1
|
Kim J, Baek Y, Lee S. Consumption of dietary fiber and APOA5 genetic variants in metabolic syndrome: baseline data from the Korean Medicine Daejeon Citizen Cohort Study. Nutr Metab (Lond) 2024; 21:19. [PMID: 38581036 PMCID: PMC10998362 DOI: 10.1186/s12986-024-00793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Consumption of dietary fiber has been suggested as an important aspect of a healthy diet to reduce the risk of metabolic syndrome (MetS), including cardiovascular disease. The role of fiber intake in MetS might differ by individual genetic susceptibility. APOA5 encodes a regulator of plasma triglyceride levels, which impacts the related mechanisms of MetS. This study investigated the association between dietary fiber and the risk of MetS, assessing their associations according to APOA5 genetic variants. METHODS A total of 1985 participants aged 30-55 years were included from a cross-sectional study based on the Korean Medicine Daejeon Citizen Cohort study at baseline (2017-2019). Dietary fiber intake was measured using a semiquantitative food frequency questionnaire. The APOA5 polymorphisms (rs2266788 A > G, rs662799 A > G, and rs651821 T > C) were genotyped using the Asia Precision Medicine Research Array. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS A higher consumption of dietary fiber was associated with a lower prevalence of MetS (P = 0.025). Among the components of MetS, an inverse association with dietary fiber was observed in increased waist circumference (OR, 95% CI = 0.60, 0.41-0.88, P for trend = 0.009) and elevated triglycerides (OR, 95% CI = 0.69, 0.50-0.96, P for trend = 0.012). Regarding the interaction with APOA5 genetic variants, a stronger association with dietary fiber intake was shown in G allele carriers of rs662799 than in A/A carriers (OR, 95% CI = 2.34, 1.59-3.44, P for interaction = 0.024) and in C allele carriers of rs651821 than in T/T carriers (OR, 95% CI = 2.35, 1.59-3.46, P for interaction = 0.027). CONCLUSIONS The findings of this study suggest that the benefits of dietary fiber on the risk of MetS could be modified by genetic variants of the APOA5 gene, providing a more effective strategy for preventing MetS.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Food and Nutrition, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, 51140, Changwon, Gyeongnam, South Korea
| | - Younghwa Baek
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, 34054, Daejeon, South Korea
| | - Siwoo Lee
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, 34054, Daejeon, South Korea.
| |
Collapse
|
2
|
Al-Bustan SA, Alrashid MH, Al-Serri AE, Annice BG, Bahbahani HM. Sequence Variant Analysis of the APOCII Locus among an Arab Cohort. Int J Mol Sci 2023; 24:16293. [PMID: 38003484 PMCID: PMC10671382 DOI: 10.3390/ijms242216293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Apolipoprotein CII (ApocII) plays a key role in regulating lipoprotein lipase (LPL) in lipid metabolism and transport. Numerous polymorphisms within APOCII are reportedly associated with type 2 diabetes mellitus (T2DM), dyslipidemia, and aberrant plasma lipid levels. Few studies have investigated sequence variants at APOCII loci and their association with metabolic disorders. This study aimed to identify and characterize genetic variants by sequencing the full APOCII locus and its flanking sequences in a sample of the Kuwaiti Arab population, including patients with T2DM, hypertriglyceridemia, non-Arab patients with T2DM, and healthy Arab controls. A total of 52 variants were identified in the noncoding sequences: 45 single nucleotide polymorphisms, wherein five were novel, and seven insertion deletions. The minor allele frequency (MAF) of the 47 previously reported variants was similar to the global MAF and to that reported in major populations. Sequence variant analysis predicted a conserved role for APOCII with a potential role for rs5120 in T2DM and rs7133873 as an informative ethnicity marker. This study adds to the ongoing research that attempts to identify ethnicity-specific variants in the apolipoprotein gene loci and associated LPL genes to elucidate the molecular mechanisms of metabolic disorders.
