1
|
Ertan OT, Arzik Y, Daldaban F, Arslan K, Akyuz B. Association of the SNP in akirin 2 Gene With Growth and Carcass Traits in Zavot Cattle. Vet Med Sci 2025; 11:e70161. [PMID: 39854118 PMCID: PMC11760987 DOI: 10.1002/vms3.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 01/26/2025] Open
Abstract
Understanding the genetic factors that influence meat yield is crucial due to the economic importance of average daily live weight gain (ADWG) in livestock. This study investigates the relationship between the c.*188G>A SNP in the 3'-UTR region of the akirin 2 gene and growth traits in Zavot cattle, focusing on the gene's role in muscle development. Genotyping of the c.*188G>A SNP was conducted using polymerase chain reaction-restriction fragment length polymorphism analysis, revealing frequencies of 0.09 for AA, 0.75 for AG and 0.16 for GG genotypes, respectively. Our findings demonstrate a significant association between this SNP and ADWG, as well as percentage. These results suggest that the c.*188G>A SNP within akirin 2 could serve as a valuable DNA marker for predicting ADWG and percentage traits in Zavot cattle.
Collapse
Affiliation(s)
- Osman Tufan Ertan
- Erciyes University, Institute of Health Sciences, Department of Veterinary Animal ScienceKayseriTurkey
| | - Yunus Arzik
- Faculty of Veterinary MedicineAksaray UniversityAksarayTurkey
| | - Fadime Daldaban
- Faculty of Veterinary Medicine, Erciyes UniversityKayseriTurkey
| | - Korhan Arslan
- Faculty of Veterinary Medicine, Erciyes UniversityKayseriTurkey
| | - Bilal Akyuz
- Faculty of Veterinary Medicine, Erciyes UniversityKayseriTurkey
| |
Collapse
|
2
|
Dos Santos TCF, Silva EN, Frezarim GB, Salatta BM, Baldi F, Fonseca LFS, Albuquerque LGD, Muniz MMM, Silva DBDS. Identification of cis-sQTL demonstrates genetic associations and functional implications of inflammatory processes in Nelore cattle muscle tissue. Mamm Genome 2025:10.1007/s00335-024-10100-0. [PMID: 39825903 DOI: 10.1007/s00335-024-10100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/22/2024] [Indexed: 01/20/2025]
Abstract
This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package. A permutation analysis then assessed the significance of the best SNPs for each spliced transcript. Functional enrichment analysis was performed on the sGenes to investigate their roles in the immune system. In total, 3,187 variants were linked to 3,202 spliced transcripts, with 83 sGenes involved in immune system processes. Of these, 31 sGenes were enriched for five transcription factors. Most cis-sQTL effects were found in intronic regions, with 27 sQTL variants associated with disease susceptibility and resistance in cattle. Key sGenes identified, such as GSDMA, NLRP6, CASP6, GZMA, CASP4, CASP1, TREM2, NLRP1, and NAIP, were related to inflammasome formation and pyroptosis. Additionally, genes like PIDD1, OPTN, NFKBIB, STAT1, TNIP3, and TREM2 were involved in regulating the NF-kB pathway. These findings lay the groundwork for breeding disease-resistant cattle and enhance our understanding of genetic mechanisms in immune responses.
Collapse
Affiliation(s)
- Thaís Cristina Ferreira Dos Santos
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brasil.
| | - Evandro Neves Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil
- Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brasil
| | | | - Bruna Maria Salatta
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | - Fernando Baldi
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | | | - Lucia Galvão De Albuquerque
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, DF, Brasil
| | - Maria Malane Magalhães Muniz
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- University of Guelph, UOGELPH, Guelph, Canada
| | - Danielly Beraldo Dos Santos Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil.
| |
Collapse
|
3
|
Tian R, Mahmoodi M, Tian J, Esmailizadeh Koshkoiyeh S, Zhao M, Saminzadeh M, Li H, Wang X, Li Y, Esmailizadeh A. Leveraging Functional Genomics for Understanding Beef Quality Complexities and Breeding Beef Cattle for Improved Meat Quality. Genes (Basel) 2024; 15:1104. [PMID: 39202463 PMCID: PMC11353656 DOI: 10.3390/genes15081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Consumer perception of beef is heavily influenced by overall meat quality, a critical factor in the cattle industry. Genomics has the potential to improve important beef quality traits and identify genetic markers and causal variants associated with these traits through genomic selection (GS) and genome-wide association studies (GWAS) approaches. Transcriptomics, proteomics, and metabolomics provide insights into underlying genetic mechanisms by identifying differentially expressed genes, proteins, and metabolic pathways linked to quality traits, complementing GWAS data. Leveraging these functional genomics techniques can optimize beef cattle breeding for enhanced quality traits to meet high-quality beef demand. This paper provides a comprehensive overview of the current state of applications of omics technologies in uncovering functional variants underlying beef quality complexities. By highlighting the latest findings from GWAS, GS, transcriptomics, proteomics, and metabolomics studies, this work seeks to serve as a valuable resource for fostering a deeper understanding of the complex relationships between genetics, gene expression, protein dynamics, and metabolic pathways in shaping beef quality.
Collapse
Affiliation(s)
- Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Maryam Mahmoodi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| | - Jing Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Sina Esmailizadeh Koshkoiyeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Mahla Saminzadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (J.T.); (M.Z.); (H.L.); (X.W.); (Y.L.)
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-133, Iran; (M.M.); (S.E.K.); (M.S.); (A.E.)
| |
Collapse
|
4
|
Rowan TN, Schnabel RD, Decker JE. Uncovering the architecture of selection in two Bos taurus cattle breeds. Evol Appl 2024; 17:e13666. [PMID: 38405336 PMCID: PMC10883790 DOI: 10.1111/eva.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Directional selection alters the genome via hard sweeps, soft sweeps, and polygenic selection. However, mapping polygenic selection is difficult because it does not leave clear signatures on the genome like a selective sweep. In populations with temporally stratified genotypes, the Generation Proxy Selection Mapping (GPSM) method identifies variants associated with generation number (or appropriate proxy) and thus variants undergoing directional allele frequency changes. Here, we use GPSM on two large datasets of beef cattle to detect associations between an animal's generation and 11 million imputed SNPs. Using these datasets with high power and dense mapping resolution, GPSM detected a total of 294 unique loci actively under selection in two cattle breeds. We observed that GPSM has a high power to detect selection in the very recent past (<10 years), even when allele frequency changes are small. Variants identified by GPSM reside in genomic regions associated with known breed-specific selection objectives, such as fertility and maternal ability in Red Angus, and carcass merit and coat color in Simmental. Over 60% of the selected loci reside in or near (<50 kb) annotated genes. Using haplotype-based and composite selective sweep statistics, we identify hundreds of putative selective sweeps that likely occurred earlier in the evolution of these breeds; however, these sweeps have little overlap with recent polygenic selection. This makes GPSM a complementary approach to sweep detection methods when temporal genotype data are available. The selected loci that we identify across methods demonstrate the complex architecture of selection in domesticated cattle.
Collapse
Affiliation(s)
- Troy N. Rowan
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
- Genetics Area ProgramUniversity of MissouriColumbiaMissouriUSA
- Department of Animal ScienceUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
- Department of Large Animal Clinical Sciences, College of Veterinary MedicineUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Robert D. Schnabel
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
- Genetics Area ProgramUniversity of MissouriColumbiaMissouriUSA
- Institute for Data Science and InformaticsUniversity of MissouriColumbiaMissouriUSA
| | - Jared E. Decker
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
- Genetics Area ProgramUniversity of MissouriColumbiaMissouriUSA
- Institute for Data Science and InformaticsUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
5
|
Valente D, Serra O, Carolino N, Gomes J, Coelho AC, Espadinha P, Pais J, Carolino I. A Genome-Wide Association Study for Resistance to Tropical Theileriosis in Two Bovine Portuguese Autochthonous Breeds. Pathogens 2024; 13:71. [PMID: 38251378 PMCID: PMC10819359 DOI: 10.3390/pathogens13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The control of Tropical Theileriosis, a tick-borne disease with a strong impact on cattle breeding, can be facilitated using marker-assisted selection in breeding programs. Genome-wide association studies (GWAS) using high-density arrays are extremely important for the ongoing process of identifying genomic variants associated with resistance to Theileria annulata infection. In this work, single-nucleotide polymorphisms (SNPs) were analyzed in the Portuguese autochthonous cattle breeds Alentejana and Mertolenga. In total, 24 SNPs suggestive of significance (p ≤ 10-4) were identified for Alentejana cattle and 20 SNPs were identified for Mertolenga cattle. The genomic regions around these SNPs were further investigated for annotated genes and quantitative trait loci (QTLs) previously described by other authors. Regarding the Alentejana breed, the MAP3K1, CMTM7, SSFA2, and ATG13 genes are located near suggestive SNPs and appear as candidate genes for resistance to Tropical Theileriosis, considering its action in the immune response and resistance to other diseases. On the other hand, in the Mertolenga breed, the UOX gene is also a candidate gene due to its apparent link to the pathogenesis of the disease. These results may represent a first step toward the possibility of including genetic markers for resistance to Tropical Theileriosis in current breed selection programs.
