1
|
Zhang H, Fan K, Zhang Z, Guo Y, Mo X. Genome-wide identification of cell type-specific susceptibility genes for Juvenile dermatomyositis through the analysis of N 6-methyladenosine-associated SNPs. Autoimmunity 2024; 57:2419117. [PMID: 39447013 DOI: 10.1080/08916934.2024.2419117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Genome-wide association studies (GWASs) have pinpointed genetic loci associated with juvenile dermatomyositis (JDM). Functional genes within the GWAS loci may be cell type-specific, but their identity remains largely unknown. N6-methyladenosine (m6A) plays a pivotal role in regulating various cellular processes and is linked to autoimmune diseases. This study aimed to underscore the potential functional genes within the GWAS loci through the analysis of m6A-associated SNPs (m6A-SNPs), specifically within relevant cell types. JDM-associated m6A-SNPs were identified from the GWAS summary dataset. The correlation between m6A-SNPs and gene expression was assessed through bulk tissue and single-cell eQTL analyses. To further investigate the relationship between gene expression and JDM, Mendelian randomization analysis was employed. Additionally, differential expression analyses were conducted on bulk tissues, as well as single-cell transcriptomic data comprising 6 JDM patients and 11 juvenile controls (99,396 cells). Seven m6A-SNPs associated with JDM were identified. Bulk tissue analysis revealed differential expression of HLA-DPA1, HLA-DPB1, MICB, HLA-A, HLA-F, HLA-DQB2, HLA-DRB5, TAP2, PSMB9, MICA, AIF1, and DDX39B influenced by m6A-SNPs, all showing associations with JDM in both differential expression and Mendelian randomization analyses. In single-cell analysis, the six m6A-SNPs within the HLA locus acted as cell-type-specific eQTLs, correlating with the expression of HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1 in myeloid, T or B cells. Notably, these genes displayed abnormal expression in T, B, and myeloid cells of JDM patients. The present study identified m6A-SNPs within JDM susceptibility genes, shedding light on the intricate interplay between m6A-SNPs, gene expression, and JDM.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Kedi Fan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Zhentao Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Yufan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| |
Collapse
|
2
|
Su Y, Wu Z, Liu Y, Liu X, Kang J, Jia J, Zhang L. Increased m6A RNA methylation and METTL3 expression may contribute to the synovitis progression of rheumatoid arthritis. Exp Cell Res 2024; 442:114237. [PMID: 39245197 DOI: 10.1016/j.yexcr.2024.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and progressive bone destruction. The tumor-like growth of fibroblast-like synoviocytes (FLSs) plays a crucial role in the pathogenesis of RA. The N6 methyladenine (m6A) mRNA methylation modification, regulated by methyltransferases (METTL3) and demethylation enzymes, is a novel epigenetic regulator in the development of RA. However, there is limited research on m6A methylation modifications in RA synovitis and a lack of mechanistic studies on their impact on the function of RA-FLSs. METHODS This study utilized clinical synovial tissue specimens and FLSs as research subjects. The m6A methylation level and the expression of methyltransferases and demethylation enzymes were detected. RNA interference and gene overexpression methods were employed to investigate the mechanism of METTL3 in RA-FLSs. The study also examined the proliferation, apoptosis, migration, invasion, and cytokine levels of RA-FLSs, as well as the expression of METTL3 in RA animal models. RESULTS In this study, we found that m6A methylation levels were elevated in synovial tissues and FLSs of RA patients. Immunohistochemical staining showed that METTL3 and METTL14 levels were up-regulated in synovial tissues of RA, the mRNA levels of METTL3, METTL14, WTAP, FTO, and ALKBH5 were significantly higher in synovial tissues and FLSs of RA patients. Overexpression of METTL3 could promote the proliferation, migration, and secretion of IL-6, RANKL of RA-FLSs; inhibition of METTL3 expression could inhibit the abnormal proliferation, migration, invasion, and secretion of IL-6, RANKL, at the same time promoted the apoptosis and secretion of OPG, thus inhibited RA-FLSs tumor-like growth. In CIA mice, the use of MTX and STM2457 reduced METTL3 expression, synovial hyperplasia and bone destruction. CONCLUSION Abnormal modification of m6A methylation exists in synovial tissues and FLSs of RA patients, and inhibition of METTL3 can reduce synovitis and bone destruction. Our findings suggest that m6A methylation might control FLS-mediated tumor-like phenotype, and be a novel target for RA treatment.
Collapse
Affiliation(s)
- Yazhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China; Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China; Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China; Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
| | - Xinling Liu
- Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China; Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
| | - Junqing Jia
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China; Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China.
| |
Collapse
|
3
|
Chen H, Xuan A, Shi X, Fan T, Xue S, Ruan J, Wang X, Tang S, Qi W, Sun H, Liu C, He S, Ding C, Zhu Z. RNA N6-methyladenosine modification in arthritis: New insights into pathogenesis. Mod Rheumatol 2024:roae080. [PMID: 39235765 DOI: 10.1093/mr/roae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
The commonest type of eukaryotic RNA modification, N6-methyladenosine (m6A), has drawn increased scrutiny in the context of pathological functioning as well as relevance in determination of RNA stability, splicing, transportation, localization, and translation efficiency. The m6A modification plays an important role in several types of arthritis, especially osteoarthritis and rheumatoid arthritis. Recent studies have reported that m6A modification regulates arthritis pathology in cells, such as chondrocytes and synoviocytes via immune responses and inflammatory responses through functional proteins classified as writers, erasers, and readers. The aim of this review was to highlight recent advances relevant to m6A modification in the context of arthritis pathogenesis and detail underlying molecular mechanisms, regulatory functions, clinical applications, and future perspectives of m6A in arthritis with the aim of providing a foundation for future research directions.
