1
|
Anglhuber C, Edel C, Pimentel ECG, Emmerling R, Götz KU, Thaller G. Definition of metafounders based on population structure analysis. Genet Sel Evol 2024; 56:43. [PMID: 38844876 PMCID: PMC11536677 DOI: 10.1186/s12711-024-00913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/22/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Limitations of the concept of identity by descent in the presence of stratification within a breeding population may lead to an incomplete formulation of the conventional numerator relationship matrix ( A ). Combining A with the genomic relationship matrix ( G ) in a single-step approach for genetic evaluation may cause inconsistencies that can be a source of bias in the resulting predictions. The objective of this study was to identify stratification using genomic data and to transfer this information to matrix A , to improve the compatibility of A and G . METHODS Using software to detect population stratification (ADMIXTURE), we developed an iterative approach. First, we identified 2 to 40 strata ( k ) with ADMIXTURE, which we then introduced in a stepwise manner into matrix A , to generate matrixA Γ using the metafounder methodology. Improvements in consistency between matrix G andA Γ were evaluated by regression analysis and through the comparison of the overall mean and mean diagonal values of both matrices. The approach was tested on genotype and pedigree information of European and North American Brown Swiss animals (85,249). Analyses with ADMIXTURE were initially performed on the full set of genotypes (S1). In addition, we used an alternative dataset where we avoided sampling of closely related animals (S2). RESULTS Results of the regression analyses of standard A on G were - 0.489, 0.780 and 0.647 for intercept, slope and fit of the regression. When analysing S1 data results of the regression forA Γ on G corresponding values were - 0.028, 1.087 and 0.807 for k =7, while there was no clear optimum k . Analyses of S2 gave a clear optimal k =24, with - 0.020, 0.998 and 0.817 as results of the regression. For this k differences in mean and mean diagonal values between both matrices were negligible. CONCLUSIONS The derivation of hidden stratification information based on genotyped animals and its integration into A improved compatibility of the resultingA Γ and G considerably compared to the initial situation. In dairy breeding populations with large half-sib families as sub-structures it is necessary to balance the data when applying population structure analysis to obtain meaningful results.
Collapse
Affiliation(s)
- Christine Anglhuber
- Bavarian State Research Center for Agriculture, Institute for Animal Breeding, Prof. Duerrwaechter Platz 1, 85586, Grub, Germany.
- Institute for Animal Breeding and Husbandry, Christian-Albrechts-Universität, Olshausenstraße 40, 24098, Kiel, Germany.
| | - Christian Edel
- Bavarian State Research Center for Agriculture, Institute for Animal Breeding, Prof. Duerrwaechter Platz 1, 85586, Grub, Germany
| | - Eduardo C G Pimentel
- Bavarian State Research Center for Agriculture, Institute for Animal Breeding, Prof. Duerrwaechter Platz 1, 85586, Grub, Germany
| | - Reiner Emmerling
- Bavarian State Research Center for Agriculture, Institute for Animal Breeding, Prof. Duerrwaechter Platz 1, 85586, Grub, Germany
| | - Kay-Uwe Götz
- Bavarian State Research Center for Agriculture, Institute for Animal Breeding, Prof. Duerrwaechter Platz 1, 85586, Grub, Germany
| | - Georg Thaller
- Institute for Animal Breeding and Husbandry, Christian-Albrechts-Universität, Olshausenstraße 40, 24098, Kiel, Germany
| |
Collapse
|
2
|
dos Santos CA, Eler JP, Oliveira ECDM, Espigolan R, Giacomini G, Ferraz JBS, Paim TDP. Selective signatures in composite MONTANA TROPICAL beef cattle reveal potential genomic regions for tropical adaptation. PLoS One 2024; 19:e0301937. [PMID: 38662691 PMCID: PMC11045132 DOI: 10.1371/journal.pone.0301937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Genomic regions related to tropical adaptability are of paramount importance for animal breeding nowadays, especially in the context of global climate change. Moreover, understanding the genomic architecture of these regions may be very relevant for aiding breeding programs in choosing the best selection scheme for tropical adaptation and/or implementing a crossbreeding scheme. The composite MONTANA TROPICAL® population was developed by crossing cattle of four different biological types to improve production in harsh environments. Pedigree and genotype data (51962 SNPs) from 3215 MONTANA TROPICAL® cattle were used to i) characterize the population structure; ii) identify signatures of selection with complementary approaches, i.e. Integrated Haplotype Score (iHS) and Runs of Homozygosity (ROH); and iii) understand genes and traits related to each selected region. The population structure based on principal components had a weak relationship with the genetic contribution of the different biological types. Clustering analyses (ADMIXTURE) showed different clusters according to the number of generations within the composite population. Considering results of both selection signatures approaches, we identified only one consensus region on chromosome 20 (35399405-40329703 bp). Genes in this region are related to immune function, regulation of epithelial cell differentiation, and cell response to ionizing radiation. This region harbors the slick locus which is related to slick hair and epidermis anatomy, both of which are related to heat stress adaptation. Also, QTLs in this region were related to feed intake, milk yield, mastitis, reproduction, and slick hair coat. The signatures of selection detected here arose in a few generations after crossbreeding between contrasting breeds. Therefore, it shows how important this genomic region may be for these animals to thrive in tropical conditions. Further investigations on sequencing this region can identify candidate genes for animal breeding and/or gene editing to tackle the challenges of climate change.