Collapse
Affiliation(s)
- Suzanne A. Al-Bustan
- Department of Biological Sciences, College of Science, Kuwait University, Farwaniya 85700, Kuwait; (M.H.A.); (B.G.A.); (H.M.B.)
| | - Maryam H. Alrashid
- Department of Biological Sciences, College of Science, Kuwait University, Farwaniya 85700, Kuwait; (M.H.A.); (B.G.A.); (H.M.B.)
| | - Ahmad E. Al-Serri
- Unit of Human Genetics, Department of Pathology, Faculty of Medicine, Kuwait University, Hawally 46300, Kuwait;
| | - Babitha G. Annice
- Department of Biological Sciences, College of Science, Kuwait University, Farwaniya 85700, Kuwait; (M.H.A.); (B.G.A.); (H.M.B.)
| | - Hussain M. Bahbahani
- Department of Biological Sciences, College of Science, Kuwait University, Farwaniya 85700, Kuwait; (M.H.A.); (B.G.A.); (H.M.B.)
| |
Collapse
|
3
|
Alipour N, Kazemnejad A, Akbarzadeh M, Eskandari F, Zahedi AS, Daneshpour MS. Regularized Machine Learning Models for Prediction of Metabolic Syndrome Using GCKR, APOA5, and BUD13 Gene Variants: Tehran Cardiometabolic Genetic Study. CELL JOURNAL 2023; 25:536-545. [PMID: 37641415 PMCID: PMC10542204 DOI: 10.22074/cellj.2023.2000864.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Metabolic syndrome (MetS) is a complex multifactorial disorder that considerably burdens healthcare systems. We aim to classify MetS using regularized machine learning models in the presence of the risk variants of GCKR, BUD13 and APOA5, and environmental risk factors. MATERIALS AND METHODS A cohort study was conducted on 2,346 cases and 2,203 controls from eligible Tehran Cardiometabolic Genetic Study (TCGS) participants whose data were collected from 1999 to 2017. We used different regularization approaches [least absolute shrinkage and selection operator (LASSO), ridge regression (RR), elasticnet (ENET), adaptive LASSO (aLASSO), and adaptive ENET (aENET)] and a classical logistic regression (LR) model to classify MetS and select influential variables that predict MetS. Demographics, clinical features, and common polymorphisms in the GCKR, BUD13 and APOA5 genes of eligible participants were assessed to classify TCGS participant status in MetS development. The models' performance was evaluated by 10-repeated 10-fold crossvalidation. Various assessment measures of sensitivity, specificity, classification accuracy, and area under the receiver operating characteristic curve (AUC-ROC) and AUC-precision-recall (AUC-PR) curves were used to compare the models. RESULTS During the follow-up period, 50.38% of participants developed MetS. The groups were not similar in terms of baseline characteristics and risk variants. MetS was significantly associated with age, gender, schooling years, body mass index (BMI), and alternate alleles in all the risk variants, as indicated by LR. A comparison of accuracy, AUCROC, and AUC-PR metrics indicated that the regularization models outperformed LR. Regularized machine learning models provided comparable classification performances, whereas the aLASSO model was more parsimonious and selected fewer predictors. CONCLUSION Regularized machine learning models provided more accurate and parsimonious MetS classifying models. These high-performing diagnostic models can lay the foundation for clinical decision support tools that use genetic and demographical variables to locate individuals at high risk for MetS.