Collapse
Affiliation(s)
- Diana Valente
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Octávio Serra
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Banco Português de Germoplasma Vegetal, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal;
| | - Nuno Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Jacinto Gomes
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Escola Superior Agrária de Elvas, Instituto Politécnico de Portalegre, 7350-092 Elvas, Portugal
| | - Ana Cláudia Coelho
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Pedro Espadinha
- Associação de Criadores de Bovinos da Raça Alentejana, Monforte Herdade da Coutada Real-Assumar, 7450-051 Assumar, Portugal
| | - José Pais
- Associação de Criadores de Bovinos Mertolengos, 7006-806 Évora, Portugal;
| | - Inês Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
6
|
Martins FB, Aono AH, Moraes ADCL, Ferreira RCU, Vilela MDM, Pessoa-Filho M, Rodrigues-Motta M, Simeão RM, de Souza AP. Genome-wide family prediction unveils molecular mechanisms underlying the regulation of agronomic traits in Urochloa ruziziensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303417. [PMID: 38148869 PMCID: PMC10749977 DOI: 10.3389/fpls.2023.1303417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Marco Pessoa-Filho
- Embrapa Cerrados, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | | | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Mato Grosso, Brazil
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Wu J, Wu T, Xie X, Niu Q, Zhao Z, Zhu B, Chen Y, Zhang L, Gao X, Niu X, Gao H, Li J, Xu L. Genetic Association Analysis of Copy Number Variations for Meat Quality in Beef Cattle. Foods 2023; 12:3986. [PMID: 37959106 PMCID: PMC10647706 DOI: 10.3390/foods12213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Meat quality is an economically important trait for global food production. Copy number variations (CNVs) have been previously implicated in elucidating the genetic basis of complex traits. In this article, we detected a total of 112,198 CNVs and 10,102 CNV regions (CNVRs) based on the Bovine HD SNP array. Next, we performed a CNV-based genome-wide association analysis (GWAS) of six meat quality traits and identified 12 significant CNV segments corresponding to eight candidate genes, including PCDH15, CSMD3, etc. Using region-based association analysis, we further identified six CNV segments relevant to meat quality in beef cattle. Among these, TRIM77 and TRIM64 within CNVR4 on BTA29 were detected as candidate genes for backfat thickness (BFT). Notably, we identified a 34 kb duplication for meat color (MC) which was supported by read-depth signals, and this duplication was embedded within the keratin gene family including KRT4, KRT78, and KRT79. Our findings will help to dissect the genetic architecture of meat quality traits from the aspects of CNVs, and subsequently improve the selection process in breeding programs.
Collapse
Affiliation(s)
- Jiayuan Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Tianyi Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xueyuan Xie
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qunhao Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Zhida Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Bo Zhu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Yan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Lupei Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xue Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xiaoyan Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Huijiang Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Junya Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Lingyang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| |
Collapse
|
8
|
Tian R, Asadollahpour Nanaie H, Wang X, Dalai B, Zhao M, Wang F, Li H, Yang D, Zhang H, Li Y, Wang T, Luan T, Wu J. Genomic adaptation to extreme climate conditions in beef cattle as a consequence of cross-breeding program. BMC Genomics 2023; 24:186. [PMID: 37024818 PMCID: PMC10080750 DOI: 10.1186/s12864-023-09235-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Understanding the evolutionary forces related to climate changes that have been shaped genetic variation within species has long been a fundamental pursuit in biology. In this study, we generated whole-genome sequence (WGS) data from 65 cross-bred and 45 Mongolian cattle. Together with 62 whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of cattle populations. In addition, we performed comparative population genomics analyses to explore the genetic basis underlying variation in the adaptation to cold climate and immune response in cross-bred cattle located in the cold region of China. To elucidate genomic signatures that underlie adaptation to cold climate, we performed three statistical measurements, fixation index (FST), log2 nucleotide diversity (θπ ratio) and cross population composite likelihood ratio (XP-CLR), and further investigated the results to identify genomic regions under selection for cold adaptation and immune response-related traits. RESULTS By generating WGS data, we investigated the population genetic structure and phylogenetic relationship of studied cattle populations. The results revealed clustering of cattle groups in agreement with their geographic distribution. We detected noticeable genetic diversity between indigenous cattle ecotypes and commercial populations. Analysis of population structure demonstrated evidence of shared genetic ancestry between studied cross-bred population and both Red-Angus and Mongolian breeds. Among all studied cattle populations, the highest and lowest levels of linkage disequilibrium (LD) per Kb were detected in Holstein and Rashoki populations (ranged from ~ 0.54 to 0.73, respectively). Our search for potential genomic regions under selection in cross-bred cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes. We identified some adaptive introgression genes with greater than expected contributions from Mongolian ancestry into Molgolian x Red Angus composites such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis. In addition, we detected some candidate genes probably associated with immune response-related traits. CONCLUSION The study identified candidate genes involved in responses to cold adaptation and immune response in cross-bred cattle, including new genes or gene pathways putatively involved in these adaptations. The identification of these genes may clarify the molecular basis underlying adaptation to extreme environmental climate and as such they might be used in cattle breeding programs to select more efficient breeds for cold climate regions.
Collapse
Affiliation(s)
- Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Hojjat Asadollahpour Nanaie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Baolige Dalai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Feng Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Ding Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hao Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Tingyue Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Tu Luan
- Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Jianghong Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.
| |
Collapse
|
9
|
Zhuang Z, Wu J, Xu C, Ruan D, Qiu Y, Zhou S, Ding R, Quan J, Yang M, Zheng E, Wu Z, Yang J. The Genetic Architecture of Meat Quality Traits in a Crossbred Commercial Pig Population. Foods 2022; 11:foods11193143. [PMID: 36230219 PMCID: PMC9563986 DOI: 10.3390/foods11193143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Meat quality is of importance in consumer acceptance and purchasing tendency of pork. However, the genetic architecture of pork meat quality traits remains elusive. Herein, we conducted genome-wide association studies to detect single nucleotide polymorphisms (SNPs) and genes affecting meat pH and meat color (L*, lightness; a*, redness; b*, yellowness) in 1518 three-way crossbred pigs. All individuals were genotyped using the GeneSeek Porcine 50K BeadChip. In sum, 30 SNPs and 20 genes are found to be associated with eight meat quality traits. Notably, we detect one significant quantitative trait locus (QTL) on SSC15 with a 143 kb interval for meat pH (pH_12h), together with the most promising candidate TNS1. Interestingly, two newly identified SNPs located in the TTLL4 gene demonstrate the highest phenotypic variance of pH_12h in this QTL, at 2.67%. The identified SNPs are useful for the genetic improvement of meat quality traits in pigs by assigning higher weights to associated SNPs in genomic selection.
Collapse
Affiliation(s)
- Zhanwei Zhuang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cineng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Donglin Ruan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yibin Qiu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shenping Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongrong Ding
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd., Guangzhou 511466, China
| | - Jianping Quan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
10
|
Wu ZW, Gao ZR, Liang H, Fang T, Wang Y, Du ZQ, Yang CX. Network analysis reveals different hub genes and molecular pathways for pig in vitro fertilized early embryos and parthenogenotes. Reprod Domest Anim 2022; 57:1544-1553. [PMID: 35997106 DOI: 10.1111/rda.14231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022]
Abstract
Maternal-to-zygotic transition (MZT) occurs when maternal transcripts decay and zygotic genome is activated gradually at early stage of embryo development. Previously, single cell RNA-seq (scRNA-seq) has helped us to uncover the MZT-associated mRNA dynamics of in vitro produced pig early embryos. Here, to further investigate functional modules and hub genes associated with MZT process, the weighted gene-coexpression network analysis (WGCNA) was performed on our previously generated 45 scRNA-seq datasets. For the in vitro fertilized embryo (IVF) group, 5 significant modules were identified (midnightblue/black/red and blue/brown modules, positively correlated with 1-cell (IVF1) and 8-cell (IVF8), respectively), containing genes mainly enriched in signaling pathways such as Wnt, regulation of RNA transcription, fatty acid metabolic process, poly(A) RNA binding and lysosome. For the parthenogenetically activated embryo (PA) group, 9 significant modules were identified (black/purple/red, brown/turquoise/yellow, and magenta/blue/green modules, positively correlated with MII oocytes, 1-cell (PA1), and 8-cell (PA8), respectively), mainly enriched in extracellular exosome, poly(A) RNA binding, mitochondrion, transcription factor activity. Moreover, some of identified hub genes within 3 IVF and 9 PA significant modules, including ADCY2, DHX34, KDM4A, GDF10, ABCC10, PAFAH2, HEXIM2, COQ9, DCAF11, SGK1, ESRRB etc., have been reported to play vital roles in different biological processes. Our findings provide information and resources for subsequent in-depth study on the regulation and function of MZT in pig embryos.