Collapse
Affiliation(s)
- Camila Alves dos Santos
- Programa de Pós-graduação em Zootecnia, Instituto Federal de Ciência, Educação e Tecnologia Goiano, Rio Verde, Goiás, Brazil
| | - Joanir Pereira Eler
- Departamento de Zootecnia, Faculdade de Zootecnia e Engenharia de alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Rafael Espigolan
- Departamento de Zootecnia, Faculdade de Zootecnia e Engenharia de alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Gabriela Giacomini
- Associação Internacional de criadores de Montana, Mogi Mirim, São Paulo, Brazil
| | - José Bento Sterman Ferraz
- Departamento de Zootecnia, Faculdade de Zootecnia e Engenharia de alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Tiago do Prado Paim
- Programa de Pós-graduação em Zootecnia, Instituto Federal de Ciência, Educação e Tecnologia Goiano, Rio Verde, Goiás, Brazil
| |
Collapse
|
3
|
MacPhillamy C, Ren Y, Chen T, Hiendleder S, Low WY. MicroRNA breed and parent-of-origin effects provide insights into biological pathways differentiating cattle subspecies in fetal liver. Front Genet 2023; 14:1329939. [PMID: 38162682 PMCID: PMC10757722 DOI: 10.3389/fgene.2023.1329939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: MicroRNAs (miRNAs) play a crucial role in regulating gene expression during key developmental processes, including fetal development. Brahman (Bos taurus indicus) and Angus (Bos taurus taurus) cattle breeds represent two major cattle subspecies with strikingly different phenotypes. Methods: We analyzed miRNA expression in liver samples of purebred and reciprocal crosses of Angus and Brahman to investigate breed and parent-of-origin effects at the onset of accelerated fetal growth. Results: We identified eight novel miRNAs in fetal liver samples and 14 differentially expressed miRNAs (DEMs) between purebred samples. Correlation of gene expression modules and miRNAs by breed and parent-of-origin effects revealed an enrichment of genes associated with breed-specific differences in traits such as heat tolerance (Brahman) and fat deposition (Angus). We demonstrate that genes predicted to be targets of DEMs were more likely to be differentially expressed than non-targets (p-value < 0.05). We identified several miRNAs (bta-miR-187, bta-miR-216b, bta-miR-2284c, bta-miR-2285c, bta-miR-2285cp, bta-miR-2419-3p, bta-miR-2419-5p, and bta-miR-11984) that showed similar correlation patterns as bta-miR-2355-3p, which has been associated with the glutamatergic synapse pathway, a key facilitator of heat tolerance. Furthermore, we report Angus-breed-specific miRNAs (bta-miR-2313-5p, btamiR-490, bta-miR-2316, and bta-miR-11990) that may be involved in fat deposition. Finally, we showed that the DEMs identified in fetal liver are involved in Rap1, MAPK, and Ras signalling pathways, which are important for fetal development, muscle development and metabolic traits such as fat metabolism. Conclusion: Our work sheds light on the miRNA expression patterns that contribute to gene expression differences driving phenotypic differences in indicine and taurine cattle.
Collapse
Affiliation(s)
- Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Tong Chen
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
- Robinson Research Institute, The University of Adelaide, North Adelaide, SA, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
4
|
Li Z, He J, Yang F, Yin S, Gao Z, Chen W, Sun C, Tait RG, Bauck S, Guo W, Wu XL. A look under the hood of genomic-estimated breed compositions for brangus cattle: What have we learned? Front Genet 2023; 14:1080279. [PMID: 37056284 PMCID: PMC10086375 DOI: 10.3389/fgene.2023.1080279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
The Brangus cattle were developed to utilize the superior traits of Angus and Brahman cattle. Their genetic compositions are expected to be stabilized at 3/8 Brahman and 5/8 Angus. Previous studies have shown more than expected Angus lineage with Brangus cattle, and the reasons are yet to be investigated. In this study, we revisited the breed compositions for 3,605 Brangus cattle from three perspectives: genome-wise (GBC), per chromosomes (CBC), and per chromosome segments (SBC). The former (GBC) depicted an overall picture of the “mosaic” genome of the Brangus attributable to their ancestors, whereas the latter two criteria (CBC and SBC) corresponded to local ancestral contributions. The average GBC for the 3,605 Brangus cattle were 70.2% Angus and 29.8% Brahman. The K-means clustering supported the postulation of the mixture of 1/2 Ultrablack (UB) animals in Brangus. For the non-UB Brangus animals, the average GBC were estimated to be 67.4% Angus and 32.6% Brahman. The 95% confidence intervals of their overall GBC were 60.4%–73.5% Angus and 26.5%–39.6% Brahman. Possibly, genetic selection and drifting have resulted in an approximately 5% average deviation toward Angus lineage. The estimated ancestral contributions by chromosomes were heavily distributed toward Angus, with 27 chromosomes having an average Angus CBC greater than 62.5% but only two chromosomes (5 and 20) having Brahman CBC greater than 37.5%. The chromosomal regions with high Angus breed proportions were prevalent, tending to form larger blocks on most chromosomes. In contrast, chromosome segments with high Brahman breed proportion were relatively few and isolated, presenting only on seven chromosomes. Hence, genomic hitchhiking effects were strong where Angus favorable alleles resided but weak where Brahman favorable alleles were present. The functions of genes identified in the chromosomal regions with high (≥75%) Angus compositions were diverse yet may were related to growth and body development. In contrast, the genes identified in the regions with high (≥37.5%) Brahman compositions were primarily responsible for disease resistance. In conclusion, we have addressed the questions concerning the Brangus genetic make-ups. The results can help form a dynamic picture of the Brangus breed formation and the genomic reshaping.