Collapse
Affiliation(s)
- Nadia Alipour
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Eskandari
- Department of Statistics, Faculty of Statistics, Mathematics and Computer, Allameh Tabataba'i University, Tehran, Iran
| | - Asiyeh Sadat Zahedi
- Cellular and Molecular Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Lopes-Araújo A, Arrifano GP, Macchi BM, Augusto-Oliveira M, Santos-Sacramento L, Rodríguez Martín-Doimeadios RC, Jiménez-Moreno M, Martins Filho AJ, Alvarez-Leite JI, Oriá RB, do Nascimento JLM, Crespo-Lopez ME. Hair mercury is associated with dyslipidemia and cardiovascular risk: An anthropometric, biochemical and genetic cross-sectional study of Amazonian vulnerable populations. ENVIRONMENTAL RESEARCH 2023; 229:115971. [PMID: 37105291 DOI: 10.1016/j.envres.2023.115971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
This cross-sectional study evaluated the association between human exposure to mercury and cardiovascular risk using lipid profile (including apolipoproteins) and genetic analysis of Amazonian riverine population. Anthropometric data (gender, age, height, weight, blood pressure, and neck and waist circumferences) of the participants were recorded. Total mercury and methylmercury (MeHg) content were quantified in hair by ICP-MS and GC-pyro-AFS system. Polymorphisms rs662799, rs693, rs429358 and rs7412 (of genes of apolipoproteins A-V, B, and E at positions 112 and 158, respectively) were genotyped by real-time PCR. The population presented a dyslipidemia profile significantly correlated with high mercury levels. The apolipoprotein B/apolipoprotein A-I (ApoB/ApoA-I) index was also positively correlated with mercury, supporting a possible causal relationship. Allelic distributions were similar to those described in other populations, suggesting that genetic susceptibility may not have a significant role in the lipid alterations found in this work. This study demonstrated for the first time: i) the relationship between mercury exposure and cardiovascular risk-related apolipoproteins in humans, ii) the ApoB levels and the ApoB/ApoA-I index as the risk factors more strongly associated to the mercury-related dyslipidemia in humans, and iii) the prevalence of high/moderate risk of acute myocardial infarction in the vulnerable and chronically exposed-populations of the Amazon, in addition to the genotypic profile of the three most frequent polymorphisms in apolipoproteins of relevance for cardiovascular risk. This early detection of lipid alterations is essential to prevent the development of cardiovascular diseases (CVD), especially in chronically exposed populations such as those found in the Amazon. Therefore, in addition to provide data for the Minamata Convention implementation, our work is in line with the efforts joined by all members of the World Health Organization committed to reducing premature deaths originating from non-communicable diseases by 25% in 2025, including CVD.
Collapse
Affiliation(s)
- Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil.
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
| | - Barbarella M Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
| | - Letícia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
| | - Rosa C Rodríguez Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - María Jiménez-Moreno
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | | | | | - Reinaldo B Oriá
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos. Departamento de Morfologia e Instituto de Biomedicina, Escola de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - José Luiz M do Nascimento
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil.
| |
Collapse
|
5
|
Fatma R, Chauhan W, Riyaz S, Rasheed K, Afzal M. Genetic association analysis of rs662799 ( − 1131A > G) polymorphism of APOA5 gene with morphometric and physio-metric traits using multiplex PCR. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Abstract
Background
The apolipoprotein A5 (APOA5) gene, significantly expressed in liver, has been involved in regulation of triglyceride metabolism, plasma lipid levels, serum adipokine levels and cardiovascular traits. A single-nucleotide polymorphism rs662799 ( − 1131A > G), 2 Kb upstream in the promoter region of this gene, causes decrease in the concentration of the product coded by this gene; hence, it may be responsible for impairments in normal function of the gene, ultimately leading to disease condition. Keeping in view the importance of APOA5 gene, the aim of the present study was to examine the association of genetic variant rs662799 of APOA5 gene with two quantitative traits simultaneously, viz. body mass index and blood pressure.