Collapse
Affiliation(s)
- Zi-Wei Wu
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zhuo-Ran Gao
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Hao Liang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Ting Fang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Yi Wang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| |
Collapse
|
11
|
Smith JL, Wilson ML, Nilson SM, Rowan TN, Schnabel RD, Decker JE, Seabury CM. Genome-wide association and genotype by environment interactions for growth traits in U.S. Red Angus cattle. BMC Genomics 2022; 23:517. [PMID: 35842584 PMCID: PMC9287884 DOI: 10.1186/s12864-022-08667-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genotypic information produced from single nucleotide polymorphism (SNP) arrays has routinely been used to identify genomic regions associated with complex traits in beef and dairy cattle. Herein, we assembled a dataset consisting of 15,815 Red Angus beef cattle distributed across the continental U.S. and a union set of 836,118 imputed SNPs to conduct genome-wide association analyses (GWAA) for growth traits using univariate linear mixed models (LMM); including birth weight, weaning weight, and yearling weight. Genomic relationship matrix heritability estimates were produced for all growth traits, and genotype-by-environment (GxE) interactions were investigated. Results Moderate to high heritabilities with small standard errors were estimated for birth weight (0.51 ± 0.01), weaning weight (0.25 ± 0.01), and yearling weight (0.42 ± 0.01). GWAA revealed 12 pleiotropic QTL (BTA6, BTA14, BTA20) influencing Red Angus birth weight, weaning weight, and yearling weight which met a nominal significance threshold (P ≤ 1e-05) for polygenic traits using 836K imputed SNPs. Moreover, positional candidate genes associated with Red Angus growth traits in this study (i.e., LCORL, LOC782905, NCAPG, HERC6, FAM184B, SLIT2, MMRN1, KCNIP4, CCSER1, GRID2, ARRDC3, PLAG1, IMPAD1, NSMAF, PENK, LOC112449660, MOS, SH3PXD2B, STC2, CPEB4) were also previously associated with feed efficiency, growth, and carcass traits in beef cattle. Collectively, 14 significant GxE interactions were also detected, but were less consistent among the investigated traits at a nominal significance threshold (P ≤ 1e-05); with one pleiotropic GxE interaction detected on BTA28 (24 Mb) for Red Angus weaning weight and yearling weight. Conclusions Sixteen well-supported QTL regions detected from the GWAA and GxE GWAA for growth traits (birth weight, weaning weight, yearling weight) in U.S. Red Angus cattle were found to be pleiotropic. Twelve of these pleiotropic QTL were also identified in previous studies focusing on feed efficiency and growth traits in multiple beef breeds and/or their composites. In agreement with other beef cattle GxE studies our results implicate the role of vasodilation, metabolism, and the nervous system in the genetic sensitivity to environmental stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08667-6.
Collapse
Affiliation(s)
- Johanna L Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Miranda L Wilson
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Sara M Nilson
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.,Genetics Area Program, University of Missouri, Columbia, 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.,Genetics Area Program, University of Missouri, Columbia, 65211, USA.,Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.,Genetics Area Program, University of Missouri, Columbia, 65211, USA.,Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Christopher M Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA.
| |
Collapse
|
12
|
Zhang T, Wang T, Niu Q, Xu L, Chen Y, Gao X, Gao H, Zhang L, Liu GE, Li J, Xu L. Transcriptional atlas analysis from multiple tissues reveals the expression specificity patterns in beef cattle. BMC Biol 2022; 20:79. [PMID: 35351103 PMCID: PMC8966188 DOI: 10.1186/s12915-022-01269-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A comprehensive analysis of gene expression profiling across tissues can provide necessary information for an in-depth understanding of their biological functions. We performed a large-scale gene expression analysis and generated a high-resolution atlas of the transcriptome in beef cattle. RESULTS Our transcriptome atlas was generated from 135 bovine tissues in adult beef cattle, covering 51 tissue types of major organ systems (e.g., muscular system, digestive system, immune system, reproductive system). Approximately 94.76% of sequencing reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We detected a total of 60,488 transcripts, and 32% of them were not reported before. We identified 2654 housekeeping genes (HKGs) and 477 tissue-specific genes (TSGs) across tissues. Using weighted gene co-expression network analysis, we obtained 24 modules with 237 hub genes (HUBGs). Functional enrichment analysis showed that HKGs mainly maintain the basic biological activities of cells, while TSGs were involved in tissue differentiation and specific physiological processes. HKGs in bovine tissues were more conserved in terms of expression pattern as compared to TSGs and HUBGs among multiple species. Finally, we obtained a subset of tissue-specific differentially expressed genes (DEGs) between beef and dairy cattle and several functional pathways, which may be involved in production and health traits. CONCLUSIONS We generated a large-scale gene expression atlas across the major tissues in beef cattle, providing valuable information for enhancing genome assembly and annotation. HKGs, TSGs, and HUBGs further contribute to better understanding the biology and evolution of multiple tissues in cattle. DEGs between beef and dairy cattle also fill in the knowledge gaps about differential transcriptome regulation of bovine tissues underlying economically important traits.
Collapse
Affiliation(s)
- Tianliu Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Tianzhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qunhao Niu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lei Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705 USA
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
13
|
Fonseca PADS, Caldwell T, Mandell I, Wood K, Cánovas A. Genome-wide association study for meat tenderness in beef cattle identifies patterns of the genetic contribution in different post-mortem stages. Meat Sci 2022; 186:108733. [PMID: 35007800 DOI: 10.1016/j.meatsci.2022.108733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
The beef tenderization process during the post-mortem period is one of the most important sensorial attributes and it is well-established. The aim of this study was to identify the genetic contribution pattern to meat tenderness at 7-(LMD7), 14-(LMD14), and 21-(LMD21) days post-mortem. The heritabilities for LMD7 (0.194), LMD14 (0.142) and LMD21 (0.048) are well established in the population evaluated here. However, its genetic contribution in terms of genomic candidate regions is still poorly understood. Tenderness was measured in the Longissiums thoracis using Warner-Bratzler shear force in the three post-mortem periods. A total of 4323 crossbred beef cattle were phenotyped and genotyped using the Illumina BovineSNP50K. The percentage of the total genetic variance was estimated using the weighted single-step genomic best linear unbiased prediction method. The main candidate windows for LMD7 were associated with proteolysis of myofibrillar structures and the weakening endomysium and perimysium. Candidate windows for LMD14 and LMD21 were mapped in bovine QTLs for body composition, height and growth. Results presented herein highlight, the largest contribution of proteolysis related processes before 14-days post-mortem and body composition characteristics in later stages for meat tenderness.
Collapse
Affiliation(s)
- Pablo Augusto de Souza Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Tim Caldwell
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ira Mandell
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Katharine Wood
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
14
|
Mancin E, Tuliozi B, Pegolo S, Sartori C, Mantovani R. Genome Wide Association Study of Beef Traits in Local Alpine Breed Reveals the Diversity of the Pathways Involved and the Role of Time Stratification. Front Genet 2022; 12:746665. [PMID: 35058966 PMCID: PMC8764395 DOI: 10.3389/fgene.2021.746665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the genetic architecture of key growth and beef traits in livestock species has greatly improved worldwide thanks to genome-wide association studies (GWAS), which allow to link target phenotypes to Single Nucleotide Polymorphisms (SNPs) across the genome. Local dual-purpose breeds have rarely been the focus of such studies; recently, however, their value as a possible alternative to intensively farmed breeds has become clear, especially for their greater adaptability to environmental change and potential for survival in less productive areas. We performed single-step GWAS and post-GWAS analysis for body weight (BW), average daily gain (ADG), carcass fleshiness (CF) and dressing percentage (DP) in 1,690 individuals of local alpine cattle breed, Rendena. This breed is typical of alpine pastures, with a marked dual-purpose attitude and good genetic diversity. Moreover, we considered two of the target phenotypes (BW and ADG) at different times in the individuals' life, a potentially important aspect in the study of the traits' genetic architecture. We identified 8 significant and 47 suggestively associated SNPs, located in 14 autosomal chromosomes (BTA). Among the strongest signals, 3 significant and 16 suggestive SNPs were associated with ADG and were located on BTA10 (50-60 Mb), while the hotspot associated with CF and DP was on BTA18 (55-62 MB). Among the significant SNPs some were mapped within genes, such as SLC12A1, CGNL1, PRTG (ADG), LOC513941 (CF), NLRP2 (CF and DP), CDC155 (DP). Pathway analysis showed great diversity in the biological pathways linked to the different traits; several were associated with neurogenesis and synaptic transmission, but actin-related and transmembrane transport pathways were also represented. Time-stratification highlighted how the genetic architectures of the same traits were markedly different between different ages. The results from our GWAS of beef traits in Rendena led to the detection of a variety of genes both well-known and novel. We argue that our results show that expanding genomic research to local breeds can reveal hitherto undetected genetic architectures in livestock worldwide. This could greatly help efforts to map genomic complexity of the traits of interest and to make appropriate breeding decisions.