Collapse
Affiliation(s)
- Zhi Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- *Correspondence: Jun He, ; Xiao-Lin Wu,
| | - Fang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shishu Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhendong Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenwu Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chuanyu Sun
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States
| | - Richard G. Tait
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States
| | - Stewart Bauck
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Xiao-Lin Wu
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
- Council on Dairy Cattle Breeding, Bowie, MD, United States
- *Correspondence: Jun He, ; Xiao-Lin Wu,
| |
Collapse
|
5
|
Salek Ardestani S, Zandi MB, Vahedi SM, Janssens S. Population structure and genomic footprints of selection in five major Iranian horse breeds. Anim Genet 2022; 53:627-639. [PMID: 35919961 DOI: 10.1111/age.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
The genetic structure and characteristics of Iranian native breeds are yet to be comprehensibly investigated and studied. Therefore, we employed genomic information of 364 Iranian native horses representing the Asil (n = 109), Caspian (n = 40), Dareshuri (n = 44), Kurdish (n = 95), and Turkoman (n = 76) breeds to reveal the genetic structure and characteristics. For these and 19 other horse breeds, principal component analysis, Bayesian model-based, Neighbor-Net, and bootstrap-based TreeMix approaches were applied to investigate and compare their genetic structure. Additionally, three haplotype-based methods including haplotype homozygosity pooled, integrated haplotype score, and number of segregating sites by length were applied to trace genomic footprints of selection of Asil, Caspian, Dareshuri, Kurdish, and Turkoman groups. Then, the Mahalanobis distance based on the negative-log10 rank-based P-values was estimated based on the haplotype homozygosity pooled, integrated haplotype score, and number of segregating sites by length values. Asil, Caspian, Dareshuri, Kurdish, and Turkoman can be categorized into five different genetic clusters. Based on the top 1% of Mahalanobis distance based on the negative-log10 rank-based P-values of SNPs, we identified 24 SNPs formerly reported to be associated with different traits and >100 genes undergoing selection pressures in Asil, Caspian, Dareshuri, Kurdish, and Turkoman. The detected QTL undergoing selection pressures were associated with withers height, equine metabolic syndrome, overall body size, insect bite hypersensitivity, guttural pouch tympany, white markings, Rhodococcus equi infection, jumping test score, alternate gaits, and body weight traits. Our findings will aid to have a better perspective of the genetic characteristics and population structure of Asil, Caspian, Dareshuri, Kurdish, and Turkoman horses as Iranian native horse breeds.
Collapse
Affiliation(s)
| | | | - Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Steven Janssens
- Department Biosystems, Center Animal Breeding and Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Álvarez Cecco P, Rogberg Muñoz A, Balbi M, Bonamy M, Munilla S, Forneris NS, Peral García P, Cantet RJC, Giovambattista G, Fernández ME. Genome-wide scan for signatures of selection in the Brangus cattle genome. J Anim Breed Genet 2022; 139:679-694. [PMID: 35866697 DOI: 10.1111/jbg.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Brangus is a composite cattle breed developed with the objective of combining the advantages of Angus and Zebuine breeds (Brahman, mainly) in tropical climates. The aim of this work was to estimate breed composition both genome-wide and locally, at the chromosome level, and to uncover genomic regions evidencing positive selection in the Argentinean Brangus population/nucleus. To do so, we analysed marker data from 478 animals, including Brangus, Angus and Brahman. Average breed composition was 35.0% ± 9.6% of Brahman, lower than expected according to the theoretical fractions deduced by the usual cross-breeding practice in this breed. Local ancestry analysis evidenced that breed composition varies between chromosomes, ranging from 19.6% for BTA26 to 56.1% for BTA5. Using approaches based on allelic frequencies and linkage disequilibrium, genomic regions with putative selection signatures were identified in several chromosomes (BTA1, BTA5, BTA6 and BTA14). These regions harbour genes involved in horn development, growth, lipid metabolism, reproduction and immune response. We argue that the overlapping of a chromosome segment originated in one of the parental breeds and over-represented in the sample with the location of a signature of selection constitutes evidence of a selection process that has occurred in the breed since its take off in the 1950s. In this regard, our results could contribute to the understanding of the genetic mechanisms involved in cross-bred cattle adaptation and productivity in tropical environments.
Collapse
Affiliation(s)
- Paulo Álvarez Cecco
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrés Rogberg Muñoz
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INPA - Instituto de Investigaciones en Producción Animal (UBA - CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Balbi
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Bonamy
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sebastián Munilla
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INPA - Instituto de Investigaciones en Producción Animal (UBA - CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Soledad Forneris
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INPA - Instituto de Investigaciones en Producción Animal (UBA - CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pilar Peral García
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Rodolfo Juan Carlos Cantet
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INPA - Instituto de Investigaciones en Producción Animal (UBA - CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Giovambattista
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Elena Fernández
- IGEVET - Instituto de Genética Veterinaria (UNLP - CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
7
|
Hay E, Toghiani S, Roberts AJ, Paim T, Kuehn LA, Blackburn HD. Genetic architecture of a composite beef cattle population. J Anim Sci 2022; 100:6623572. [PMID: 35771897 DOI: 10.1093/jas/skac230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
Composite breeds are widely used in the beef industry. Composites allow producers to combine desirable traits from the progenitor breeds and simplify herd management, without repeated crossbreeding and maintenance of purebreds. In this study, genomic information was used to evaluate the genetic composition and characteristics of a three-breed beef cattle composite. This composite population referred to as Composite Gene Combination (CGC) consisted of 50% Red Angus, 25% Charolais, 25% Tarentaise. A total of 248 animals were used in this study CGC (n=79), Red Angus (n=61), Charolais (n=79) and Tarentaise (n=29). All animals were genotyped with 777k HD panel. Principal component and ADMIXTURE analyses were carried out to evaluate the genetic structure of CGC animals. The ADMIXTURE revealed the proportion of Tarentaise increased to approximately 57% while Charolais decreased to approximately 5%, and Red Angus decreased to 38% across generations. To evaluate these changes in the genomic composition across different breeds and in CGC across generations runs of homozygosity (ROH) were conducted. This analysis showed Red Angus to have the highest total length of ROH segments per animal with a mean of 349.92 Mb and lowest in CGC with a mean of 141.10 Mb. Furthermore, it showed the formation of new haplotypes in CGC around the sixth generation. Selection signatures were evaluated through Fst and HapFlk analyses. Several selection sweeps in CGC were identified especially in chromosomes 5 and 14 which have previously been reported to be associated with coat color and growth traits. The study supports our previous findings that progenitor combinations are not stable over generations and that either direct or natural selection plays a role in modifying the progenitor proportions. Furthermore, the results showed that Tarentaise contributed useful attributes to the composite in a cool semi-arid environment and suggests a re-exploration of this breed's role may be warranted.
