1
|
Eissman JM, Archer DB, Mukherjee S, Lee ML, Choi S, Scollard P, Trittschuh EH, Mez JB, Bush WS, Kunkle BW, Naj AC, Gifford KA, Cuccaro ML, Cruchaga C, Pericak‐Vance MA, Farrer LA, Wang L, Schellenberg GD, Mayeux RP, Haines JL, Jefferson AL, Kukull WA, Keene CD, Saykin AJ, Thompson PM, Martin ER, Bennett DA, Barnes LL, Schneider JA, Crane PK, Hohman TJ, Dumitrescu L. Sex-specific genetic architecture of late-life memory performance. Alzheimers Dement 2024; 20:1250-1267. [PMID: 37984853 PMCID: PMC10917043 DOI: 10.1002/alz.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS We conducted the largest sex-aware genetic study on late-life memory to date (Nmales = 11,942; Nfemales = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.
Collapse
|
2
|
Shirokova O, Zaborskaya O, Pchelin P, Kozliaeva E, Pershin V, Mukhina I. Genetic and Epigenetic Sexual Dimorphism of Brain Cells during Aging. Brain Sci 2023; 13:brainsci13020195. [PMID: 36831738 PMCID: PMC9954625 DOI: 10.3390/brainsci13020195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
In recent years, much of the attention paid to theoretical and applied biomedicine, as well as neurobiology, has been drawn to various aspects of sexual dimorphism due to the differences that male and female brain cells demonstrate during aging: (a) a dimorphic pattern of response to therapy for neurodegenerative disorders, (b) different age of onset and different degrees of the prevalence of such disorders, and (c) differences in their symptomatic manifestations in men and women. The purpose of this review is to outline the genetic and epigenetic differences in brain cells during aging in males and females. As a result, we hereby show that the presence of brain aging patterns in males and females is due to a complex of factors associated with the effects of sex chromosomes, which subsequently entails a change in signal cascades in somatic cells.
Collapse
Affiliation(s)
- Olesya Shirokova
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Correspondence:
| | - Olga Zaborskaya
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Pavel Pchelin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Elizaveta Kozliaeva
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Vladimir Pershin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Irina Mukhina
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| |
Collapse
|
3
|
Gowans LJJ, Comnick CL, Mossey PA, Eshete MA, Adeyemo WL, Naicker T, Awotoye WA, Petrin A, Adeleke C, Donkor P, Busch TD, James O, Ogunlewe MO, Li M, Olotu J, Hassan M, Adeniyan OA, Obiri-Yeboah S, Arthur FKN, Agbenorku P, Oti AA, Olatosi O, Adamson OO, Fashina AA, Zeng E, Marazita ML, Adeyemo AA, Murray JC, Butali A. Genome-Wide Scan for Parent-of-Origin Effects in a sub-Saharan African Cohort With Nonsyndromic Cleft Lip and/or Cleft Palate (CL/P). Cleft Palate Craniofac J 2022; 59:841-851. [PMID: 34382870 PMCID: PMC9884465 DOI: 10.1177/10556656211036316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Nonsyndromic cleft lip and/or cleft palate (NSCL/P) have multifactorial etiology where genetic factors, gene-environment interactions, stochastic factors, gene-gene interactions, and parent-of-origin effects (POEs) play cardinal roles. POEs arise when the parental origin of alleles differentially impacts the phenotype of the offspring. The aim of this study was to identify POEs that can increase risk for NSCL/P in humans using a genome-wide dataset. METHODS The samples (174 case-parent trios from Ghana, Ethiopia, and Nigeria) included in this study were from the African only genome wide association studies (GWAS) that was published in 2019. Genotyping of individual DNA using over 2 million multiethnic and African ancestry-specific single-nucleotide polymorphisms from the Illumina Multi-Ethnic Genotyping Array v2 15070954 A2 (genome build GRCh37/hg19) was done at the Center for Inherited Diseases Research. After quality control checks, PLINK was employed to carry out POE analysis employing the pooled subphenotypes of NSCL/P. RESULTS We observed possible hints of POEs at a cluster of genes at a 1 mega base pair window at the major histocompatibility complex class 1 locus on chromosome 6, as well as at other loci encompassing candidate genes such as ASB18, ANKEF1, AGAP1, GABRD, HHAT, CCT7, DNMT3A, EPHA7, FOXO3, lncRNAs, microRNA, antisense RNAs, ZNRD1, ZFAT, and ZBTB16. CONCLUSION Findings from our study suggest that some loci may increase the risk for NSCL/P through POEs. Additional studies are required to confirm these suggestive loci in NSCL/P etiology.