Collapse
|
15
|
Overlapping haplotype blocks indicate shared genomic regions between a composite beef cattle breed and its founder breeds. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Meta-analysis of genome-wide association studies and gene networks analysis for milk production traits in Holstein cows. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Association of SNPs in AKIRIN2, TTN, EDG1 and MYBPC1 genes with growth and carcass traits in Qinchuan cattle. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Growth and carcass traits are the main breeding objectives in beef cattle. The aim of this study was to confirm genetic effects of the c.*188G>A SNP of AKIRIN2, the g.231054C>T SNP of TTN, the g.1471620G>T SNP of EDG1 and the g.70014208A>G SNP of MYBPC1 on growth and carcass traits in Chinese Qinchuan (QC) cattle, as well as to compare the frequencies of the well-characterized alleles of these SNPs among six Chinese cattle populations, three Japanese cattle populations, two European cattle populations and one Korean cattle population. In this study, a total of 665 cattle samples were genotyped using MassARRAY and PCR-RFLP. Association analysis explored effects of four SNPs on growth and carcass traits including body length, wither height, hip height, hip width, rump length, chest depth, chest circumference, back fat thickness, ultrasound longissimus muscle area and ultrasound longissimus muscle depth in QC (P<0.05 to P<0.001). The well-characterized A (c.*188G>A), T (g.231054C>T) and T (g.1471620G>T) alleles in Japanese Black cattle were significantly higher than Chinese cattle breeds, on the contrary, the G allele (g.70014208A>G) was markedly higher in Chinese cattle breeds than other cattle breeds. These results suggest that the four SNPs might be useful as a molecular marker for growth-related traits in Chinese QC cattle.
Collapse
|
18
|
Rezende FM, Rodriguez E, Leal-Gutiérrez JD, Elzo MA, Johnson DD, Carr C, Mateescu RG. Genomic Approaches Reveal Pleiotropic Effects in Crossbred Beef Cattle. Front Genet 2021; 12:627055. [PMID: 33815465 PMCID: PMC8017557 DOI: 10.3389/fgene.2021.627055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Carcass and meat quality are two important attributes for the beef industry because they drive profitability and consumer demand. These traits are of even greater importance in crossbred cattle used in subtropical and tropical regions for their superior adaptability because they tend to underperform compared to their purebred counterparts. Many of these traits are challenging and expensive to measure and unavailable until late in life or after the animal is harvested, hence unrealistic to improve through traditional phenotypic selection, but perfect candidates for genomic selection. Before genomic selection can be implemented in crossbred populations, it is important to explore if pleiotropic effects exist between carcass and meat quality traits. Therefore, the objective of this study was to identify genomic regions with pleiotropic effects on carcass and meat quality traits in a multibreed Angus-Brahman population that included purebred and crossbred animals. Data included phenotypes for 10 carcass and meat quality traits from 2,384 steers, of which 1,038 were genotyped with the GGP Bovine F-250. Single-trait genome-wide association studies were first used to investigate the relevance of direct additive genetic effects on each carcass, sensory and visual meat quality traits. A second analysis for each trait included all other phenotypes as covariates to correct for direct causal effects from identified genomic regions with pure direct effects on the trait under analysis. Five genomic windows on chromosomes BTA5, BTA7, BTA18, and BTA29 explained more than 1% of additive genetic variance of two or more traits. Moreover, three suggestive pleiotropic regions were identified on BTA10 and BTA19. The 317 genes uncovered in pleiotropic regions included anchoring and cytoskeletal proteins, key players in cell growth, muscle development, lipid metabolism and fat deposition, and important factors in muscle proteolysis. A functional analysis of these genes revealed GO terms directly related to carcass quality, meat quality, and tenderness in beef cattle, including calcium-related processes, cell signaling, and modulation of cell-cell adhesion. These results contribute with novel information about the complex genetic architecture and pleiotropic effects of carcass and meat quality traits in crossbred beef cattle.
Collapse
Affiliation(s)
- Fernanda M Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Eduardo Rodriguez
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Joel D Leal-Gutiérrez
- Psychiatry Department, University of California, San Diego, La Jolla, CA, United States
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Dwain D Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Korkuć P, Arends D, May K, König S, Brockmann GA. Genomic Loci Affecting Milk Production in German Black Pied Cattle (DSN). Front Genet 2021; 12:640039. [PMID: 33763120 PMCID: PMC7982544 DOI: 10.3389/fgene.2021.640039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023] Open
Abstract
German Black Pied cattle (DSN) is an endangered population of about 2,550 dual-purpose cattle in Germany. Having a milk yield of about 2,500 kg less than the predominant dairy breed Holstein, the preservation of DSN is supported by the German government and the EU. The identification of the genomic loci affecting milk production in DSN can provide a basis for selection decisions for genetic improvement of DSN in order to increase market chances through the improvement of milk yield. A genome-wide association analysis of 30 milk traits was conducted in different lactation periods and numbers. Association using multiple linear regression models in R was performed on 1,490 DSN cattle genotyped with BovineSNP50 SNP-chip. 41 significant and 20 suggestive SNPs affecting milk production traits in DSN were identified, as well as 15 additional SNPs for protein content which are less reliable due to high inflation. The most significant effects on milk yield in DSN were detected on chromosomes 1, 6, and 20. The region on chromosome 6 was located nearby the casein gene cluster and the corresponding haplotype overlapped the CSN3 gene (casein kappa). Associations for fat and protein yield and content were also detected. High correlation between traits of the same lactation period or number led to some SNPs being significant for multiple investigated traits. Half of all identified SNPs have been reported in other studies, previously. 15 SNPs were associated with the same traits in other breeds. The other associated SNPs have been reported previously for traits such as exterior, health, meat and carcass, production, and reproduction traits. No association could be detected between DGAT1 and other known milk genes with milk production traits despite the close relationship between DSN and Holstein. The results of this study confirmed that many SNPs identified in other breeds as associated with milk traits also affect milk traits in dual-purpose DSN cattle and can be used for further genetic analysis to identify genes and causal variants that affect milk production in DSN cattle.
Collapse
Affiliation(s)
- Paula Korkuć
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt University Berlin, Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt University Berlin, Berlin, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
20
|
Kumar H, Panigrahi M, Saravanan KA, Parida S, Bhushan B, Gaur GK, Dutt T, Mishra BP, Singh RK. SNPs with intermediate minor allele frequencies facilitate accurate breed assignment of Indian Tharparkar cattle. Gene 2021; 777:145473. [PMID: 33549713 DOI: 10.1016/j.gene.2021.145473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Tharparkar cattle breed is widely known for its superior milch quality and hardiness attributes. This study aimed to develop an ultra-low density breed-specific single nucleotide polymorphism (SNP) genotype panel to accurately quantify Tharparkar populations in biological samples. In this study, we selected and genotyped 72 Tharparkar animals randomly from Cattle & Buffalo Farm of IVRI, India. This Bovine SNP50 BeadChip genotypic datum was merged with the online data from six indigenous cattle breeds and five taurine breeds. Here, we used a combination of pre-selection statistics and the MAF-LD method developed in our laboratory to analyze the genotypic data obtained from 317 individuals of 12 distinct breeds to identify breed-informative SNPs for the selection of Tharparkar cattle. This methodology identified 63 unique Tharparkar-specific SNPs near intermediate gene frequencies. We report several informative SNPs in genes/QTL regions affecting phenotypes or production traits that might differentiate the Tharparkar breed.
Collapse
Affiliation(s)
- Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - G K Gaur
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - B P Mishra
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - R K Singh
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
21
|
van der Nest MA, Hlongwane N, Hadebe K, Chan WY, van der Merwe NA, De Vos L, Greyling B, Kooverjee BB, Soma P, Dzomba EF, Bradfield M, Muchadeyi FC. Breed Ancestry, Divergence, Admixture, and Selection Patterns of the Simbra Crossbreed. Front Genet 2021; 11:608650. [PMID: 33584805 PMCID: PMC7876384 DOI: 10.3389/fgene.2020.608650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, we evaluated an admixed South African Simbra crossbred population, as well as the Brahman (Indicine) and Simmental (Taurine) ancestor populations to understand their genetic architecture and detect genomic regions showing signatures of selection. Animals were genotyped using the Illumina BovineLD v2 BeadChip (7K). Genomic structure analysis confirmed that the South African Simbra cattle have an admixed genome, composed of 5/8 Taurine and 3/8 Indicine, ensuring that the Simbra genome maintains favorable traits from both breeds. Genomic regions that have been targeted by selection were detected using the linkage disequilibrium-based methods iHS and Rsb. These analyses identified 10 candidate regions that are potentially under strong positive selection, containing genes implicated in cattle health and production (e.g., TRIM63, KCNA10, NCAM1, SMIM5, MIER3, and SLC24A4). These adaptive alleles likely contribute to the biological and cellular functions determining phenotype in the Simbra hybrid cattle breed. Our data suggested that these alleles were introgressed from the breed's original indicine and taurine ancestors. The Simbra breed thus possesses derived parental alleles that combine the superior traits of the founder Brahman and Simmental breeds. These regions and genes might represent good targets for ad-hoc physiological studies, selection of breeding material and eventually even gene editing, for improved traits in modern cattle breeds. This study represents an important step toward developing and improving strategies for selection and population breeding to ultimately contribute meaningfully to the beef production industry.