Collapse
Affiliation(s)
- E Hay
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301, USA
| | - S Toghiani
- USDA Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - A J Roberts
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301, USA
| | - T Paim
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Goias, Brazil
| | - L A Kuehn
- USDA, Agricultural Research Service, US Meat Animal Research Center, Clay Center, 68933, USA
| | - H D Blackburn
- National Center for Genetic Resources Preservation, USDA, Fort Collins, CO, 80521, USA
| |
Collapse
|
8
|
Pal D, Panigrahi M, Chhotaray S, Kumar H, Nayak SS, Rajawat D, Parida S, Gaur GK, Dutt T, Bhushan B. Unraveling genetic admixture in the Indian crossbred cattle by different approaches using Bovine 50K BeadChip. Trop Anim Health Prod 2022; 54:135. [PMID: 35292868 DOI: 10.1007/s11250-022-03133-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
With the upsurge of crossbreeding in India, the admixture levels are highly unpredictable in the composite breeds. Hence, in the present study, 72 Vrindavani animals were assessed for the level of admixture from their known ancestors that are Holstein-Friesian, Jersey, Brown Swiss, and Hariana, through three different software, namely, STRUCTURE, ADMIXTURE, and frappe. The genotype data for ancestral breeds were obtained from a public repository, i.e., DRYAD. The Frieswal crossbred cattle along with ancestral breeds like Holstein-Friesian and Sahiwal were also investigated for the level of admixture with the help of the above-mentioned software. The Frieswal population was found to comprise an average of 62.49, 61.12, and 61.21% of Holstein-Friesian and 37.50, 38.88, and 38.80% of Sahiwal estimated through STRUCTURE, ADMIXTURE, and frappe, respectively. The Vrindavani population was found to consist of on average 39.5, 42.4, and 42.3% of Holstein-Friesian; 22.9, 22.3, and 21.7% of Jersey; 10.7, 10.6, and 11.9% of Brown Swiss; and 26.9, 24.7, and 24.1% of Hariana blood estimated through STRUCTURE, ADMIXTURE, and frappe, respectively. A greater degree of variation was noted in the results from STRUCTURE vs. frappe, STRUCTURE vs. ADMIXTURE than in ADMIXTURE vs. frappe. From this study, we conclude that the admixture analysis based on a single software should be validated through the use of many different approaches for better prediction of admixture levels.
Collapse
Affiliation(s)
- Dhan Pal
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India.
| | - Supriya Chhotaray
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Subhashree Parida
- Division of Veterinary Pharmacology & Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - G K Gaur
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| |
Collapse
|
9
|
Kim YM, Seong HS, Kim YS, Hong JK, Sa SJ, Lee J, Lee JH, Cho KH, Chung WH, Choi JW, Cho ES. Genome-Wide Assessment of a Korean Composite Pig Breed, Woori-Heukdon. Front Genet 2022; 13:779152. [PMID: 35186025 PMCID: PMC8847790 DOI: 10.3389/fgene.2022.779152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/07/2022] [Indexed: 02/03/2023] Open
Abstract
A Korean synthetic pig breed, Woori-Heukdon (WRH; F3), was developed by crossing parental breeds (Korean native pig [KNP] and Korean Duroc [DUC]) with their crossbred populations (F1 and F2). This study in genome-wide assessed a total of 2,074 pigs which include the crossbred and the parental populations using the Illumina PorcineSNP60 BeadChip. After quality control of the initial datasets, we performed population structure, genetic diversity, and runs of homozygosity (ROH) analyses. Population structure analyses showed that crossbred populations were genetically influenced by the parental breeds according to their generation stage in the crossbreeding scheme. Moreover, principal component analysis showed the dispersed cluster of WRH, which might reflect introducing a new breeding group into the previous one. Expected heterozygosity values, which were used to assess genetic diversity, were .365, .349, .336, .330, and .211 for WRH, F2, F1, DUC, and KNP, respectively. The inbreeding coefficient based on ROH was the highest in KNP (.409), followed by WRH (.186), DUC (.178), F2 (.107), and F1 (.035). Moreover, the frequency of short ROH decreased according to the crossing stage (from F1 to WRH). Alternatively, the frequency of medium and long ROH increased, which indicated recent inbreeding in F2 and WRH. Furthermore, gene annotation of the ROH islands in WRH that might be inherited from their parental breeds revealed several interesting candidate genes that may be associated with adaptation, meat quality, production, and reproduction traits in pigs.