Collapse
Affiliation(s)
- Haowei Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anran Xuan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaorui Shi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Song Xue
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhong Qi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Canzhao Liu
- Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Chen Y, Liu M, Lu M, Luo L, Han Z, Liu X. Exploring the impact of m 6A modification on immune diseases: mechanisms and therapeutic implication. Front Immunol 2024; 15:1387582. [PMID: 39072324 PMCID: PMC11272477 DOI: 10.3389/fimmu.2024.1387582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
N6-methyladenosine (m6A) is a chemical modification of RNA and has become a widely discussed topic among scientific researchers in recent years. It is distributed in various organisms, including eukaryotes and bacteria. It has been found that m6A is composed of writers, erasers and readers and is involved in biological functions such as splicing, transport and translation of RNA. The balance of the human immune microenvironment is important for human health abnormalities. Increasing studies have found that m6A affects the development of immune diseases such as inflammatory enteritis and systemic lupus erythematosus (SLE) by participating in the homeostatic regulation of the immune microenvironment in vivo. In this manuscript, we introduce the composition, biological function, regulation of m6A in the immune microenvironment and its progression in various immune diseases, providing new targets and directions for the treatment of immune diseases in clinical practice.
Collapse
Affiliation(s)
- Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Miao Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linling Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xide Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Ban Z, Li Z, Xing S, Ye Y. IGF2BP3 regulates the expression of RRM2 and promotes the progression of rheumatoid arthritis via RRM2/Akt/MMP-9 pathway. PLoS One 2024; 19:e0303593. [PMID: 38820515 PMCID: PMC11142689 DOI: 10.1371/journal.pone.0303593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/28/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common inflammatory and autoimmune disease. Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) is a crucial and a rate-limiting enzyme responsible for deoxynucleotide triphosphate(dNTP) production. We have found a high expression level of RRM2 in patients with RA, but the molecular mechanism of its action remains unclear. METHODS We analyzed the expression of hub genes in RA using GSE77298 datasets downloaded from Gene Expression Omnibus database. RRM2 and insulin-like growth factor-2 messenger ribonucleic acid (mRNA)-binding protein 3 (IGF2BP3) gene knockdown was achieved by infection with lentiviruses. The expression of RRM2, IGF2BP3, matrix metalloproteinase (MMP)-1, and MMP-9 were detected via western blotting assay. Cell viability was detected via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MeRIP-qRT-PCR was performed to test the interaction of IGF2BP3 and RRM2 mRNA via m6A modification. Cell proliferation was determined by clone formation assay. Migration and invasion assays were performed using transwell Boyden chamber. RESULTS RRM2 and IGF2BP3 were highly expressed in clinical specimens and tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β-stimulated synovial cells. RRM2 and IGF2BP3 knockdown inhibited the proliferation, migration, and invasion of MH7A cells. The inhibitory effects of IGF2BP3 knockdown were effectively reversed by simultaneously overexpressing RRM2 in MH7A cells. By analyzing N6-methyladenosine (m6A)2Target database, five m6A regulatory target binding sites for IGF2BP3 were identified in RRM2 mRNA, suggesting a direct relationship between IGF2BP3 and RRM2 mRNA. Additionally, in RRM2 small hairpin (sh)RNA lentivirus-infected cells, the levels of phosphorylated Akt and MMP-9 were significantly decreased compared with control shRNA lentivirus-infected cells. CONCLUSION The present study demonstrated that RRM2 promoted the Akt phosphorylation leading to high expression of MMP-9 to promote the migration and invasive capacities of MH7A cells. Overall, IGF2BP promotes the expression of RRM2, and regulates the migration and invasion of MH7A cells via Akt/MMP-9 pathway to promote RA progression.
Collapse
Affiliation(s)
- Zhaonan Ban
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, 611130, China
| | - Zhengjiang Li
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, 611130, China
| | - Shuxing Xing
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, 611130, China
| | - Yongjie Ye
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, 611130, China
| |
Collapse
|
6
|
Guan Q, Zhang X, Liu J, Zhou C, Zhu J, Wu H, Zhuo Z, He J. ALKBH5 gene polymorphisms and risk of neuroblastoma in Chinese children from Jiangsu Province. CANCER INNOVATION 2024; 3:e103. [PMID: 38946930 PMCID: PMC11212286 DOI: 10.1002/cai2.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 07/02/2024]
Abstract
Background Neuroblastoma is one of the most common extracranial malignant solid tumors in children. AlkB homolog 5 (ALKBH5) is an RNA N6-methyladenosine (m6A) demethylase that plays a critical role in tumorigenesis and development. We assessed the association between single nucleotide polymorphisms (SNPs) in ALKBH5 and the risk of neuroblastoma in a case-control study including 402 patients and 473 non-cancer controls. Methods Genotyping was determined by the TaqMan method. The association between ALKBH5 polymorphisms (rs1378602 and rs8400) and the risk of neuroblastoma was evaluated using the odds ratio (OR) and 95% confidence interval (CI). Results We found no strong association of ALKBH5 rs1378602 and rs8400 with neuroblastoma risk. Further stratification analysis by age, sex, primary site, and clinical stage showed that the rs1378602 AG/AA genotype was associated with a lower risk of neuroblastoma in males (adjusted OR = 0.58, 95% CI = 0.35-0.97, p = 0.036) and children with retroperitoneal neuroblastoma (adjusted OR = 0.58, 95% CI = 0.34-0.98, p = 0.040). Conclusions ALKBH5 SNPs do not seem to be associated with neuroblastoma risk. More studies are required to confirm this negative result and reveal the relationship between gene polymorphisms of the m6A modifier ALKBH5 and neuroblastoma.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chunlei Zhou
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinhong Zhu
- Department of Clinical Laboratory, BiobankHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Haiyan Wu