Collapse
Affiliation(s)
| | - Nompilo Hlongwane
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Khanyisile Hadebe
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Wai-Yin Chan
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ben Greyling
- Animal Production, Agricultural Research Council, Pretoria, South Africa
| | | | - Pranisha Soma
- Animal Production, Agricultural Research Council, Pretoria, South Africa
| | - Edgar F Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Farai C Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| |
Collapse
|
22
|
Leal-Gutiérrez JD, Elzo MA, Carr C, Mateescu RG. RNA-seq analysis identifies cytoskeletal structural genes and pathways for meat quality in beef. PLoS One 2020; 15:e0240895. [PMID: 33175867 PMCID: PMC7657496 DOI: 10.1371/journal.pone.0240895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/05/2020] [Indexed: 01/03/2023] Open
Abstract
RNA sequencing (RNA-seq) has allowed for transcriptional profiling of biological systems through the identification of differentially expressed (DE) genes and pathways. A total of 80 steers with extreme phenotypes were selected from the University of Florida multibreed Angus-Brahman herd. The average slaughter age was 12.91±8.69 months. Tenderness, juiciness and connective tissue assessed by sensory panel, along with marbling, Warner-Bratzler Shear Force (WBSF) and cooking loss, were measured in longissimus dorsi muscle. Total RNA was extracted from muscle and one RNA-seq library per sample was constructed, multiplexed, and sequenced based on protocols by Illumina HiSeq-3000 platform to generate 2×101 bp paired-end reads. The overall read mapping rate using the Btau_4.6.1 reference genome was 63%. A total of 8,799 genes were analyzed using two different methodologies, an expression association and a DE analysis. A gene and exon expression association analysis was carried out using a meat quality index on all 80 samples as a continuous response variable. The expression of 208 genes and 3,280 exons from 1,565 genes was associated with the meat quality index (p-value ≤ 0.05). A gene and isoform DE evaluation was performed analyzing two groups with extreme WBSF, tenderness and marbling. A total of 676 (adjusted p-value≤0.05), 70 (adjusted p-value≤0.1) and 198 (adjusted p-value≤0.1) genes were DE for WBSF, tenderness and marbling, respectively. A total of 106 isoforms from 98 genes for WBSF, 13 isoforms from 13 genes for tenderness and 43 isoforms from 42 genes for marbling (FDR≤0.1) were DE. Cytoskeletal and transmembrane anchoring genes and pathways were identified in the expression association, DE and the gene enrichment analyses; these proteins can have a direct effect on meat quality. Cytoskeletal proteins and transmembrane anchoring molecules can influence meat quality by allowing cytoskeletal interaction with myocyte and organelle membranes, contributing to cytoskeletal structure and architecture maintenance postmortem.
Collapse
Affiliation(s)
- Joel D. Leal-Gutiérrez
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
23
|
Garcia BF, Melo TPD, Neves HHDR, Carvalheiro R. Comparison of GWA statistical methods for traits under different genetic structures: A simulation study. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Peripolli E, Reimer C, Ha NT, Geibel J, Machado MA, Panetto JCDC, do Egito AA, Baldi F, Simianer H, da Silva MVGB. Genome-wide detection of signatures of selection in indicine and Brazilian locally adapted taurine cattle breeds using whole-genome re-sequencing data. BMC Genomics 2020; 21:624. [PMID: 32917133 PMCID: PMC7488563 DOI: 10.1186/s12864-020-07035-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The cattle introduced by European conquerors during the Brazilian colonization period were exposed to a process of natural selection in different types of biomes throughout the country, leading to the development of locally adapted cattle breeds. In this study, whole-genome re-sequencing data from indicine and Brazilian locally adapted taurine cattle breeds were used to detect genomic regions under selective pressure. Within-population and cross-population statistics were combined separately in a single score using the de-correlated composite of multiple signals (DCMS) method. Putative sweep regions were revealed by assessing the top 1% of the empirical distribution generated by the DCMS statistics. RESULTS A total of 33,328,447 biallelic SNPs with an average read depth of 12.4X passed the hard filtering process and were used to access putative sweep regions. Admixture has occurred in some locally adapted taurine populations due to the introgression of exotic breeds. The genomic inbreeding coefficient based on runs of homozygosity (ROH) concurred with the populations' historical background. Signatures of selection retrieved from the DCMS statistics provided a comprehensive set of putative candidate genes and revealed QTLs disclosing cattle production traits and adaptation to the challenging environments. Additionally, several candidate regions overlapped with previous regions under selection described in the literature for other cattle breeds. CONCLUSION The current study reported putative sweep regions that can provide important insights to better understand the selective forces shaping the genome of the indicine and Brazilian locally adapted taurine cattle breeds. Such regions likely harbor traces of natural selection pressures by which these populations have been exposed and may elucidate footprints for adaptation to the challenging climatic conditions.
Collapse
Affiliation(s)
- Elisa Peripolli
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, 14884-900, Brazil
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - Ngoc-Thuy Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - Johannes Geibel
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - Marco Antonio Machado
- National Council for Scientific and Technological Development (CNPq), Lago Sul, 71605-001, Brazil
- Embrapa Dairy Cattle, Juiz de Fora, 36038-330, Brazil
| | | | | | - Fernando Baldi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, 14884-900, Brazil
| | - Henner Simianer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | | |
Collapse
|
25
|
Leal-Gutiérrez JD, Rezende FM, Reecy JM, Kramer LM, Peñagaricano F, Mateescu RG. Whole Genome Sequence Data Provides Novel Insights Into the Genetic Architecture of Meat Quality Traits in Beef. Front Genet 2020; 11:538640. [PMID: 33101375 PMCID: PMC7500205 DOI: 10.3389/fgene.2020.538640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Tenderness is a major quality attribute for fresh beef steaks in the United States, and meat quality traits in general are suitable candidates for genomic research. The objectives of the present analysis were to (1) perform genome-wide association (GWA) analysis for marbling, Warner-Bratzler shear force (WBSF), tenderness, and connective tissue using whole-genome data in an Angus population, (2) identify enriched pathways in each GWA analysis; (3) construct a protein-protein interaction network using the associated genes and (4) perform a μ-calpain proteolysis assessment for associated structural proteins. An Angus-sired population of 2,285 individuals was assessed. Animals were transported to a commercial packing plant and harvested at an average age of 457 ± 46 days. After 48 h postmortem, marbling was recorded by graders' visual appraisal. Two 2.54-cm steaks were sampled from each muscle for recording of WBSF, and tenderness, and connective tissue by a sensory panel. The relevance of additive effects on marbling, WBSF, tenderness, and connective tissue was evaluated on a genome-wide scale using a two-step mixed model-based approach in single-trait analysis. A tissue-restricted gene enrichment was performed for each GWA where all polymorphisms with an association p-value lower than 1 × 10-3 were included. The genes identified as associated were included in a protein-protein interaction network and a candidate structural protein assessment of proteolysis analyses. A total of 1,867, 3,181, 3,926, and 3,678 polymorphisms were significantly associated with marbling, WBSF, tenderness, and connective tissue, respectively. The associate region on BTA29 (36,432,655-44,313,046 bp) harbors 13 highly significant markers for meat quality traits. Enrichment for the GO term GO:0005634 (Nucleus), which includes transcription factors, was evident. The final protein-protein network included 431 interations between 349 genes. The 42 most important genes based on significance that encode structural proteins were included in a proteolysis analysis, and 81% of these proteins were potential μ-Calpain substrates. Overall, this comprehensive study unraveled genetic variants, genes and mechanisms of action responsible for the variation in meat quality traits. Our findings can provide opportunities for improving meat quality in beef cattle via marker-assisted selection.