Results
The study involved a population of 246 subjects from North Indian region. Measurements of morphometric and physio-metric parameters were recorded using standard measures. Genotyping of APOA5 gene polymorphism (rs662799) using Tetra-primer amplification refractory mutation system PCR was performed. Statistical analyses were carried out using MS-Excel and SigmaPlot, and significance level was setup as p < 0.05. The allelic distribution of rs662799 polymorphism in this population was 77% for major allele (A) and 23% for minor allele (G). Significant association of rs662799 with increased body mass index and blood pressure was observed, with the presence of allele G. Under recessive genetic model, rs662799 polymorphism conferred a 17.71-fold risk of elevated body mass index (OR = 17.71, p < 0.001, CI (95%) = 4.05–77.46), and for increase in blood pressure, 3.79- and 3.83-fold risk of systolic blood pressure and diastolic blood pressure (OR = 3.792, p = 0.023, CI (95%) = 1.25–11.509 and OR = 3.83, p = 0.012, CI (95%) = 1.375–10.68, respectively) was observed. Under dominant genetic model, it showed a 3.060-fold risk of increase in body mass index (OR = 3.060, p < 0.001, CI (95%) = 1.78–5.25).
Conclusions
G allele of rs662799 of APOA5 gene showed significant susceptible association with BMI and BP. This study may be helpful for clinicians and researchers to investigate the diagnostic and prognostic value of the gene in question.
Collapse
|
6
|
Risk prediction of the metabolic syndrome using TyG Index and SNPs: a 10-year longitudinal prospective cohort study. Mol Cell Biochem 2023; 478:39-45. [PMID: 35710684 DOI: 10.1007/s11010-022-04494-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/01/2022] [Indexed: 01/22/2023]
Abstract
TyG (triglyceride and glucose) index using triglyceride and fasting blood glucose is recommended as a useful marker for insulin resistance. To clarify whether the TyG index is a marker for predicting metabolic syndrome (MetS) and to investigate the importance of single-nucleotide polymorphisms (SNPs) in MetS diagnosis. From 2001 to 2014, a longitudinal prospective cohort study of 3580 adults aged 40-70 years was conducted. The area under the receiver operating characteristic curves (AUROC) and Youden index (YI) was calculated to assess the diagnostic value. During the 14-year follow-up, 1270 subjects developed MetS. Five SNPs in four genes (BUD13 rs10790162, ZPR1 rs2075290, APOA5 rs2266788, APOA5 rs2075291, and MKL1 rs4507196) significantly correlated with susceptibility to MetS (p < 0.00005). The areas under the curve of TyG index and HOMA-IR were 0.854 (95% confidence interval [CI], 0.841-0.867) and 0.702 (95% CI, 0.684-0.721), respectively. Despite no statistical significance, AUROC and YI were increased when MetS was diagnosed using TyG index and the five SNPs. TyG index might be useful for identifying individuals at high risk of developing MetS. The combination of TyG index and SNPs showed better diagnostic accuracy than TyG index alone, indicating the potential value of novel SNPs for MetS diagnosis.
Collapse
|
7
|
A Clinical Case of a Homozygous Deletion in the APOA5 Gene with Severe Hypertriglyceridemia. Genes (Basel) 2022; 13:genes13061062. [PMID: 35741823 PMCID: PMC9222921 DOI: 10.3390/genes13061062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Hypertriglyceridemia (HTG) is one of the most common forms of lipid metabolism disorders. The leading clinical manifestations are pancreatitis, atherosclerotic vascular lesions, and the formation of eruptive xanthomas. The most severe type of HTG is primary (or hereditary) hypertriglyceridemia, linked to pathogenic genetic variants in LPL, APOC2, LMF1, and APOA5 genes. Case: We present a clinical case of severe primary hypertriglyceridemia (TG level > 55 mmol/L in a 4-year-old boy) in a consanguineous family. The disease developed due to a previously undescribed homozygous deletion in the APOA5 gene (NM_052968: c.579_592delATACGCCGAGAGCC p.Tyr194Gly*68). We also evaluate the clinical significance of a genetic variant in the LPL gene (NM_000237.2: c.106G>A (rs1801177) p.Asp36Asn), which was previously described as a polymorphism. In one family, we also present a different clinical significance even in heterozygous carriers: from hypertriglyceridemia to normotriglyceridemia. We provide evidence that this heterogeneity has developed due to polymorphism in the LPL gene, which plays the role of an additional trigger. Conclusions: The homozygous deletion of the APOA5 gene is responsible for the severe hypertriglyceridemia, and another SNP in the LPL gene worsens the course of the disease.