Collapse
Affiliation(s)
- Yong-Min Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea.,Department of Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ha-Seung Seong
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea.,Department of Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Young-Sin Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Joon-Ki Hong
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Soo-Jin Sa
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Jungjae Lee
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, South Korea
| | - Jun-Hee Lee
- Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Kyu-Ho Cho
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Won-Hyong Chung
- Research Group of Healthcare, Korea Food Research Institute, Wanju, South Korea
| | - Jung-Woo Choi
- Department of Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| |
Collapse
|
10
|
Crum TE, Schnabel RD, Decker JE, Taylor JF. Taurine and Indicine Haplotype Representation in Advanced Generation Individuals From Three American Breeds. Front Genet 2021; 12:758394. [PMID: 34733318 PMCID: PMC8558500 DOI: 10.3389/fgene.2021.758394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Development of the American Breeds of beef cattle began in the 1920s as breeders and U. S. Experiment Station researchers began to create Bos taurus taurus × Bos taurus indicus hybrids using Brahman as the B. t. indicus source. By 1954, U.S. Breed Associations had been formed for Brangus (5/8 Angus × 3/8 Brahman), Beefmaster (½ Brahman × ¼ Shorthorn × ¼ Hereford), and Santa Gertrudis (5/8 Shorthorn × 3/8 Brahman). While these breeds were developed using mating designs expected to create base generation animals with the required genome contributions from progenitor breeds, each association has now registered advanced generation animals in which selection or drift may have caused the realized genome compositions to differ from initial expected proportions. The availability of high-density SNP genotypes for 9,161 Brangus, 3,762 Beefmaster, and 1,942 Santa Gertrudis animals allowed us to compare the realized genomic architectures of breed members to the base generation expectations. We used RFMix to estimate local ancestry and identify genomic regions in which the proportion of Brahman ancestry differed significantly from a priori expectations. For all three breeds, lower than expected levels of Brahman composition were found genome-wide, particularly in early-generation animals where we demonstrate that selection on beef production traits was likely responsible for the taurine enrichment. Using a proxy for generation number, we also contrasted the genomes of early- and advanced-generation animals and found that the indicine composition of the genome has increased with generation number likely due to selection on adaptive traits. Many of the most-highly differentiated genomic regions were breed specific, suggesting that differences in breeding objectives and selection intensities exist between the breeds. Global ancestry estimation is commonly performed in admixed animals to control for stratification in association studies. However, local ancestry estimation provides the opportunity to investigate the evolution of specific chromosomal segments and estimate haplotype effects on trait variation in admixed individuals. Investigating the genomic architecture of the American Breeds not only allows the estimation of indicine and taurine genome proportions genome-wide, but also the locations within the genome where either taurine or indicine alleles confer a selective advantage.
Collapse
Affiliation(s)
- Tamar E Crum
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Bang NN, Hayes BJ, Lyons RE, Randhawa IAS, Gaughan JB, McNeill DM. Genomic diversity and breed composition of Vietnamese smallholder dairy cows. J Anim Breed Genet 2021; 139:145-160. [PMID: 34559415 DOI: 10.1111/jbg.12651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022]
Abstract
Vietnamese smallholder dairy cows (VDC) are the result of crossbreeding between different zebu (ZEB) and taurine dairy breeds through many undefined generations. Thus, the predominant breed composition of VDC is currently unknown. This study aimed to evaluate the level of genetic diversity and breed composition of VDC. The SNP data of 344 animals from 32 farms located across four dairy regions of Vietnam were collected and merged with genomic reference data, which included three ZEB breeds: Red Sindhi, Sahiwal and Brahman, three taurine breeds: Holstein (HOL), Jersey (JER) and Brown Swiss (BSW), and a composite breed: Chinese Yellow cattle. Diversity and admixture analyses were applied to the merged data set. The VDC were not excessively inbred, as indicated by very low inbreeding coefficients (Wright's FIS ranged from -0.017 to 0.003). The genetic fractions in the test herds suggested that the VDC are primarily composed of HOL (85.0%); however, JER (6.0%), BSW 5.3%) and ZEB (4.5%) had also contributed. Furthermore, major genotype groupings in the test herds were pure HOL (48%), B3:15/16HOL_1/16ZEB (22%) and B2:7/8HOL_1/8ZEB (12%). The genetic makeup of the VDC is mainly components of various dairy breeds but also has a small percentage of ZEB; thus, the VDC could be a good genetic base for selecting high milk-producing cows with some degree of adaptation to tropical conditions.
Collapse
Affiliation(s)
- Nguyen N Bang
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia.,Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Qld, Australia
| | - Russell E Lyons
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - Imtiaz A S Randhawa
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Qld, Australia
| | - David M McNeill
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| |
Collapse
|
12
|
Wilmot H, Bormann J, Soyeurt H, Hubin X, Glorieux G, Mayeres P, Bertozzi C, Gengler N. Development of a genomic tool for breed assignment by comparison of different classification models: Application to three local cattle breeds. J Anim Breed Genet 2021; 139:40-61. [PMID: 34427366 DOI: 10.1111/jbg.12643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022]
Abstract
Assignment of individual cattle to a specific breed can often not rely on pedigree information. This is especially the case for local breeds for which the development of genomic assignment tools is required to allow individuals of unknown origin to be included to their herd books. A breed assignment model can be based on two specific stages: (a) the selection of breed-informative markers and (b) the assignment of individuals to a breed with a classification method. However, the performance of combination of methods used in these two stages has been rarely studied until now. In this study, the combination of 16 different SNP panels with four classification methods was developed on 562 reference genotypes from 12 cattle breeds. Based on their performances, best models were validated on three local breeds of interest. In cross-validation, 14 models had a global cross-validation accuracy higher than 90%, with a maximum of 98.22%. In validation, best models used 7,153 or 2,005 SNPs, based on a partial least squares-discriminant analysis (PLS-DA) and assigned individuals to breeds based on nearest shrunken centroids. The average validation sensitivity of the first two best models for the three local breeds of interest were 98.33% and 97.5%. Moreover, results reported in this study suggest that further studies should consider the PLS-DA method when selecting breed-informative SNPs.