Collapse
Affiliation(s)
| | - Fernanda M. Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Luke M. Kramer
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Gao Z, Ding R, Zhai X, Wang Y, Chen Y, Yang CX, Du ZQ. Common Gene Modules Identified for Chicken Adiposity by Network Construction and Comparison. Front Genet 2020; 11:537. [PMID: 32547600 PMCID: PMC7272656 DOI: 10.3389/fgene.2020.00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive fat deposition can cause chicken health problem, and affect production efficiency by causing great economic losses to the industry. However, the molecular underpinnings of the complex adiposity trait remain elusive. In the current study, we constructed and compared the gene co-expression networks on four transcriptome profiling datasets, from two chicken lines under divergent selection for abdominal fat contents, in an attempt to dissect network compositions underlying adipose tissue growth and development. After functional enrichment analysis, nine network modules important to adipogenesis were discovered to be involved in lipid metabolism, PPAR and insulin signaling pathways, and contained hub genes related to adipogenesis, cell cycle, inflammation, and protein synthesis. Moreover, after additional functional annotation and network module comparisons, common sub-modules of similar functionality for chicken fat deposition were identified for different chicken lines, apart from modules specific to each chicken line. We further validated the lysosome pathway, and found TFEB and its downstream target genes showed similar expression patterns along with chicken preadipocyte differentiation. Our findings could provide novel insights into the genetic basis of complex adiposity traits, as well as human obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Zhuoran Gao
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ran Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiangyun Zhai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuhao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yaofeng Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
27
|
da Silva Diniz WJ, Banerjee P, Mazzoni G, Coutinho LL, Cesar ASM, Afonso J, Gromboni CF, Nogueira ARA, Kadarmideen HN, de Almeida Regitano LC. Interplay among miR-29 family, mineral metabolism, and gene regulation in Bos indicus muscle. Mol Genet Genomics 2020; 295:1113-1127. [PMID: 32444960 DOI: 10.1007/s00438-020-01683-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/04/2020] [Indexed: 11/26/2022]
Abstract
An interplay between gene expression, mineral concentration, and beef quality traits in Bos indicus muscle has been reported previously under a network approach. However, growing evidence suggested that miRNAs not only modulate gene expression but are also involved with mineral homeostasis. To our knowledge, understanding of the miRNA-gene expression-mineral concentration relationship in mammals is still minimal. Therefore, we carried out a miRNA co-expression and multi-level miRNA-mRNA integration analyses to predict the putative drivers (miRNAs and genes) associated with muscle mineral concentration in Nelore steers. In this study, we identified calcium and iron to be the pivotal minerals associated with miRNAs and gene targets. Furthermore, we identified the miR-29 family (miR-29a, -29b, -29c, -29d-3p, and -29e) as the putative key regulators modulating mineral homeostasis. The miR-29 family targets genes involved with AMPK, insulin, mTOR, and thyroid hormone signaling pathways. Finally, we reported an interplay between miRNAs and minerals acting cooperatively to modulate co-expressed genes and signaling pathways both involved with mineral and energy homeostasis in Nelore muscle. Although we provided some evidence to understand this complex relationship, future work should determine the functional implications of minerals for miRNA levels and their feedback regulation system.\\An interplay between gene expression, mineral concentration, and beef quality traits in Bos indicus muscle has been reported previously under a network approach. However, growing evidence suggested that miRNAs not only modulate gene expression but are also involved with mineral homeostasis. To our knowledge, understanding of the miRNA-gene expression-mineral concentration relationship in mammals is still minimal. Therefore, we carried out a miRNA co-expression and multi-level miRNA-mRNA integration analyses to predict the putative drivers (miRNAs and genes) associated with muscle mineral concentration in Nelore steers. In this study, we identified calcium and iron to be the pivotal minerals associated with miRNAs and gene targets. Furthermore, we identified the miR-29 family (miR-29a, -29b, -29c, -29d-3p, and -29e) as the putative key regulators modulating mineral homeostasis. The miR-29 family targets genes involved with AMPK, insulin, mTOR, and thyroid hormone signaling pathways. Finally, we reported an interplay between miRNAs and minerals acting cooperatively to modulate co-expressed genes and signaling pathways both involved with mineral and energy homeostasis in Nelore muscle. Although we provided some evidence to understand this complex relationship, future work should determine the functional implications of minerals for miRNA levels and their feedback regulation system.
Collapse
Affiliation(s)
- Wellison Jarles da Silva Diniz
- Graduate Program in Evolutionary Genetics and Molecular Biology, Center for Biological and Health Sciences (CCBS), Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Priyanka Banerjee
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Gianluca Mazzoni
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Luiz Lehmann Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Juliana Afonso
- Graduate Program in Evolutionary Genetics and Molecular Biology, Center for Biological and Health Sciences (CCBS), Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Caio Fernando Gromboni
- IFBA, Bahia Federal Institute of Education Science and Technology, Campus Ilhéus, Ilhéus, Bahia, Brazil
| | - Ana Rita Araújo Nogueira
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | - Haja N Kadarmideen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
28
|
Haplotype-Based Genome-Wide Association Study and Identification of Candidate Genes Associated with Carcass Traits in Hanwoo Cattle. Genes (Basel) 2020; 11:genes11050551. [PMID: 32423003 PMCID: PMC7290854 DOI: 10.3390/genes11050551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Hanwoo, is the most popular native beef cattle in South Korea. Due to its extensive popularity, research is ongoing to enhance its carcass quality and marbling traits. In this study we conducted a haplotype-based genome-wide association study (GWAS) by constructing haplotype blocks by three methods: number of single nucleotide polymorphisms (SNPs) in a haplotype block (nsnp), length of genomic region in kb (Len) and linkage disequilibrium (LD). Significant haplotype blocks and genes associated with them were identified for carcass traits such as BFT (back fat thickness), EMA (eye Muscle area), CWT (carcass weight) and MS (marbling score). Gene-set enrichment analysis and functional annotation of genes in the significantly-associated loci revealed candidate genes, including PLCB1 and PLCB4 present on BTA13, coding for phospholipases, which might be important candidates for increasing fat deposition due to their role in lipid metabolism and adipogenesis. CEL (carboxyl ester lipase), a bile-salt activated lipase, responsible for lipid catabolic process was also identified within the significantly-associated haplotype block on BTA11. The results were validated in a different Hanwoo population. The genes and pathways identified in this study may serve as good candidates for improving carcass traits in Hanwoo cattle.
Collapse
|
29
|
Genome-Wide Association Study Using Fix-Length Haplotypes and Network Analysis Revealed New Candidate Genes for Nematode Resistance and Body Weight in Blackface Lambs. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objectives of this study were to identify genomic regions by Bayesian methods (BayesA, BayesB, or BayesN) that fit fixed-length haplotypes or SNPs using GenSel. Covariates for haplo-type alleles of five lengths (125, 250, 500 kb, 1 or 2 Mb) were generated, and rare haplotypes were removed at three thresholds (1, 5, or 10%). Subsequently, we performed gene network analyses to investigate the biological processes shared by genes that were identified for the same across traits. Genotypes at 41,034 SNPs that were common on OvineSNP50 panel were phased for 751 Scottish Blackface (SBF) lambs. This is the first study to quantify the proportion of genetic variance using haplotypes across the whole genome in an SBF population. The genetic variance explained of haplotype-based GWAS was higher than that of SNP-based GWAS in across traits studied. In this population, fitting 500kb haplotypes with a 1% frequency threshold resulted in the highest proportion of genetic variance explained for nematode resistance and fitting 2Mb haplotypes with a 10% frequency threshold improved genetic variance explained for body weight comparable to fitting SNPs by BayesB. Candidate genes, including CXCR4, STAT4, CCL1, CCL2, CCL3, CCL5, CCL8, CCL16, CCL18, CARMIL2, and HSPA14 were identified for nematode resistance and ADH5, PPP3CA, and FABP4 for body weight traits. Network analysis provided annotation results linking to all identified candidate genes. This study supported previous results from GWAS of nematode resistance and body weight and revealed additional regions in the ovine genome associated with these economically important traits. These results suggest that network analysis can provide new information regarding biological mechanisms and genes leading to complex phenotypes, like nematode resistance and body weight of lamb.