Collapse
|
8
|
Jurado-Camacho PA, Cid-Soto MA, Barajas-Olmos F, García-Ortíz H, Baca-Peynado P, Martínez-Hernández A, Centeno-Cruz F, Contreras-Cubas C, González-Villalpando ME, Saldaña-Álvarez Y, Salas-Martinez G, Mendoza-Caamal EC, González-Villalpando C, Córdova EJ, Orozco L. Exome Sequencing Data Analysis and a Case-Control Study in Mexican Population Reveals Lipid Trait Associations of New and Known Genetic Variants in Dyslipidemia-Associated Loci. Front Genet 2022; 13:807381. [PMID: 35669185 PMCID: PMC9164108 DOI: 10.3389/fgene.2022.807381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Plasma lipid levels are a major risk factor for cardiovascular diseases. Although international efforts have identified a group of loci associated with the risk of dyslipidemia, Latin American populations have been underrepresented in these studies.Objective: To know the genetic variation occurring in lipid-related loci in the Mexican population and its association with dyslipidemia.Methods: We searched for single-nucleotide variants in 177 lipid candidate genes using previously published exome sequencing data from 2838 Mexican individuals belonging to three different cohorts. With the extracted variants, we performed a case-control study. Logistic regression and quantitative trait analyses were implemented in PLINK software. We used an LD pruning using a 50-kb sliding window size, a 5-kb window step size and a r2 threshold of 0.1.Results: Among the 34251 biallelic variants identified in our sample population, 33% showed low frequency. For case-control study, we selected 2521 variants based on a minor allele frequency ≥1% in all datasets. We found 19 variants in 9 genes significantly associated with at least one lipid trait, with the most significant associations found in the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster on chromosome 11. Notably, all 11 variants associated with hypertriglyceridemia were within this cluster; whereas variants associated with hypercholesterolemia were located at chromosome 2 and 19, and for low high density lipoprotein cholesterol were in chromosomes 9, 11, and 19. No significant associated variants were found for low density lipoprotein. We found several novel variants associated with different lipemic traits: rs3825041 in BUD13 with hypertriglyceridemia, rs7252453 in CILP2 with decreased risk to hypercholesterolemia and rs11076176 in CETP with increased risk to low high density lipoprotein cholesterol.Conclusions: We identified novel variants in lipid-regulation candidate genes in the Mexican population, an underrepresented population in genomic studies, demonstrating the necessity of more genomic studies on multi-ethnic populations to gain a deeper understanding of the genetic structure of the lipemic traits.