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Kuang Y, Li R, Wang J, Xu S, Qiu Q, Lin S, Liu D, Shen C, Liu Y, Xu M, Lin W, Zhang S, Liang L, Xu H, Xiao Y. ALKBH5-Mediated RNA m 6 A Methylation Regulates the Migration, Invasion, and Proliferation of Rheumatoid Fibroblast-Like Synoviocytes. Arthritis Rheumatol 2024; 76:192-205. [PMID: 37584615 DOI: 10.1002/art.42676] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
OBJECTIVE Fibroblast-like synoviocytes (FLSs) are critical for promoting joint damage in rheumatoid arthritis (RA). N6 -methyladenosine (m6 A) modification plays key roles in various diseases, but its role in the pathogenesis of RA is largely unknown. Here, we investigate increased demethylase ALKBH5 promotion of proliferation, migration, and invasion of RA FLSs via regulating JARID2 expression. METHODS ALKBH5 expression in FLSs was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. 5-ethynyl-2'-deoxyuridine, scratch wound healing, and transwell assays were implemented to determine the role of ALKBH5 on RA FLS proliferation, mobility, and migration. Then, m6 A sequencing combined with RNA sequencing was performed to identify the potential targets of ALKBH5. RNA immunoprecipitation and RNA pulldown were then used to validate the interaction between the protein and messenger RNA (mRNA). Collagen-induced arthritis (CIA) and delayed-type hypersensitivity arthritis (DTHA) models were further established to assess the therapeutic potency of ALKBH5 in vivo. RESULTS We demonstrated that ALKBH5 expression was increased in FLSs and synovium from RA. Functionally, ALKBH5 knockdown inhibited the proliferation, migration, and invasion of RA FLSs, whereas overexpression of ALKBH5 displayed the opposite effect. Mechanistically, ALKBH5 mediated m6 A modification in the JARID2 mRNA and enhanced its mRNA stability in cooperation with IGF2BP3. Intriguingly, the severity of arthritis was attenuated in mice with DTHA and ALKBH5 knockout or rats with CIA and intra-articular injection of ALKBH5 short hairpin RNA. CONCLUSION Our findings suggest that ALKBH5-mediated m6 A modification is crucial for synovial hyperplasia and invasion in RA. ALKBH5 might be a potential therapeutic target for RA and even for dysregulated fibroblasts in a wide range of diseases.
Collapse
Affiliation(s)
- Yu Kuang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruiru Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jingnan Wang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Siqi Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qian Qiu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shuibin Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Di Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuyu Shen
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yingli Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meilin Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shuoyang Zhang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liuqin Liang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hanshi Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Youjun Xiao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Shan Y, Chen W, Li Y. The role of m 6A RNA methylation in autoimmune diseases: Novel therapeutic opportunities. Genes Dis 2024; 11:252-267. [PMID: 37588214 PMCID: PMC10425809 DOI: 10.1016/j.gendis.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
N6-methyladenosine (m6A) modifications, as one of the most common forms of internal RNA chemical modifications in eukaryotic cells, have gained increasing attention in recent years. The m6A RNA modifications exert various crucial roles in various biological processes, such as embryonic development, neurogenesis, circadian rhythms, and tumorigenesis. Recent advances have highlighted that m6A RNA modification plays an important role in immune response, especially in the initiation and progression of autoimmune diseases. In this review, we summarized the regulatory mechanisms of m6A methylation and its biological functions in the immune system and mainly focused on recent progress in research on the potential role of m6A RNA methylation in the pathogenesis of autoimmune diseases, thus providing possible biomarkers and potential targets for the prevention and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yunan Shan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250013, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yanbin Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250013, China
| |
Collapse
|
9
|
Guo F, Kang J, Xu J, Wei S, Tao J, Dong Y, Ma Y, Tian H, Guo X, Bi S, Zhang C, Lv H, Shang Z, Jiang Y, Zhang M. Genome-wide identification of m 6A-associated single nucleotide polymorphisms in complex diseases of nervous system. Neurosci Lett 2023; 817:137513. [PMID: 37827449 DOI: 10.1016/j.neulet.2023.137513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most abundant chemical modifications on RNA and can affect the occurrence and development of diseases. Some studies have shown that the expressions of some m6A-related genes are significantly regulated by single nucleotide variants (SNV). However, the function of m6A-associated single nucleotide polymorphisms (m6A-SNP) remains unclear in multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Here, we identified the disease-associated m6A-SNPs by integrating genome-wide association study (GWAS) and m6A-SNPs from the RMVar database, and confirmed the relationship between these identified m6A-SNPs and their target genes in eQTL analysis and gene differential expression analysis. Finally, 26 genes corresponding to 20 m6A-SNPs with eQTL signals were identified and differentially expressed (P < 0.05) in MS, 15 genes corresponding to 12 m6A-SNPs (P < 1e-04) were differentially expressed in AD, and 27 PD-associated m6A-SNPs that regulated the expression of 31 genes were identified. There were 5 HLA genes with eQTL signals (HLA-DQB1, HLA-DRB1, HLA-DQA1, HLA-DQA2 and HLA-DQB1-AS1) to be detected in the three diseases. In summary, our study provided new insights into understanding the potential roles of these m6A-SNPs in disease pathogenesis as well as therapeutic target.
Collapse
Affiliation(s)
- Fei Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China; The EWAS Project, China
| | - Jingxuan Kang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China; The EWAS Project, China
| | - Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China; The EWAS Project, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junxian Tao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China; The EWAS Project, China
| | - Yu Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China; The EWAS Project, China
| | - Yingnan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China; The EWAS Project, China
| | - Hongsheng Tian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xuying Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuo Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China; The EWAS Project, China.