Collapse
|
30
|
Srikanth K, Lee SH, Chung KY, Park JE, Jang GW, Park MR, Kim NY, Kim TH, Chai HH, Park WC, Lim D. A Gene-Set Enrichment and Protein-Protein Interaction Network-Based GWAS with Regulatory SNPs Identifies Candidate Genes and Pathways Associated with Carcass Traits in Hanwoo Cattle. Genes (Basel) 2020; 11:E316. [PMID: 32188084 PMCID: PMC7140899 DOI: 10.3390/genes11030316] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Non-synonymous SNPs and protein coding SNPs within the promoter region of genes (regulatory SNPs) might have a significant effect on carcass traits. Imputed sequence level data of 10,215 Hanwoo bulls, annotated and filtered to include only regulatory SNPs (450,062 SNPs), were used in a genome-wide association study (GWAS) to identify loci associated with backfat thickness (BFT), carcass weight (CWT), eye muscle area (EMA), and marbling score (MS). A total of 15, 176, and 1 SNPs were found to be significantly associated (p < 1.11 × 10-7) with BFT, CWT, and EMA, respectively. The significant loci were BTA4 (CWT), BTA6 (CWT), BTA14 (CWT and EMA), and BTA19 (BFT). BayesR estimated that 1.1%~1.9% of the SNPs contributed to more than 0.01% of the phenotypic variance. So, the GWAS was complemented by a gene-set enrichment (GSEA) and protein-protein interaction network (PPIN) analysis in identifying the pathways affecting carcass traits. At p < 0.005 (~2,261 SNPs), 25 GO and 18 KEGG categories, including calcium signaling, cell proliferation, and folate biosynthesis, were found to be enriched through GSEA. The PPIN analysis showed enrichment for 81 candidate genes involved in various pathways, including the PI3K-AKT, calcium, and FoxO signaling pathways. Our finding provides insight into the effects of regulatory SNPs on carcass traits.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea (J.-E.P.); (G.-W.J.); (M.-R.P.); (N.Y.K.); (T.-H.K.); (H.-H.C.); (W.C.P.)
| | - Seung-Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea;
| | - Ki-Yong Chung
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea (J.-E.P.); (G.-W.J.); (M.-R.P.); (N.Y.K.); (T.-H.K.); (H.-H.C.); (W.C.P.)
| | - Gul-Won Jang
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea (J.-E.P.); (G.-W.J.); (M.-R.P.); (N.Y.K.); (T.-H.K.); (H.-H.C.); (W.C.P.)
| | - Mi-Rim Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea (J.-E.P.); (G.-W.J.); (M.-R.P.); (N.Y.K.); (T.-H.K.); (H.-H.C.); (W.C.P.)
| | - Na Yeon Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea (J.-E.P.); (G.-W.J.); (M.-R.P.); (N.Y.K.); (T.-H.K.); (H.-H.C.); (W.C.P.)
| | - Tae-Hun Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea (J.-E.P.); (G.-W.J.); (M.-R.P.); (N.Y.K.); (T.-H.K.); (H.-H.C.); (W.C.P.)
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea (J.-E.P.); (G.-W.J.); (M.-R.P.); (N.Y.K.); (T.-H.K.); (H.-H.C.); (W.C.P.)
| | - Won Cheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea (J.-E.P.); (G.-W.J.); (M.-R.P.); (N.Y.K.); (T.-H.K.); (H.-H.C.); (W.C.P.)
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea (J.-E.P.); (G.-W.J.); (M.-R.P.); (N.Y.K.); (T.-H.K.); (H.-H.C.); (W.C.P.)
| |
Collapse
|
31
|
Naderi S, Moradi MH, Farhadian M, Yin T, Jaeger M, Scheper C, Korkuc P, Brockmann GA, König S, May K. Assessing selection signatures within and between selected lines of dual-purpose black and white and German Holstein cattle. Anim Genet 2020; 51:391-408. [PMID: 32100321 DOI: 10.1111/age.12925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/29/2022]
Abstract
The aim of this study was to detect selection signatures considering cows from the German Holstein (GH) and the local dual-purpose black and white (DSN) population, as well as from generated sub-populations. The 4654 GH and 261 DSN cows were genotyped with the BovineSNP50 Genotyping BeadChip. The geographical herd location was used as an environmental descriptor to create the East-DSN and West-DSN sub-populations. In addition, two further sub-populations of GH cows were generated, using the extreme values for solutions of residual effects of cows for the claw disorder dermatitis digitalis. These groups represented the most susceptible and most resistant cows. We used cross-population extended haplotype homozygosity methodology (XP-EHH) to identify the most recent selection signatures. Furthermore, we calculated Wright's fixation index (FST ). Chromosomal segments for the top 0.1 percentile of negative or positive XP-EHH scores were studied in detail. For gene annotations, we used the Ensembl database and we considered a window of 250 kbp downstream and upstream of each core SNP corresponding to peaks of XP-EHH. In addition, functional interactions among potential candidate genes were inferred via gene network analyses. The most outstanding XP-EHH score was on chromosome 12 (at 77.34 Mb) for DSN and on chromosome 20 (at 36.29-38.42 Mb) for GH. Selection signature locations harbored QTL for several economically important milk and meat quality traits, reflecting the different breeding goals for GH and DSN. The average FST value between GH and DSN was quite low (0.068), indicating shared founders. For group stratifications according to cow health, several identified potential candidate genes influence disease resistance, especially to dermatitis digitalis.
Collapse
Affiliation(s)
- S Naderi
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - M H Moradi
- Department of Animal Sciences, Arak University, Shahid Beheshti Street, Arak, Iran
| | - M Farhadian
- Department of Animal Science, University of Tabriz, 29 Bahman Boulevard, Tabriz, Iran
| | - T Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - M Jaeger
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - C Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - P Korkuc
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Invalidenstr. 42, Berlin, D-10115, Germany
| | - G A Brockmann
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Invalidenstr. 42, Berlin, D-10115, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - K May
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| |
Collapse
|
32
|
Genome association of carcass and palatability traits from Bos indicus-Bos taurus crossbred steers within electrical stimulation status and correspondence with steer temperament 2. Palatability. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Bedhane M, van der Werf J, Gondro C, Duijvesteijn N, Lim D, Park B, Park MN, Hee RS, Clark S. Genome-Wide Association Study of Meat Quality Traits in Hanwoo Beef Cattle Using Imputed Whole-Genome Sequence Data. Front Genet 2019; 10:1235. [PMID: 31850078 PMCID: PMC6895209 DOI: 10.3389/fgene.2019.01235] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/06/2019] [Indexed: 01/28/2023] Open
Abstract
The discovery of single nucleotide polymorphisms (SNP) and the subsequent genotyping of large numbers of animals have enabled large-scale analyses to begin to understand the biological processes that underpin variation in animal populations. In beef cattle, genome-wide association studies using genotype arrays have revealed many quantitative trait loci (QTL) for various production traits such as growth, efficiency and meat quality. Most studies regarding meat quality have focused on marbling, which is a key trait associated with meat eating quality. However, other important traits like meat color, texture and fat color have not commonly been studied. Developments in genome sequencing technologies provide new opportunities to identify regions associated with these traits more precisely. The objective of this study was to estimate variance components and identify significant variants underpinning variation in meat quality traits using imputed whole genome sequence data. Phenotypic and genomic data from 2,110 Hanwoo cattle were used. The estimated heritabilities for the studied traits were 0.01, 0.16, 0.31, and 0.49 for fat color, meat color, meat texture and marbling score, respectively. Marbling score and meat texture were highly correlated. The genome-wide association study revealed 107 significant SNPs located on 14 selected chromosomes (one QTL region per selected chromosome). Four QTL regions were identified on BTA2, 12, 16, and 24 for marbling score and two QTL regions were found for meat texture trait on BTA12 and 29. Similarly, three QTL regions were identified for meat color on BTA2, 14 and 24 and five QTL regions for fat color on BTA7, 10, 12, 16, and 21. Candidate genes were identified for all traits, and their potential influence on the given trait was discussed. The significant SNP will be an important inclusion into commercial genotyping arrays to select new breeding animals more accurately.
Collapse
Affiliation(s)
- Mohammed Bedhane
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Julius van der Werf
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Cedric Gondro
- College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Naomi Duijvesteijn
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Byoungho Park
- Animal Genetic Improvement Division, National Institute of Animal Science, Rural Development Administration, Seonghwan, South Korea
| | - Mi Na Park
- Animal Genetic Improvement Division, National Institute of Animal Science, Rural Development Administration, Seonghwan, South Korea
| | - Roh Seung Hee
- Animal Genetic Improvement Division, National Institute of Animal Science, Rural Development Administration, Seonghwan, South Korea
| | - Samuel Clark
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| |
Collapse
|
34
|
Diniz WJDS, Banerjee P, Regitano LCA. Cross talk between mineral metabolism and meat quality: a systems biology overview. Physiol Genomics 2019; 51:529-538. [PMID: 31545932 DOI: 10.1152/physiolgenomics.00072.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Meat quality has an inherent complexity because of the multiple interrelated causative factors and layers of feedback regulation. Understanding the key factors and their interactions has been challenging, despite the availability of remarkable high-throughput tools and techniques that have provided insights on muscle metabolism and the genetic basis of meat quality. Likewise, we have deepened our knowledge about mineral metabolism and its role in cell functioning. Regardless of these facts, complex traits like mineral content and meat quality have been studied under reductionist approaches. However, as these phenotypes arise from complex interactions among different biological layers (genome, transcriptome, proteome, epigenome, etc.), along with environmental effects, a holistic view and systemic-level understanding of the genetic basis of complex phenotypes are in demand. Based on the state of the art, we addressed some of the questions regarding the interdependence of meat quality traits and mineral content. Furthermore, we sought to highlight potential regulatory mechanisms arising from the genes, miRNAs, and mineral interactions, as well as the pathways modulated by this interplay affecting muscle, mineral metabolism, and meat quality. By answering these questions, we did not intend to give an exhaustive review but to identify the key biological points, the challenges, and benefits of integrative genomic approaches.