Collapse
Affiliation(s)
- Hélène Wilmot
- National Fund for Scientific Research (F.R.S.-FNRS), Brussels, Belgium.,TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jeanne Bormann
- Administration of Technical Agricultural Services (ASTA), Luxembourg, Grand Duchy of Luxembourg
| | - Hélène Soyeurt
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | | | | | | | | | - Nicolas Gengler
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
13
|
Mattoso Miskulin Cardoso AP, Tavares Pereira M, Dos Santos Silva R, Medeiros de Carvalho Sousa LM, Giometti IC, Kowalewski MP, de Carvalho Papa P. Global transcriptome analysis implicates cholesterol availability in the regulation of canine cyclic luteal function. Gen Comp Endocrinol 2021; 307:113759. [PMID: 33771531 DOI: 10.1016/j.ygcen.2021.113759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Considering the key role of the corpus luteum in the regulation of the canine diestrus, the present study aimed to investigate changes in the luteal transcriptome of pseudopregnant dogs (n = 18) from days (D) 10, 20, 30, 40, 50 and 60 post-ovulation. After RNAsequencing was performed, data was analyzed by resorting to several informatic tools. A total of 3300 genes were differently expressed among all samples (FDR < 0.01). By comparing different time points, enriched biological processes as response to estradiol and lipids (D20 vs D10) and intracellular cholesterol transport (D40 vs D60) were observed. Moreover, LXR/RXR (liver X receptor- retinoid X receptor) signaling appeared as an overrepresented pathway in all comparisons. Thus, the expression of 19 genes involved in intracellular cholesterol availability was further evaluated; most were affected by time (P < 0.05). Adding to the deep transcriptomic analysis, presented data implies the importance of cholesterol regulation in luteal physiology of pseudopregnant dogs.
Collapse
Affiliation(s)
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Renata Dos Santos Silva
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Ines Cristina Giometti
- Faculty of Veterinary Medicine, University of Western São Paulo, Presidente Prudente, Brazil
| | | | - Paula de Carvalho Papa
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity. ISME JOURNAL 2021; 15:2306-2321. [PMID: 33649551 PMCID: PMC8319427 DOI: 10.1038/s41396-021-00925-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
The gut microbiota is a complex ecological community that plays multiple critical roles within a host. Known intrinsic and extrinsic factors affect gut microbiota structure, but the influence of host genetics is understudied. To investigate the role of host genetics upon the gut microbiota structure, we performed a longitudinal study in which we evaluated the hindgut microbiota and its association with animal growth and immunity across life. We evaluated three different growth stages in an Angus-Brahman multibreed population with a graduated spectrum of genetic variation, raised under variable environmental conditions and diets. We found the gut microbiota structure was changed significantly during growth when preweaning, and fattening calves experienced large variations in diet and environmental changes. However, regardless of the growth stage, we found gut microbiota is significantly influenced by breed composition throughout life. Host genetics explained the relative abundances of 52.2%, 40.0%, and 37.3% of core bacterial taxa at the genus level in preweaning, postweaning, and fattening calves, respectively. Sutterella, Oscillospira, and Roseburia were consistently associated with breed composition at these three growth stages. Especially, butyrate-producing bacteria, Roseburia and Oscillospira, were associated with nine single-nucleotide polymorphisms (SNPs) located in genes involved in the regulation of host immunity and metabolism in the hindgut. Furthermore, minor allele frequency analysis found breed-associated SNPs in the short-chain fatty acids (SCFAs) receptor genes that promote anti-inflammation and enhance intestinal epithelial barrier functions. Our findings provide evidence of dynamic and lifelong host genetic effects upon gut microbiota, regardless of growth stages. We propose that diet, environmental changes, and genetic components may explain observed variation in critical hindgut microbiota throughout life.
Collapse
|
15
|
Wu XL, Li Z, Wang Y, He J, Rosa GJM, Ferretti R, Genho J, Tait RG, Parham J, Schultz T, Bauck S. A Causality Perspective of Genomic Breed Composition for Composite Animals. Front Genet 2020; 11:546052. [PMID: 33193620 PMCID: PMC7662449 DOI: 10.3389/fgene.2020.546052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Genomic breed composition (GBC) of an individual animal refers to the partition of its genome according to the inheritance from its ancestors or ancestral breeds. For crossbred or composite animals, knowing their GBC is useful to estimate heterosis, to characterize their actual inheritance from foundation breeds, and to make management decisions for crossbreeding programs. Various statistical approaches have been proposed to estimate GBC in animals, but the interpretations of estimates have varied with these methods. In the present study, we proposed a causality interpretation of GBC based on path analysis. We applied this method to estimating GBC in two composite breeds of beef cattle, namely Brangus and Beefmaster. Three SNP panels were used to estimate GBC: a 10K SNP panel consisting of 10,226 common SNPs across three GeneSeek Genomic Profiler (GGP) bovine SNP arrays (GGP 30K, GGP 40K, and GGP 50K), and two subsets (1K and 5K) of uniformly distributed SNPs. The path analysis decomposed the relationships between the ancestors and the composite animals into direct and indirect path effects, and GBC was measured by the relative ratio of the coefficients of direct (D-GBC) and combined (C-GBC) effects from each ancestral breed to the progeny, respectively. Estimated GBC varied only slightly between different genotyping platforms and between the three SNP panels. In the Brangus cattle, because the two ancestral breeds had a very distant relationship, the estimated D-GBC and C-GBC were comparable to each other in the path analysis, and they corresponded roughly to the estimated GBC from the linear regression and the admixture model. In the Beefmaster, however, the strong relationship in allelic frequencies between Hereford and Shorthorn imposed a challenge for the linear regression and the admixture model to estimated GBC reliably. Instead, D-GBC by the path analysis included only direct ancestral effects, and it was robust to bias due to high genomic correlations between reference (ancestral) breeds.