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China; The EWAS Project, China.
| |
Collapse
|
10
|
Tang Y, Liu Y, Zhu X, Chen Y, Jiang X, Ding S, Zheng Q, Zhang M, Yang J, Ma Y, Xing M, Zhang Z, Ding H, Jin Y, Ma C. ALKBH5-mediated m 6A demethylation of HS3ST3B1-IT1 prevents osteoarthritis progression. iScience 2023; 26:107838. [PMID: 37752950 PMCID: PMC10518728 DOI: 10.1016/j.isci.2023.107838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/15/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
HS3ST3B1-IT1 was identified as a downregulated long noncoding RNA in osteoarthritic cartilage. However, its roles and mechanisms in the pathogenesis of osteoarthritis (OA) are unclear. In this study, we demonstrated that the expressions of HS3ST3B1-IT1 and its maternal gene HS3ST3B1 were downregulated and positively correlated in osteoarthritic cartilage. Overexpression of HS3ST3B1-IT1 significantly increased chondrocyte viability, inhibited chondrocyte apoptosis, and upregulated extracellular matrix (ECM) proteins, whereas HS3ST3B1-IT1 knockdown had the opposite effects. In addition, HS3ST3B1-IT1 significantly ameliorated monosodium-iodoacetate-induced OA in vivo. Mechanistically, HS3ST3B1-IT1 upregulated HS3ST3B1 expression by blocking its ubiquitination-mediated degradation. Knockdown of HS3ST3B1 reversed the effects of HS3ST3B1-IT1 on chondrocyte viability, apoptosis, and ECM metabolism. AlkB homolog 5 (ALKBH5)-mediated N6-methyladenosine (m6A) demethylation stabilized HS3ST3B1-IT1 RNA. Together, our data revealed that ALKBH5-mediated upregulation of HS3ST3B1-IT1 suppressed OA progression by elevating HS3ST3B1 expression, suggesting that HS3ST3B1-IT1/HS3ST3B1 may serve as potential therapeutic targets for OA treatment.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Yang Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing, P.R. China
| | - Xiaoshu Zhu
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Yanlin Chen
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Xinluan Jiang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Siyang Ding
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Que Zheng
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Ming Zhang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Jiashu Yang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Yunfei Ma
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Mengying Xing
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Zongyu Zhang
- Department of Orthopedics, the Traditional Chinese Medical Hospital of Lianyungang, Lianyungang, P.R. China
| | - Huimin Ding
- Department of Orthopedics, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yucui Jin
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| |
Collapse
|
11
|
van Vroonhoven ECN, Picavet LW, Scholman RC, van den Dungen NAM, Mokry M, Evers A, Lebbink RJ, Calis JJA, Vastert SJ, van Loosdregt J. N 6-Methyladenosine Directly Regulates CD40L Expression in CD4 + T Lymphocytes. BIOLOGY 2023; 12:1004. [PMID: 37508433 PMCID: PMC10376055 DOI: 10.3390/biology12071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
T cell activation is a highly regulated process, modulated via the expression of various immune regulatory proteins including cytokines, surface receptors and co-stimulatory proteins. N6-methyladenosine (m6A) is an RNA modification that can directly regulate RNA expression levels and it is associated with various biological processes. However, the function of m6A in T cell activation remains incompletely understood. We identify m6A as a novel regulator of the expression of the CD40 ligand (CD40L) in human CD4+ lymphocytes. Manipulation of the m6A 'eraser' fat mass and obesity-associated protein (FTO) and m6A 'writer' protein methyltransferase-like 3 (METTL3) directly affects the expression of CD40L. The m6A 'reader' protein YT521-B homology domain family-2 (YTHDF2) is hypothesized to be able to recognize and bind m6A specific sequences on the CD40L mRNA and promotes its degradation. This study demonstrates that CD40L expression in human primary CD4+ T lymphocytes is regulated via m6A modifications, elucidating a new regulatory mechanism in CD4+ T cell activation that could possibly be leveraged in the future to modulate T cell responses in patients with immune-related diseases.
Collapse
Affiliation(s)
- Ellen C N van Vroonhoven
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lucas W Picavet
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Rianne C Scholman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Noortje A M van den Dungen
- Department of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Michal Mokry
- Department of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Anouk Evers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Robert J Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg J A Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
12
|
Xiang M, Liu L, Wu T, Wei B, Liu H. RNA-binding proteins in degenerative joint diseases: A systematic review. Ageing Res Rev 2023; 86:101870. [PMID: 36746279 DOI: 10.1016/j.arr.2023.101870] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs), which are conserved proteins comprising multiple intermediate sequences, can interact with proteins, messenger RNA (mRNA) of coding genes, and non-coding RNAs to perform different biological functions, such as the regulation of mRNA stability, selective polyadenylation, and the management of non-coding microRNA (miRNA) synthesis to affect downstream targets. This article will highlight the functions of RBPs, in degenerative joint diseases (intervertebral disc degeneration [IVDD] and osteoarthritis [OA]). It will reviews the latest advancements on the regulatory mechanism of RBPs in degenerative joint diseases, in order to understand the pathophysiology, early diagnosis and treatment of OA and IVDD from a new perspective.