Collapse
Affiliation(s)
- Pedro A. Jurado-Camacho
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
- Posgraduate in Biomedical Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Miguel A. Cid-Soto
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Humberto García-Ortíz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Paulina Baca-Peynado
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
- Posgraduate in Biomedical Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Federico Centeno-Cruz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - María Elena González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigación en Diabetes y Riesgo Cardiovascular, Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Mexico City, Mexico
| | - Yolanda Saldaña-Álvarez
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Guadalupe Salas-Martinez
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | | | - Clicerio González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigación en Diabetes y Riesgo Cardiovascular, Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Mexico City, Mexico
| | - Emilio J. Córdova
- Oncogenomics Consortium Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
- *Correspondence: Emilio J. Córdova, ; Lorena Orozco,
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
- *Correspondence: Emilio J. Córdova, ; Lorena Orozco,
| |
Collapse
|
9
|
Park JB, Shin E, Lee JE, Lee SJ, Lee H, Choi SY, Choe EK, Choi SH, Park HE. Genetic Determinants of Visit-to-Visit Lipid Variability: Genome-Wide Association Study in Statin-Naïve Korean Population. Front Cardiovasc Med 2022; 9:811657. [PMID: 35174233 PMCID: PMC8842998 DOI: 10.3389/fcvm.2022.811657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Aim There is a growing evidence that fluctuation in lipid profiles is important in cardiovascular outcomes. We aimed to identify single nucleotide polymorphism (SNP) variants associated with low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C) variability in statin-naïve Korean subjects and evaluate their associations with coronary atherosclerosis. Methods In statin-naïve subjects from Gene-Environment of Interaction and phenotype cohort, we performed genome-wide association studies of lipid variability; the discovery (first) and replication (second) sets included 4,287 and 1,086 subjects, respectively. Coronary artery calcium (CAC) score and degree of coronary artery stenosis were used as outcome measures. Cholesterol variability was determined by standard deviation and average successive variability, and significant coronary atherosclerosis was defined as CAC score ≥400 or coronary stenosis ≥70%. Results Mean HDL-C and LDL-C level were 54 ± 12 and 123 ± 30 mg/dL in the first set and 53 ± 12 and 126 ± 29 mg/dL in the second set. APOA5 rs662799 and APOA5 rs2266788 were associated with LDL-C variability and PXDNL rs80056520, ALDH2 rs671, HECTD4 rs2074356, and CETP rs2303790 were SNPs associated for HDL-C variability. APOA5 rs662799 passed Bonferroni correction with p-value of 1.789 × 10−9. Among the SNPs associated with cholesterol variability, rs80056520 and rs2266788 variants were associated with CACS ≥400 and coronary stenosis ≥70% and rs662799 variant was associated with coronary stenosis ≥70%. Conclusion Two SNPs associated with LDL-C variability (APOA5 rs662799 and rs2266788) and one SNP associated with HDL-C variability (PXDNL rs80056520) were significantly associated with advanced coronary artery stenosis. Combining GWAS results with imaging parameters, our study may provide a deeper understanding of underlying pathogenic basis of the link between lipid variability and coronary atherosclerosis.
Collapse
Affiliation(s)
- Jun-Bean Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | - Heesun Lee
- Division of Cardiology, Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
| | - Su-Yeon Choi
- Division of Cardiology, Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
| | - Eun Kyung Choe
- Department of Surgery, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
| | - Seung Ho Choi
- Division of Pulmonology, Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
| | - Hyo Eun Park
- Division of Cardiology, Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
- *Correspondence: Hyo Eun Park ;
| |
Collapse
|
10
|
Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep. PLoS One 2021; 16:e0260514. [PMID: 34941886 PMCID: PMC8699643 DOI: 10.1371/journal.pone.0260514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Fatty acids (FA) in ruminants, especially unsaturated FA (USFA) have important impact in meat quality, nutritional value, and flavour quality of meat, and on consumer’s health. Identification of the genetic factors controlling the FA composition and metabolism is pivotal to select sheep that produce higher USFA and lower saturated (SFA) for the benefit of sheep industry and consumers. Therefore, this study was aimed to investigate the transcriptome profiling in the liver tissues collected from sheep with divergent USFA content in longissimus muscle using RNA deep-sequencing. From sheep (n = 100) population, liver tissues with higher (n = 3) and lower (n = 3) USFA content were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample were ranged from 21.28 to 28.51 million with a median of 23.90 million. Approximately, 198 genes were differentially regulated with significance level of p-adjusted value <0.05. Among them, 100 genes were up-regulated, and 98 were down-regulated (p<0.01, FC>1.5) in the higher USFA group. A large proportion of key genes involved in FA biosynthesis, adipogenesis, fat deposition, and lipid metabolism were identified, such as APOA5, SLC25A30, GFPT1, LEPR, TGFBR2, FABP7, GSTCD, and CYP17A. Pathway analysis revealed that glycosaminoglycan biosynthesis- keratan sulfate, adipokine signaling, galactose metabolism, endocrine and other factors-regulating calcium metabolism, mineral metabolism, and PPAR signaling pathway were playing important regulatory roles in FA metabolism. Importantly, polymorphism and association analyses showed that mutation in APOA5, CFHR5, TGFBR2 and LEPR genes could be potential markers for the FA composition in sheep. These polymorphisms and transcriptome networks controlling the FA variation could be used as genetic markers for FA composition-related traits improvement. However, functional validation is required to confirm the effect of these SNPs in other sheep population in order to incorporate them in the sheep breeding program.
