serum elevated LINC-P21 and decreased miR-766-3p serve as candidate diagnostic biomarkers in T2DM patients. LINC-P21 acts as a potential regulator in insulin secretion and proliferation of pancreatic β-cells through targeting miR-766-3p to upregulate NR3C2.
Collapse
Affiliation(s)
- Zhibin Cao
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong
| | - Fuwang Yao
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong
| | - Yuqin Lang
- Department of Endoscopic Outpatient Operating Room, Affiliated Hospital of Weifang Medical University, Weifang, Shandong
| | - Xueqiang Feng
- Vascular Intervention Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong
| |
Collapse
|
50
|
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X, Chen L. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 2020; 8:25. [PMID: 32596023 PMCID: PMC7305215 DOI: 10.1038/s41413-020-0100-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes participate in many physiological and pathological processes by regulating cell-cell communication, which are involved in numerous diseases, including osteoarthritis (OA). Exosomes are detectable in the human articular cavity and were observed to change with OA progression. Several joint cells, including chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and secrete exosomes that influence the biological effects of targeted cells. In addition, exosomes from stem cells can protect the OA joint from damage by promoting cartilage repair, inhibiting synovitis, and mediating subchondral bone remodeling. This review summarizes the roles and therapeutic potential of exosomes in OA and discusses the perspectives and challenges related to exosome-based treatment for OA patients in the future.
Collapse
Affiliation(s)
- Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Cformation of H-type vessel in subchondral enter of Trauma and War Injury; Daping Hospital, Army Medical University of PLA, Chongqing, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Eleven Squadron Three Brigade, School of Basic Medical Science, Army Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei He
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|