Collapse
Affiliation(s)
- Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bo Wei
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
13
|
Wang M, Wu J, Lei S, Mo X. Genome-wide identification of RNA modification-related single nucleotide polymorphisms associated with rheumatoid arthritis. BMC Genomics 2023; 24:153. [PMID: 36973646 PMCID: PMC10045113 DOI: 10.1186/s12864-023-09227-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND RNA modification plays important roles in many biological processes, such as gene expression control. The aim of this study was to identify single nucleotide polymorphisms related to RNA modification (RNAm-SNPs) for rheumatoid arthritis (RA) as putative functional variants. METHODS We examined the association of RNAm-SNPs with RA in summary data from a genome-wide association study of 19,234 RA cases and 61,565 controls. We performed eQTL and pQTL analyses for the RNAm-SNPs to find associated gene expression and protein levels. Furthermore, we examined the associations of gene expression and circulating protein levels with RA using two-sample Mendelian randomization analysis methods. RESULTS A total of 160 RNAm-SNPs related to m6A, m1A, A-to-I, m7G, m5C, m5U and m6Am modifications were identified to be significantly associated with RA. These RNAm-SNPs were located in 62 protein-coding genes, which were significantly enriched in immune-related pathways. RNAm-SNPs in important RA susceptibility genes, such as PADI2, SPRED2, PLCL2, HLA-A, HLA-B, HLA-DRB1, HLA-DPB1, TRAF1 and TXNDC11, were identified. Most of these RNAm-SNPs showed eQTL effects, and the expression levels of 26 of the modifiable genes (e.g., PADI2, TRAF1, HLA-A, HLA-DRB1, HLA-DPB1 and HLA-B) in blood cells were associated with RA. Circulating protein levels, such as CFB, GZMA, HLA-DQA2, IL21, LRPAP1 and TFF3, were affected by RNAm-SNPs and were associated with RA. CONCLUSION The present study identified RNAm-SNPs in the reported RA susceptibility genes and suggested that RNAm-SNPs may affect RA risk by affecting the expression levels of corresponding genes and proteins.
Collapse
Affiliation(s)
- Mimi Wang
- Center for Genetic Epidemiology and Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jingyun Wu
- Center for Genetic Epidemiology and Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shufeng Lei
- Center for Genetic Epidemiology and Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Center for Genetic Epidemiology and Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Kleinbielen T, Olasagasti F, Azcarate D, Beristain E, Viguri-Díaz A, Guerra-Merino I, García-Orad Á, de Pancorbo MM. In silico identification and in vitro expression analysis of breast cancer-related m 6A-SNPs. Epigenetics 2022; 17:2144-2156. [PMID: 35971775 PMCID: PMC9665143 DOI: 10.1080/15592294.2022.2111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Research on m6A-associated SNPs (m6A-SNPs) has emerged recently due to their possible critical roles in many key biological processes. In this sense, several investigations have identified m6A-SNPs in different diseases. In order to gain a more complete understanding of the role that m6A-SNPs can play in breast cancer, we performed an in silico analysis to identify the m6A-SNPs associated with breast cancer and to evaluate their possible effects. For this purpose, we downloaded SNPs related to breast cancer and a list of m6A-SNPs from public databases in order to identify which ones appear in both. Subsequently, we assessed the identified m6A-SNPs in silico by expression quantitative trait loci (eQTL) analysis and differential gene expression analysis. We genotyped the m6A-SNPs found in the in silico analysis in 35 patients with breast cancer, and we carried out a gene expression analysis experimentally on those that showed differences. Our results identified 981 m6A-SNPs related to breast cancer. Four m6A-SNPs showed an eQTL effect and only three were in genes that presented an altered gene expression. When the three m6A-SNPs were evaluated in the tissue sample of our breast cancer patients, only the m6A-SNP rs76563149 located in ZNF354A gene presented differences in allele frequencies and a low gene expression in breast cancer tissues, especially in luminal B HER2+ subtype. Future investigations of these m6A-SNPs should expand the study in different ethnic groups and increase the sample sizes to test their association with breast cancer and elucidate their molecular function.
Collapse
Affiliation(s)
- Tamara Kleinbielen
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Department of Zoology and Animal Biology. University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
| | - Felix Olasagasti
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
| | - Daniel Azcarate
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Department of Zoology and Animal Biology. University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
| | - Elena Beristain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
- Molecular Genetics Laboratory, Araba University Hospital, Osakidetza Basque Health Service. Postal code: 01009. Vitoria-Gasteiz, Araba, Spain
| | - Amparo Viguri-Díaz
- Pathology Department, Araba University Hospital. Postal code: 01009. Vitoria-Gasteiz, Araba, Spain
| | - Isabel Guerra-Merino
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
- Pathology Department, Araba University Hospital. Postal code: 01009. Vitoria-Gasteiz, Araba, Spain
| | - África García-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- BioCruces Bizkaia Health Research Institute. Postal code: 48903. Barakaldo, Bizkaia, Spain
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Department of Zoology and Animal Biology. University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
| |
Collapse
|
15
|
Wan L, Liu J, Huang C, Zhu Z, Wang K, Sun G, Zhu L, Hu Z. Comprehensive Analysis and Functional Characteristics of Differential Expression of N6-Methyladenosine Methylation Modification in the Whole Transcriptome of Rheumatoid Arthritis. Mediators Inflamm 2022; 2022:4766992. [PMID: 36330380 PMCID: PMC9626244 DOI: 10.1155/2022/4766992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 08/04/2023] Open
Abstract
N6-methyladenosine (m6A) modification is the most prevalent chemical modification in eukaryotic mRNA and is associated with the development of various immune diseases. However, the role of m6A methylation in rheumatoid arthritis (RA) development is unclear. We preliminarily explored the role of m6A methylation-related mRNAs in RA for its clinical application. The discovery of m6A methylation-modifying genes in this study may provide a fresh perspective on the development of drugs for RA treatment. High-throughput sequencing combined with methylated RNA immunoprecipitation (MeRIP-seq) and RNA sequencing were used to assess whole-transcriptome m6A modifications in the synovium of patients with RA. The relationship between m6A-modified target genes and RA inflammation and macrophages was determined. The expression of the m6A-modified significant transcript-enriched inflammatory signaling pathway was assessed through animal experiments. Differentially expressed m6A genes were correlated with macrophage activation involved in immune response, vascular endothelium, MAPK signaling pathway, PI3K - Akt signaling pathway, and other inflammatory processes. Furthermore, combined analysis with m6A-seq and RNA-seq revealed 120 genes with significant changes in both m6A modification and mRNA expression. We selected the top 3 candidate mRNAs that were upregulated and downregulated simultaneously. The expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN) mRNA and protein in RA patients was lower than that in healthy control (HC). SHC-binding protein 1 (SHCBP1) and neurexophilin-3 (NXPH3) mRNA expressions were increased in RA patients. The expression of M1 macrophages was increased in RA patients. RA markers are such as rheumatoid factor (RF) and peptide containing citrulline (CCP). Further animal experiments showed that the expression of synovial MAPK, PI3K, and Akt1 proteins in the RA model was increased, and the PTEN, p-PTEN protein expression was decreased. PI3K, Akt1, PTEN, and p-PTEN were correlated to RA joint inflammation. This study revealed a unique pattern of differential m6A methylation modifications in RA and concluded that m6A modification is related to the occurrence of RA synovial inflammation.