Collapse
|
11
|
Lim ZW, Chen WL. Polymorphism rs10105606 of LPL as a Novel Risk Factor for Microalbuminuria. J Inflamm Res 2021; 14:6833-6844. [PMID: 34934334 PMCID: PMC8684407 DOI: 10.2147/jir.s338010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction An important clinical feature of metabolic syndrome is abdominal obesity. Microalbuminuria is important in predicting the risk of cardiovascular and renal complications in abdominal obesity patients. However, the association between microalbuminuria polymorphism and abdominal obesity has not been conducted. The objective of this study is to analyze the genetic polymorphism of microalbuminuria in participants with metabolically unhealthy obesity (MUO). Methods Among 1325 MUO participants, we identified genomic loci underlying those with microalbuminuria, compared to those without microalbuminuria. Single nucleotide polymorphisms (SNPs) were selected with P < 1 × 10−5 from the Manhattan plot. Multivariable linear regression and analysis of variance were used to analyze the association between different SNP genotypes and microalbuminuria. Results The analysis showed homozygous participants for the risk allele A of rs10105606 and Affx-31885823 had 1.978-fold risk and 1.921-fold increased risk of microalbuminuria, respectively. Heterozygous distribution of rs117180252, rs10105606, and Affx-31885823 also increased the risk of microalbuminuria compared to the wild type. Further analysis showed Lipoprotein lipase (LPL), RN7SL87P, and RPL30P9 were the candidate genes associated with lipid metabolism and abdominal obesity. Conclusion In conclusion, LPL, RN7SL87P, and RPL30P9 minor allele carriers with abdominal obesity are more susceptible to microalbuminuria, explaining the inter-individual differences of microalbuminuria in MUO patients.
Collapse
Affiliation(s)
- Zhu Wei Lim
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan, Republic of China
| | - Wei Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
12
|
Masjoudi S, Sedaghati-Khayat B, Givi NJ, Bonab LNH, Azizi F, Daneshpour MS. Kernel machine SNP set analysis finds the association of BUD13, ZPR1, and APOA5 variants with metabolic syndrome in Tehran Cardio-metabolic Genetics Study. Sci Rep 2021; 11:10305. [PMID: 33986338 PMCID: PMC8119714 DOI: 10.1038/s41598-021-89509-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic syndrome (MetS) is one of the most important risk factors for cardiovascular disease. The 11p23.3 chromosomal region plays a potential role in the pathogenesis of MetS. The present study aimed to assess the association between 18 single nucleotide polymorphisms (SNPs) located at the BUD13, ZPR1, and APOA5 genes with MetS in the Tehran Cardio-metabolic Genetics Study (TCGS). In 5421 MetS affected and non-affected participants, we analyzed the data using two models. The first model (MetS model) examined SNPs' association with MetS. The second model (HTg-MetS Model) examined the association of SNPs with MetS affection participants who had a high plasma triglyceride (TG). The four-gamete rules were used to make SNP sets from correlated nearby SNPs. The kernel machine regression models and single SNP regression evaluated the association between SNP sets and MetS. The kernel machine results showed two sets over three sets of correlated SNPs have a significant joint effect on both models (p < 0.0001). Also, single SNP regression results showed that the odds ratios (ORs) for both models are almost similar; however, the p-values had slightly higher significance levels in the HTg-MetS model. The strongest ORs in the HTg-MetS model belonged to the G allele in rs2266788 (MetS: OR = 1.3, p = 3.6 × 10–7; HTg-MetS: OR = 1.4, p = 2.3 × 10–11) and the T allele in rs651821 (MetS: OR = 1.3, p = 2.8 × 10–7; HTg-MetS: OR = 1.4, p = 3.6 × 10–11). In the present study, the kernel machine regression models could help assess the association between the BUD13, ZPR1, and APOA5 gene variants (11p23.3 region) with lipid-related traits in MetS and MetS affected with high TG.