Collapse
Affiliation(s)
- Xiao-Lin Wu
- Biostatistics and Bioinformatics, Neogen GeneSeek Operations, Lincoln, NE, United States.,Department of Animal Sciences, University of Wisconsin, Madison, WI, United States
| | - Zhi Li
- Biostatistics and Bioinformatics, Neogen GeneSeek Operations, Lincoln, NE, United States
| | - Yangfan Wang
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States.,Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Jun He
- Biostatistics and Bioinformatics, Neogen GeneSeek Operations, Lincoln, NE, United States.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States
| | - Ryan Ferretti
- Biostatistics and Bioinformatics, Neogen GeneSeek Operations, Lincoln, NE, United States
| | - John Genho
- Biostatistics and Bioinformatics, Neogen GeneSeek Operations, Lincoln, NE, United States
| | - Richard G Tait
- Biostatistics and Bioinformatics, Neogen GeneSeek Operations, Lincoln, NE, United States
| | - Jamie Parham
- Biostatistics and Bioinformatics, Neogen GeneSeek Operations, Lincoln, NE, United States
| | - Tom Schultz
- Biostatistics and Bioinformatics, Neogen GeneSeek Operations, Lincoln, NE, United States
| | - Stewart Bauck
- Biostatistics and Bioinformatics, Neogen GeneSeek Operations, Lincoln, NE, United States
| |
Collapse
|
16
|
Wang Y, Wu XL, Li Z, Bao Z, Tait RG, Bauck S, Rosa GJM. Estimation of Genomic Breed Composition for Purebred and Crossbred Animals Using Sparsely Regularized Admixture Models. Front Genet 2020; 11:576. [PMID: 32595700 PMCID: PMC7300184 DOI: 10.3389/fgene.2020.00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
A variety of statistical methods, such as admixture models, have been used to estimate genomic breed composition (GBC). These methods, however, tend to produce non-zero components to reference breeds that shared some genomic similarity with a test animal. These non-essential GBC components, in turn, offset the estimated GBC for the breed to which it belongs. As a result, not all purebred animals have 100% GBC of their respective breeds, which statistically indicates an elevated false-negative rate in the identification of purebred animals with 100% GBC as the cutoff. Otherwise, a lower cutoff of estimated GBC will have to be used, which is arbitrary, and the results are less interpretable. In the present study, three admixture models with regularization were proposed, which produced sparse solutions through suppressing the noise in the estimated GBC due to genomic similarities. The regularization or penalty forms included the L1 norm penalty, minimax concave penalty (MCP), and smooth clipped absolute deviation (SCAD). The performances of these regularized admixture models on the estimation of GBC were examined in purebred and composite animals, respectively, and compared to that of the non-regularized admixture model as the baseline model. The results showed that, given optimal values for λ, the three sparsely regularized admixture models had higher power and thus reduced the false-negative rate for the breed identification of purebred animals than the non-regularized admixture model. Of the three regularized admixture models, the two with a non-convex penalty outperformed the one with L1 norm penalty. In the Brangus, a composite cattle breed, estimated GBC were roughly comparable among the four admixture models, but all the four models underestimated the GBC for these composite animals when non-ancestral breeds were included as the reference. In conclusion, the admixture models with sparse regularization gave more parsimonious, consistent and interpretable results of estimated GBC for purebred animals than the non-regularized admixture model. Nevertheless, the utility of regularized admixture models for estimating GBC in crossbred or composite animals needs to be taken with caution.
Collapse
Affiliation(s)
- Yangfan Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, China.,Department of Animal Sciences, University of Wisconsin, Madison, WI, United States
| | - Xiao-Lin Wu
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States.,Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States
| | - Zhi Li
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States.,Department of Animal Science, University of Wyoming, Laramie, WY, United States
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Richard G Tait
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States
| | - Stewart Bauck
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
17
|
Li Z, Wu XL, Guo W, He J, Li H, Rosa GJM, Gianola D, Tait RG, Parham J, Genho J, Schultz T, Bauck S. Estimation of genomic breed composition of individual animals in composite beef cattle. Anim Genet 2020; 51:457-460. [PMID: 32239777 DOI: 10.1111/age.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 02/01/2023]
Abstract
Three statistical models (an admixture model, linear regression, and ridge-regression BLUP) and two strategies for selecting SNP panels (uniformly spaced vs. maximum Euclidean distance of SNP allele frequencies between ancestral breeds) were compared for estimating genomic-estimated breed composition (GBC) in Brangus and Santa Gertrudis cattle, respectively. Animals were genotyped with a GeneSeek Genomic Profiler bovine low-density version 4 SNP chip. The estimated GBC was consistent among the uniformly spaced SNP panels, and values were similar between the three models. However, estimated GBC varied considerably between the three methods when using fewer than 10 000 SNPs that maximized the Euclidean distance of allele frequencies between the ancestral breeds. The admixture model performed most consistently across various SNP panel sizes. For the other two models, stabilized estimates were obtained with an SNP panel size of 20 000 SNPs or more. Based on the uniformly spaced 20K SNP panel, the estimated GBC was 69.8-70.5% Angus and 29.5-30.2% Brahman for Brangus, and 63.9-65.3% Shorthorn and 34.7-36.1% Brahman in Santa Gertrudis. The estimated GBC of ancestries for Santa Gertrudis roughly agreed with the pedigree-expected values. However, the estimated GBC in Brangus showed a considerably larger Angus composition than the pedigree-expected value (62.5%). The elevated Angus composition in the Brangus could be due to the mixture of some 1/2 Ultrablack animals (Brangus × Angus). Another reason could be the consequences of selection in Brangus cattle for phenotypes where the Angus breed has advantages.