Collapse
Affiliation(s)
- Lei Wan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin'an Medical Education Ministry, Hefei 230038, China
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin'an Medical Education Ministry, Hefei 230038, China
| | - Chuanbing Huang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ziheng Zhu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Kun Wang
- Key Laboratory of Xin'an Medical Education Ministry, Hefei 230038, China
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guanghan Sun
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lei Zhu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhongxiang Hu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei 230000, China
| |
Collapse
|
16
|
Zha L, Wang J, Cheng X. The effects of
RNA
methylation on immune cells development and function. FASEB J 2022; 36:e22552. [DOI: 10.1096/fj.202200716r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ling‐Feng Zha
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases Wuhan China
| | - Jing‐Lin Wang
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases Wuhan China
| | - Xiang Cheng
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases Wuhan China
| |
Collapse
|
17
|
Cheng L, Li H, Zhan H, Liu Y, Li X, Huang Y, Wang L, Zhang F, Li Y. Alterations of m6A RNA methylation regulators contribute to autophagy and immune infiltration in primary Sjögren's syndrome. Front Immunol 2022; 13:949206. [PMID: 36203590 PMCID: PMC9530814 DOI: 10.3389/fimmu.2022.949206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification is a new epigenetic regulation mechanism on eukaryotic mRNA. Few autoimmune diseases focused on the role of m6A in their pathogenies, and m6A modulation in the pathological process of primary Sjögren's syndrome (pSS) is still unknown. In this work, three microarray datasets of pSS patients were downloaded from the GEO database: datasets #1 and #2 from the whole peripheral blood (PB) samples, dataset #3 from the labial salivary gland tissue samples, as well as a PB cohort collected from our hospital. Six differentially expressed m6A regulators were identified by comparing the PB dataset #1 of pSS and healthy controls using the Wilcox test and logistic regression analysis. Among them, four (ALKBH5, RBMX, RBM15B, and YTHDF1) were confirmed as down-regulated in PB dataset #2 and in our PB cohort by RT-PCR, and four (ALKBH5, METTL3, RBM15B, and YTHDF1) were confirmed as down-regulated in the dataset #3 of the labial gland tissue. In addition, discrepantly expressed m6A regulators accompanied by diverse immunocytes, including dendritic cells (DCs), T cells, and CD56dim natural killer cells, and among the regulators, ALKBH5 and METTL3 were comprehensively linked with the infiltrated immune cells. Notably, the most enriched autophagy mechanism mediated by m6A was observed in pSS using functional annotation analysis. Ten hub genes were identified using a protein-protein interaction network, and their expression in PB dataset #2 and the expression of three genes (PIK3CA, STAT1, and MAPK3) in the labial gland tissue dataset #3 were confirmed. Our study provides evidence that m6A methylation is widely involved in the immune infiltration and autophagy of pSS, thus contributing to the pathogenesis of this disease and potentially representing a novel therapeutic target.
Collapse
Affiliation(s)
- Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengchun Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Song S, Zhao R, Qiao J, Liu J, Cheng T, Zhang SX, Li XF. Predictive value of drug efficacy by M6A modification patterns in rheumatoid arthritis patients. Front Immunol 2022; 13:940918. [PMID: 36052084 PMCID: PMC9427021 DOI: 10.3389/fimmu.2022.940918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background Rheumatoid arthritis is a highly heterogeneous autoimmune disease characterized by unpredictable disease flares and significant differences in therapeutic response to available treatments. One possible reason for poor efficacy is that it cannot be treated accurately due to no optimal stratification for RA patients. Objective This study aims to construct an RA classification model by m6A characters and further predict response to medication. Methods Twenty m6A regulators were used to construct a random forest diagnosis model, and RNA-seq analysis was employed for external validation. The RNA modification patterns mediated by 20 m6A regulators were systematically evaluated in 1191 RA samples and explored different molecular clusters associated with other immune microenvironment characteristics and biological pathways. Then, we established an m6A score model to quantify the m6A modification patterns. The model was applied to patients at baseline to test the association between m6Ascore and infliximab responsiveness. Results The m6A diagnosis model showed good discriminatory ability in distinguishing RA. Patients with RA were classified into three clusters with distinct molecular and cellular signatures. Cluster A displayed strongly activated inflammatory cells and pathways. Specific innate lymphocytes occupied cluster B. Cluster C was mainly enriched in prominent adaptive lymphocytes and NK-mediated cytotoxicity signatures with the highest m6A score. Patients with a low m6Ascore exhibited significantly infliximab therapeutic benefits compared with those with a high m6Ascore (p< 0.05). Conclusion Our study is the first to provide a comprehensive analysis of m6A modifications in RA, which provides an innovative patient stratification framework and potentially enables improved therapeutic decisions.