Collapse
Affiliation(s)
- Wellison J da Silva Diniz
- Center for Biological and Health Sciences (CCBS), Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Priyanka Banerjee
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luciana C A Regitano
- Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Carlos, São Paulo, Brazil
| |
Collapse
|
35
|
Leal-Gutiérrez JD, Mateescu RG. Genetic basis of improving the palatability of beef cattle: current insights. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1616299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-Wide Association Study Identifies Genomic Loci Affecting Filet Firmness and Protein Content in Rainbow Trout. Front Genet 2019; 10:386. [PMID: 31130980 PMCID: PMC6509548 DOI: 10.3389/fgene.2019.00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Filet quality traits determine consumer satisfaction and affect profitability of the aquaculture industry. Soft flesh is a criterion for fish filet downgrades, resulting in loss of value. Filet firmness is influenced by many factors, including rate of protein turnover. A 50K transcribed gene SNP chip was used to genotype 789 rainbow trout, from two consecutive generations, produced in the USDA/NCCCWA selective breeding program. Weighted single-step GBLUP (WssGBLUP) was used to perform genome-wide association (GWA) analyses to identify quantitative trait loci affecting filet firmness and protein content. Applying genomic sliding windows of 50 adjacent SNPs, 212 and 225 SNPs were associated with genetic variation in filet shear force and protein content, respectively. Four common SNPs in the ryanodine receptor 3 gene (RYR3) affected the aforementioned filet traits; this association suggests common mechanisms underlying filet shear force and protein content. Genes harboring SNPs were mostly involved in calcium homeostasis, proteolytic activities, transcriptional regulation, chromatin remodeling, and apoptotic processes. RYR3 harbored the highest number of SNPs (n = 32) affecting genetic variation in shear force (2.29%) and protein content (4.97%). Additionally, based on single-marker analysis, a SNP in RYR3 ranked at the top of all SNPs associated with variation in shear force. Our data suggest a role for RYR3 in muscle firmness that may be considered for genomic- and marker-assisted selection in breeding programs of rainbow trout.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
37
|
Diniz WJS, Mazzoni G, Coutinho LL, Banerjee P, Geistlinger L, Cesar ASM, Bertolini F, Afonso J, de Oliveira PSN, Tizioto PC, Kadarmideen HN, Regitano LCA. Detection of Co-expressed Pathway Modules Associated With Mineral Concentration and Meat Quality in Nelore Cattle. Front Genet 2019; 10:210. [PMID: 30930938 PMCID: PMC6424907 DOI: 10.3389/fgene.2019.00210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Meat quality is a complex trait that is influenced by genetic and environmental factors, which includes mineral concentration. However, the association between mineral concentration and meat quality, and the specific molecular pathways underlying this association, are not well explored. We therefore analyzed gene expression as measured with RNA-seq in Longissimus thoracis muscle of 194 Nelore steers for association with three meat quality traits (intramuscular fat, meat pH, and tenderness) and the concentration of 13 minerals (Ca, Cr, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, and Zn). We identified seven sets of co-expressed genes (modules) associated with at least two traits, which indicates that common pathways influence these traits. From pathway analysis of module hub genes, we further found an over-representation for energy and protein metabolism (AMPK and mTOR signaling pathways) in addition to muscle growth, and protein turnover pathways. Among the identified hub genes FASN, ELOV5, and PDE3B are involved with lipid metabolism and were affected by previously identified eQTLs associated to fat deposition. The reported hub genes and over-represented pathways provide evidence of interplay among gene expression, mineral concentration, and meat quality traits. Future studies investigating the effect of different levels of mineral supplementation in the gene expression and meat quality traits could help us to elucidate the regulatory mechanism by which the genes/pathways are affected.
Collapse
Affiliation(s)
- Wellison J S Diniz
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.,Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Paulo, Brazil
| | - Gianluca Mazzoni
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luiz L Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Priyanka Banerjee
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ludwig Geistlinger
- Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Paulo, Brazil.,Graduate School of Public Health and Health Policy, The City University of New York, New York, NY, United States
| | - Aline S M Cesar
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Francesca Bertolini
- Department of Aquaculture, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Juliana Afonso
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | | - Polyana C Tizioto
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Haja N Kadarmideen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luciana C A Regitano
- Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Paulo, Brazil
| |
Collapse
|
38
|
Leal-Gutiérrez JD, Elzo MA, Johnson DD, Hamblen H, Mateescu RG. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC Genomics 2019; 20:151. [PMID: 30791866 PMCID: PMC6385435 DOI: 10.1186/s12864-019-5518-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Meat quality related phenotypes are difficult and expensive to measure and predict but are ideal candidates for genomic selection if genetic markers that account for a worthwhile proportion of the phenotypic variation can be identified. The objectives of this study were: 1) to perform genome wide association analyses for Warner-Bratzler Shear Force (WBSF), marbling, cooking loss, tenderness, juiciness, connective tissue and flavor; 2) to determine enriched pathways present in each genome wide association analysis; and 3) to identify potential candidate genes with multiple quantitative trait loci (QTL) associated with meat quality. RESULTS The WBSF, marbling and cooking loss traits were measured in longissimus dorsi muscle from 672 steers. Out of these, 495 animals were used to measure tenderness, juiciness, connective tissue and flavor by a sensory panel. All animals were genotyped for 221,077 markers and included in a genome wide association analysis. A total number of 68 genomic regions covering 52 genes were identified using the whole genome association approach; 48% of these genes encode transmembrane proteins or membrane associated molecules. Two enrichment analysis were performed: a tissue restricted gene enrichment applying a correlation analysis between raw associated single nucleotide polymorphisms (SNPs) by trait, and a functional classification analysis performed using the DAVID Bioinformatic Resources 6.8 server. The tissue restricted gene enrichment approach identified eleven pathways including "Endoplasmic reticulum membrane" that influenced multiple traits simultaneously. The DAVID functional classification analysis uncovered eleven clusters related to transmembrane or structural proteins. A gene network was constructed where the number of raw associated uncorrelated SNPs for each gene across all traits was used as a weight. A multiple SNP association analysis was performed for the top five most connected genes in the gene-trait network. The gene network identified the EVC2, ANXA10 and PKHD1 genes as potentially harboring multiple QTLs. Polymorphisms identified in structural proteins can modulate two different processes with direct effect on meat quality: in vivo myocyte cytoskeletal organization and postmortem proteolysis. CONCLUSION The main result from the present analysis is the uncovering of several candidate genes associated with meat quality that have structural function in the skeletal muscle.
Collapse
Affiliation(s)
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - D. Dwain Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - Heather Hamblen
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| |
Collapse
|
39
|
Gonçalves TM, de Almeida Regitano LC, Koltes JE, Cesar ASM, da Silva Andrade SC, Mourão GB, Gasparin G, Moreira GCM, Fritz-Waters E, Reecy JM, Coutinho LL. Gene Co-expression Analysis Indicates Potential Pathways and Regulators of Beef Tenderness in Nellore Cattle. Front Genet 2018; 9:441. [PMID: 30344530 PMCID: PMC6182065 DOI: 10.3389/fgene.2018.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Beef tenderness, a complex trait affected by many factors, is economically important to beef quality, industry, and consumer’s palatability. In this study, RNA-Seq was used in network analysis to better understand the biological processes that lead to differences in beef tenderness. Skeletal muscle transcriptional profiles from 24 Nellore steers, selected by extreme estimated breeding values (EBVs) for shear force after 14 days of aging, were analyzed and 22 differentially expressed transcripts were identified. Among these were genes encoding ribosomal proteins, glutathione transporter ATP-binding cassette, sub-family C (CFTR/MRP), member 4 (ABCC4), and synaptotagmin IV (SYT4). Complementary co-expression analyses using Partial Correlation with Information Theory (PCIT), Phenotypic Impact Factor (PIF) and the Regulatory Impact Factor (RIF) methods identified candidate regulators and related pathways. The PCIT analysis identified ubiquitin specific peptidase 2 (USP2), growth factor receptor-bound protein 10 (GBR10), anoctamin 1 (ANO1), and transmembrane BAX inhibitor motif containing 4 (TMBIM4) as the most differentially hubbed (DH) transcripts. The transcripts that had a significant correlation with USP2, GBR10, ANO1, and TMBIM4 enriched for proteasome KEGG pathway. RIF analysis identified microRNAs as candidate regulators of variation in tenderness, including bta-mir-133a-2 and bta-mir-22. Both microRNAs have target genes present in the calcium signaling pathway and apoptosis. PIF analysis identified myoglobin (MB), enolase 3 (ENO3), and carbonic anhydrase 3 (CA3) as potentially having fundamental roles in tenderness. Pathways identified in our study impacted in beef tenderness included: calcium signaling, apoptosis, and proteolysis. These findings underscore some of the complex molecular mechanisms that control beef tenderness in Nellore cattle.
Collapse
Affiliation(s)
| | | | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Sónia Cristina da Silva Andrade
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | | | - Gustavo Gasparin
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | | | - Elyn Fritz-Waters
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|