Collapse
Affiliation(s)
- LJJ Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana,School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana,Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa, IA, USA
| | - CL Comnick
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - PA Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - MA Eshete
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - WL Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Akoka, Lagos, Nigeria
| | - T Naicker
- Department of Pediatrics, University of KwaZulu-Natal and Inkosi Albert Luthuli Central Hospital, South Africa
| | - WA Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa, IA, USA
| | - A Petrin
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa, IA, USA
| | - C Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa, IA, USA
| | - P Donkor
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - TD Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa, IA, USA
| | - O James
- Department of Oral and Maxillofacial Surgery, University of Lagos, Akoka, Lagos, Nigeria
| | - MO Ogunlewe
- Department of Oral and Maxillofacial Surgery, University of Lagos, Akoka, Lagos, Nigeria
| | - M Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa, IA, USA
| | - J Olotu
- Department of Anatomy, University of Port Harcourt, Nigeria
| | - M Hassan
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa, IA, USA
| | - OA Adeniyan
- NHS Foundation Trust (Queens Hospital, Belvedere Road, Burton-On-Trent), Staffordshire, UK
| | - S Obiri-Yeboah
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - FKN Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - P Agbenorku
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - AA Oti
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - O Olatosi
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - OO Adamson
- Department of Oral and Maxillofacial Surgery, University of Lagos, Akoka, Lagos, Nigeria
| | - AA Fashina
- Department of Oral and Maxillofacial Surgery, University of Lagos, Akoka, Lagos, Nigeria
| | - E Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - ML Marazita
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - AA Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - JC Murray
- Department of Pediatrics, University of Iowa, Iowa, IA, USA
| | - A Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa, IA, USA
| |
Collapse
|
5
|
FGF13 Is Required for Histamine-Induced Itch Sensation by Interaction with Na V1.7. J Neurosci 2020; 40:9589-9601. [PMID: 33172979 DOI: 10.1523/jneurosci.0599-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
Itch can be induced by activation of small-diameter DRG neurons, which express abundant intracellular fibroblast growth factor 13 (FGF13). Although FGF13 is revealed to be essential for heat nociception, its role in mediating itch remains to be investigated. Here, we reported that loss of FGF13 in mouse DRG neurons impaired the histamine-induced scratching behavior. Calcium imaging showed that the percentage of histamine-responsive DRG neurons was largely decreased in FGF13-deficient mice; and consistently, electrophysiological recording exhibited that histamine failed to evoke action potential firing in most DRG neurons from these mice. Given that the reduced histamine-evoked neuronal response was caused by knockdown of FGF13 but not by FGF13A deficiency, FGF13B was supposed to mediate this process. Furthermore, overexpression of histamine Type 1 receptor H1R, but not H2R, H3R, nor H4R, increased the percentage of histamine-responsive DRG neurons, and the scratching behavior in FGF13-deficient mice was highly reduced by selective activation of H1R, suggesting that H1R is mainly required for FGF13-mediated neuronal response and scratching behavior induced by histamine. However, overexpression of H1R failed to rescue the histamine-evoked neuronal response in FGF13-deficient mice. Histamine enhanced the FGF13 interaction with NaV1.7. Disruption of this interaction by a membrane-permeable competitive peptide, GST-Flag-NaV1.7CT-TAT, reduced the percentage of histamine-responsive DRG neurons, and impaired the histamine-induced scratching, indicating that the FGF13/NaV1.7 interaction is a key molecular determinant in the histamine-induced itch sensation. Therefore, our study reveals a novel role of FGF13 in mediating itch sensation via the interaction of NaV1.7 in the peripheral nervous system.SIGNIFICANCE STATEMENT Scratching induced by itch brings serious tissue damage in chronic itchy diseases, and targeting itch-sensing molecules is crucial for its therapeutic intervention. Here, we reveal that FGF13 is required for the neuronal excitation and scratching behavior induced by histamine. We further provide the evidence that the histamine-evoked neuronal response is mainly mediated by histamine Type 1 receptor H1R, and is largely attenuated in FGF13-deficent mice. Importantly, we identify that histamine enhances the FGF13/NaV1.7 interaction, and disruption of this interaction reduces histamine-evoked neuronal excitation and highly impairs histamine-induced scratching behavior. Additionally, we also find that FGF13 is involved in 5-hydroxytryptamine-induced scratching behavior and hapten 1-fluoro-2,4-dinitrobenzene-induced chronic itch.