Collapse
Affiliation(s)
- Shan Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
| | - Rong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
| | - Jun Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
| | - Jia Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
- *Correspondence: Xiao-Feng Li,
| |
Collapse
|
19
|
Zhou H, Shen X, Yan C, Xiong W, Ma Z, Tan Z, Wang J, Li Y, Liu J, Duan A, Liu F. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Res Ther 2022; 13:322. [PMID: 35842714 PMCID: PMC9288728 DOI: 10.1186/s13287-022-03005-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent degenerative joint disease that not only significantly impairs the quality of life of middle-aged and elderly individuals but also imposes a significant financial burden on patients and society. Due to their significant biological properties, extracellular vesicles (EVs) have steadily received great attention in OA treatment. This study aimed to investigate the influence of EVs on chondrocyte proliferation, migration, and apoptosis and their protective efficacy against OA in mice. METHODS The protective impact of EVs derived from human umbilical cord mesenchymal stem cells (hucMSCs-EVs) on OA in mice was investigated by establishing a mouse OA model by surgically destabilizing the medial meniscus (DMM). Human chondrocytes were isolated from the cartilage of patients undergoing total knee arthroplasty (TKA) and cultured with THP-1 cells to mimic the in vivo inflammatory environment. Levels of inflammatory factors were then determined in different groups, and the impacts of EVs on chondrocyte proliferation, migration, apoptosis, and cartilage extracellular matrix (ECM) metabolism were explored. N6-methyladenosine (m6A) level of mRNA and methyltransferase-like 3 (METTL3) protein expression in the cells was also measured in addition to microRNA analysis to elucidate the molecular mechanism of exosomal therapy. RESULTS The results indicated that hucMSCs-EVs slowed OA progression, decreased osteophyte production, increased COL2A1 and Aggrecan expression, and inhibited ADAMTS5 and MMP13 overexpression in the knee joint of mice via decreasing pro-inflammatory factor secretion. The in vitro cell line analysis revealed that EVs enhanced chondrocyte proliferation and migration while inhibiting apoptosis. METTL3 is responsible for these protective effects. Further investigations revealed that EVs decreased the m6A level of NLRP3 mRNA following miR-1208 targeted binding to METTL3, resulting in decreased inflammatory factor release and preventing OA progression. CONCLUSION This study concluded that hucMSCs-EVs inhibited the secretion of pro-inflammatory factors and the degradation of cartilage ECM after lowering the m6A level of NLRP3 mRNA with miR-1208 targeting combined with METTL3, thereby alleviating OA progression in mice and providing a novel therapy for clinical OA treatment.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xun Shen
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Chen Yan
- Department of Orthopedics, the First People's Hospital of Lianyungang, Nanjing Medical University, Lianyungang,, 222002, Jiangsu, China
| | - Wu Xiong
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zemeng Ma
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, 211100, China
| | - Zhenggang Tan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jinwen Wang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yao Li
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiuxiang Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Ao Duan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Feng Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
20
|
Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev 2022; 79:101641. [PMID: 35569786 DOI: 10.1016/j.arr.2022.101641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Methylation is the most common posttranscriptional modification in cellular RNAs, which has been reported to modulate the alteration of RNA structure for initiating relevant functions such as nuclear translocation and RNA degradation. Recent studies found that RNA methylation especially N6-methyladenosine (m6A) regulates the dynamic balance of bone matrix and forms a complicated network in bone metabolism. The modulation disorder of RNA methylation contributes to several pathological bone diseases including osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and so on. In the review, we will discuss advanced technologies for detecting RNA methylation, summarize RNA methylation-related biological impacts on regulating bone homeostasis and pathological bone diseases. In addition, we focus on the promising roles of RNA methylation in early diagnosis and therapeutic implications for bone-related diseases. Then, we aim to establish a theoretical basis for further investigation in this meaningful field.
Collapse
|
21
|
Xiao L, Hu B, Ding B, Zhao Q, Liu C, Öner FC, Xu H. N(6)-methyladenosine RNA methyltransferase like 3 inhibits extracellular matrix synthesis of endplate chondrocytes by downregulating sex-determining region Y-Box transcription factor 9 expression under tension. Osteoarthritis Cartilage 2022; 30:613-625. [PMID: 35007741 DOI: 10.1016/j.joca.2022.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Tension stimulation is an important inducer of endplate cartilage degeneration, but the specific regulatory mechanism remains unclear. This study was the first to reveal the mechanism by which methyltransferase-like 3 (METTL3)-mediated N(6)-methyladenosine (m6A) modification affected the extracellular matrix anabolism by tension-induced endplate chondrocytes. METHOD We examined the differences in METTL3 expression and m6A methylation levels in human endplate chondrocytes and human cartilage endplate tissues under in vitro tension. The effect on endplate cartilage degeneration was evaluated by manipulating m6A methylation mediated by METTL3 in vivo and in vitro. The effect of METTL3-mediated m6A methylation on the stability of sex-determining region Y-box transcription factor 9 (SOX9) gene expression was determined experimentally. RESULTS METTL3 expression and m6A methylation levels were significantly increased in degenerative human endplate cartilage tissue. Similarly, tension stimulation inhibited the ability of human endplate chondrocytes to synthesize extracellular matrix, which was accompanied by an increase in METTL3-mediated m6A methylation. The ability of endplate chondrocytes to resist tension was significantly enhanced by inhibiting METTL3 expression and subsequently downregulating m6A methylation in vitro and in vivo, thereby reducing intervertebral disc degeneration. Furthermore, METTL3 mediated SOX9 RNA methylation and disrupted SOX9 mRNA stability, thereby inhibiting the gene expression of the downstream collagen type II alpha 1 chain. CONCLUSION Tension stimulation downregulated SOX9 expression through METTL3-mediated m6A methylation, thereby inhibiting the synthesis of extracellular matrix in endplate chondrocytes.