Collapse
Affiliation(s)
- Sajedeh Masjoudi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box 19195-4763, Tehran, Iran
| | - Bahareh Sedaghati-Khayat
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box 19195-4763, Tehran, Iran
| | - Niloufar Javanrouh Givi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box 19195-4763, Tehran, Iran
| | - Leila Najd Hassan Bonab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box 19195-4763, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box 19195-4763, Tehran, Iran.
| |
Collapse
|
13
|
Park S, Kang S. Alcohol, Carbohydrate, and Calcium Intakes and Smoking Interactions with APOA5 rs662799 and rs2266788 were Associated with Elevated Plasma Triglyceride Concentrations in a Cross-Sectional Study of Korean Adults. J Acad Nutr Diet 2020; 120:1318-1329.e1. [PMID: 32335043 DOI: 10.1016/j.jand.2020.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Plasma triglyceride (TG) concentrations are markedly higher among Asians, which may be associated with the interaction of genetics and lifestyle factors. OBJECTIVE The purpose of this study was to investigate the genetic variants that have a strong association with plasma TG concentrations from genome-wide association study and to identify lifestyle interactions with the genetic variants that are associated with dyslipidemia in a cohort of Korean adults. DESIGN Korean genome and epidemiology study utilized a cross-sectional design of Koreans to determine genetic variants and lifestyle factors, including nutrient intakes, in a retrospective hospital-based city cohort conducted by the Korean Center for Disease and Control during 2004-2013. PARTICIPANTS Korean adults aged 40 to 77 years were participants (n=28,445). MAIN OUTCOME MEASURES The genetic variants that influence plasma TG concentrations were selected by genome-wide association study using an allele genetic model after adjusting for age, sex, area of residence, and body mass index. Lipid profiles and nutrient intakes from food frequency questionnaires were measured. The interactions between the single nucleotide polymorphisms and lifestyle factors were determined to influence plasma TG levels. RESULTS Carrying the minor alleles of APOA5 rs662799 and rs2266788 had an association with higher plasma TG concentrations by 1.86- and 1.51-fold, respectively, compared with those with the major allele (P=8.89E-150 and P=4.75E-68, respectively). Sex had an interaction with these single nucleotide polymorphisms, with males having higher plasma TG concentrations. The single nucleotide polymorphisms had significant interactions with carbohydrate, fat, and calcium intakes; alcohol consumption; and smoking status that were associated with plasma TG concentrations. Carriers with the minor allele of each single nucleotide polymorphisms had higher plasma TG concentrations when consuming-low fat (<15%) and high carbohydrate (≥72%) diets than those with major alleles. Carriers of the minor alleles with low calcium intakes (<500 mg/day) experienced elevated plasma TG concentrations compared with carriers of the major alleles. Smokers and alcohol drinkers with either of the minor alleles of APOA5, rs662799 or rs2266788, had higher plasma TG concentrations than those with its major allele. CONCLUSIONS These results indicated that carrying the minor alleles of APOA5 rs662799 and rs2266788, especially for men, was associated with elevated TG concentrations and suggested that Korean carriers of the minor alleles could be at increased risk of hypertriglyceridemia. Further research is needed to investigate the efficacy of modulating lifestyle factors to prevent dyslipidemia in people carrying the minor alleles of APOA5 rs662799 and rs2266788.
Collapse
|