Collapse
|
6
|
Sananmuang T, Mankong K, Jeeratanyasakul P, Chokeshai-Usaha K, Ponglowhapan S. Prenatal diagnosis of foetal hydrocephalus and suspected X-linked recessive inheritance of cleft lip in a Chihuahua. J Vet Med Sci 2019; 82:212-216. [PMID: 31902834 PMCID: PMC7041993 DOI: 10.1292/jvms.18-0516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A 3.5-year-old, 2.9 kg, multiparous Chihuahua presented with abdominal distension;
pregnancy was diagnosed. On Day 7 before parturition, prenatal sonograms showed anechoic
bilateral dilated cerebral lateral ventricles, suggesting fluid-filled regions
(ventriculomegaly) in one foetus. A Caesarean section was performed and the male newborn
had an abnormally enlarged dome-shaped head and a cleft lip, and died 6 days after birth.
According to the family pedigree, the X-linked recessive inheritance of an orofacial cleft
from the unaffected mother was suggested. This report clearly demonstrates that canine
foetal ventriculomegaly (hydrocephalus) can be diagnosed in utero. For
dog breeds predisposed to congenital ventriculomegaly, early detection is important for
the prediction of perinatal survival and adequate supportive care can be applied at
delivery.
Collapse
Affiliation(s)
- Thanida Sananmuang
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, 43 Moo 6 Bangpra, Sriracha, Chonburi 20110, Thailand
| | - Kanchanarat Mankong
- Smile Dog Small Animal Hospital, 9/16 Mhoo 8, Samed, Bang Saen, Chonburi 20130, Thailand
| | | | - Kaj Chokeshai-Usaha
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, 43 Moo 6 Bangpra, Sriracha, Chonburi 20110, Thailand
| | - Suppawiwat Ponglowhapan
- Department of Obstetrics, Gynaecology and Reproduction, Research Unit of Obstetrics and Reproduction in Animals, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Gjerdevik M, Jugessur A, Haaland ØA, Romanowska J, Lie RT, Cordell HJ, Gjessing HK. Haplin power analysis: a software module for power and sample size calculations in genetic association analyses of family triads and unrelated controls. BMC Bioinformatics 2019; 20:165. [PMID: 30940094 PMCID: PMC6444579 DOI: 10.1186/s12859-019-2727-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/13/2019] [Indexed: 01/22/2023] Open
Abstract
Background Log-linear and multinomial modeling offer a flexible framework for genetic association analyses of offspring (child), parent-of-origin and maternal effects, based on genotype data from a variety of child-parent configurations. Although the calculation of statistical power or sample size is an important first step in the planning of any scientific study, there is currently a lack of software for genetic power calculations in family-based study designs. Here, we address this shortcoming through new implementations of power calculations in the R package Haplin, which is a flexible and robust software for genetic epidemiological analyses. Power calculations in Haplin can be performed analytically using the asymptotic variance-covariance structure of the parameter estimator, or else by a straightforward simulation approach. Haplin performs power calculations for child, parent-of-origin and maternal effects, as well as for gene-environment interactions. The power can be calculated for both single SNPs and haplotypes, either autosomal or X-linked. Moreover, Haplin enables power calculations for different child-parent configurations, including (but not limited to) case-parent triads, case-mother dyads, and case-parent triads in combination with unrelated control-parent triads. Results We compared the asymptotic power approximations to the power of analysis attained with Haplin. For external validation, the results were further compared to the power of analysis attained by the EMIM software using data simulations from Haplin. Consistency observed between Haplin and EMIM across various genetic scenarios confirms the computational accuracy of the inference methods used in both programs. The results also demonstrate that power calculations in Haplin are applicable to genetic association studies using either log-linear or multinomial modeling approaches. Conclusions Haplin provides a robust and reliable framework for power calculations in genetic association analyses for a wide range of genetic effects and etiologic scenarios, based on genotype data from a variety of child-parent configurations. Electronic supplementary material The online version of this article (10.1186/s12859-019-2727-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway. .,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|