Collapse
Affiliation(s)
- Z Li
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, 68504, USA.,Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - X-L Wu
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, 68504, USA.,Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - W Guo
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - J He
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, 68504, USA.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - H Li
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, 68504, USA.,Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - G J M Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - D Gianola
- Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - R G Tait
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - J Parham
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - J Genho
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - T Schultz
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| | - S Bauck
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, 68504, USA
| |
Collapse
|
18
|
Paim TDP, Hay EHA, Wilson C, Thomas MG, Kuehn LA, Paiva SR, McManus C, Blackburn HD. Dynamics of genomic architecture during composite breed development in cattle. Anim Genet 2020; 51:224-234. [PMID: 31961956 PMCID: PMC7065137 DOI: 10.1111/age.12907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022]
Abstract
Some livestock breeds face the challenge of reduced genetic variation, increased inbreeding depression owing to genetic drift and selection. Hybridization can reverse these processes and increase levels of productivity and adaptation to various environmental stressors. Samples from American Brangus were used to evaluate the indicine/taurine composition through nine generations (~45 years) after the hybridization process was completed. The purpose was to determine how hybridization alters allelic combinations of a breed over time when genetic factors such as selection and drift are operating. Furthermore, we explored genomic regions with deviations from the expected composition from the progenitor breeds and related these regions to traits under selection. The Brangus composition deviated from the theoretical expectation, defined by the breed association, of 62.5% taurine, showing taurine composition to be 70.4 ± 0.6%. Taurine and indicine proportion were not consistent across chromosomes. Furthermore, these non‐uniform areas were found to be associated with traits that were probably under selection such as intermuscular fat and average daily gain. Interestingly, the sex chromosomes were predominantly taurine, which could be due to the composite being formed particularly in the final cross that resulted in progeny designated as purebred Brangus. This work demonstrated the process of new breed formation on a genomic level. It suggests that factors like genetic drift, selection and complementarity shift the genetic architecture into a uniquely different population. These findings are important to better understand how hybridization and crossbreeding systems shape the genetic architecture of composite populations.
Collapse
Affiliation(s)
- T do P Paim
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Avenida Oeste n. 350, Iporá, 76.200-000, Brazil.,Universidade de Brasília, Asa Norte, Campus Darcy Ribeiro, ICC Sul, Brasília, 70.910-900, Brazil
| | - E H A Hay
- US Department of Agriculture, Fort Keogh Livestock and Range Research Laboratory, Agricultural Research Service, 243 Fort Keogh Road, Miles City, 59301, USA
| | - C Wilson
- US Department of Agriculture, National Laboratory for Genetic Resources Preservation, Agricultural Research Service, National Animal Germplasm Program, 1111 S Mason St., Fort Collins, 80521, USA
| | - M G Thomas
- Department of Animal Sciences, Colorado State University, 350 W. Pitkin St., Fort Collins, 80523-1171, USA
| | - L A Kuehn
- US Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, 844 Rd 313, Clay Center, 68933, USA
| | - S R Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final) Caixa Postal 02372, Brasília, 70.770-917, Brazil
| | - C McManus
- Universidade de Brasília, Asa Norte, Campus Darcy Ribeiro, ICC Sul, Brasília, 70.910-900, Brazil
| | - H D Blackburn
- US Department of Agriculture, National Laboratory for Genetic Resources Preservation, Agricultural Research Service, National Animal Germplasm Program, 1111 S Mason St., Fort Collins, 80521, USA
| |
Collapse
|
19
|
Fan P, Bian B, Teng L, Nelson CD, Driver J, Elzo MA, Jeong KC. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. THE ISME JOURNAL 2020; 14:302-317. [PMID: 31624342 PMCID: PMC6908690 DOI: 10.1038/s41396-019-0529-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
Multiple synergistic factors affect the development and composition of mammalian gut microbiota, but effects of host genetics remain unclear. To illuminate the role of host genetics on gut microbiota, we employed animals with a graduated spectrum of genetic variation with minimal environmental influences. We bred 228 calves with linearly varying breed composition from 100% Angus (Bos taurus) to 100% Brahman (Bos indicus), as a proxy for genetic variation, and then raised the offspring in the same environment with identical diets. We hypothesized each breed would harbor distinct gut microbiota due to genetic influence. We found that the gut microbiota of preweaning calves at 3 months old is significantly affected by host genetics, profoundly by paternal genome. We also demonstrate that single nucleotide polymorphisms in host mucin-encoding genes, critical for gut mucosal health, are significantly correlated with both breed composition and mucin-degrading gut bacteria. We further demonstrate host genetics indirectly changes gut microbiota composition via microbe-microbe interactions. These findings indicate a strong contribution by host genetics in shaping the gut microbiota during early life stages, shedding light on impact of animal breeding on gut microbiota, which is associated with animal growth and health.
Collapse
Affiliation(s)
- Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Beilei Bian
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Lin Teng
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Corwin D Nelson
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - J Driver
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Mauricio A Elzo
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
20
|
Leal-Gutiérrez JD, Mateescu RG. Genetic basis of improving the palatability of beef cattle: current insights. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1616299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|