Collapse
Affiliation(s)
- L Xiao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - B Hu
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241001, China
| | - B Ding
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241001, China
| | - Q Zhao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - C Liu
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - F C Öner
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan, 1003508, Netherlands.
| | - H Xu
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241001, China.
| |
Collapse
|
22
|
Li Y, Meng L, Zhao B. The roles of N6-methyladenosine methylation in the regulation of bone development, bone remodeling and osteoporosis. Pharmacol Ther 2022; 238:108174. [PMID: 35346729 DOI: 10.1016/j.pharmthera.2022.108174] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 01/12/2023]
Abstract
N6-methyladenosine (m6A), a novel epitranscriptomic RNA modification, plays crucial roles in a variety of biological processes and diseases. Recently, there are growing evidence supporting that m6A methylation is essential for bone development and homeostasis through the regulation of key genes by regulating RNA stability, localization, turnover and translation efficiency. In this review, we summarized our current understanding of the functional roles of m6A methylation and its related regulators in bone development and bone remodeling. These findings will offer new directions and insights on the further investigations of m6A methylation in bone biology. Moreover, we also discussed important advances of m6A methylation related regulators as potential therapeutic targets, which allows for novel therapeutic strategies on the medications of bone-related diseases including osteoporosis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Li Meng
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
23
|
Zhou W, Wang X, Chang J, Cheng C, Miao C. The molecular structure and biological functions of RNA methylation, with special emphasis on the roles of RNA methylation in autoimmune diseases. Crit Rev Clin Lab Sci 2021; 59:203-218. [PMID: 34775884 DOI: 10.1080/10408363.2021.2002256] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and systemic vasculitis are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is complex. RNA methylation is known to play a key role in disease progression as it regulates almost all aspects of RNA processing, including RNA nuclear export, translation, splicing, and noncoding RNA processing. This review summarizes the mechanisms, molecular structures of RNA methylations and their roles in biological functions. Similar to the roles of RNA methylation in cancers, RNA methylation in RA and SLE involves "writers" that deposit methyl groups to form N6-methyladenosine (m6A) and 5-methylcytosine (m5C), "erasers" that remove these modifications, and "readers" that further affect mRNA splicing, export, translation, and degradation. Recent advances in detection methods have identified N1-methyladenosine (m1A), N6,2-O-dimethyladenosine (m6Am), and 7-methylguanosine (m7G) RNA modifications, and their roles in RA and SLE need to be further studied. The relationship between RNA methylation and other autoimmune diseases has not been reported, and the roles and mechanisms of RNA modifications in these diseases need to be explored in the future.
Collapse
Affiliation(s)
- Wanwan Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jun Chang
- Department of Orthopaedics, Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, Anhui Province, China
| |
Collapse
|
24
|
Yang J, Zhang M, Yang D, Ma Y, Tang Y, Xing M, Li L, Chen L, Jin Y, Ma C. m 6A-mediated upregulation of AC008 promotes osteoarthritis progression through the miR-328-3p‒AQP1/ANKH axis. Exp Mol Med 2021; 53:1723-1734. [PMID: 34737423 PMCID: PMC8640060 DOI: 10.1038/s12276-021-00696-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of osteoarthritis (OA), but the biological roles and clinical significance of most lncRNAs in OA are not fully understood. Microarray analysis was performed to identify differentially expressed lncRNAs, mRNAs, and miRNAs between normal and osteoarthritic cartilage. We found that AC008440.5 (abbreviated AC008), as well as AQP1 and ANKH, were highly expressed in osteoarthritic cartilage, whereas miR-328-3p was expressed at a low level in osteoarthritic cartilage. Functional assays showed that ectopic expression of AC008, AQP1, and ANKH significantly decreased chondrocyte viability and promoted chondrocyte apoptosis and extracellular matrix (ECM) degradation, whereas knockdown of AC008, AQP1, and ANKH resulted in the opposite effects. Moreover, miR-328-3p overexpression increased chondrocyte viability and attenuated chondrocyte apoptosis and ECM degradation, whereas inhibition of miR-328-3p resulted in the opposite effects. Bioinformatics analysis, RNA immunoprecipitation (RIP), and luciferase assays revealed that AC008 functioned as a competing endogenous RNA (ceRNA) to regulate miR-328-3p, which specifically targeted the AQP1 and ANKH genes. In addition, miR-328-3p significantly ameliorated MIA-induced OA, whereas AC008 accelerated OA progression in vivo. Furthermore, fat mass and obesity-associated (FTO)-mediated N6-methyladenosine demethylation downregulated AC008 transcription, while lower FTO expression led to upregulation of AC008 transcription in OA. In conclusion, our data reveal that AC008 plays a critical role in OA pathogenesis via the miR-328-3p‒AQP1/ANKH pathway, suggesting that AC008 may be a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Jiashu Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, P.R. China
- Department of Medical Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Ming Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, P.R. China
- Department of Medical Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Dawei Yang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing, P.R. China
| | - Yunfei Ma
- Department of Medical Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Yuting Tang
- Department of Medical Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Mengying Xing
- Department of Medical Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Lingyun Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, P.R. China
- Department of Medical Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Li Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, P.R. China
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Yucui Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, P.R. China.
- Department of Medical Genetics, Nanjing Medical University, Nanjing, P.R. China.
| | - Changyan Ma
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, P.R. China.
- Department of Medical Genetics, Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
25
|
Hu Y, Zhao X. Role of m6A in osteoporosis, arthritis and osteosarcoma (Review). Exp Ther Med 2021; 22:926. [PMID: 34306195 PMCID: PMC8281110 DOI: 10.3892/etm.2021.10358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
RNA modification is a type of post-transcriptional modification that regulates important cellular pathways, such as the processing and metabolism of RNA. The most abundant form of methylation modification is RNA N6-methyladenine (m6A), which plays various post-transcriptional regulatory roles in cellular biological functions, including cell differentiation, embryonic development and disease occurrence. Bones play a pivotal role in the skeletal system as they support and protect muscles and other organs, facilitate movement and ensure haematopoiesis. The development and remodelling of bones require a delicate and accurate regulation of gene expression by epigenetic mechanisms that involve modifications of histone, DNA and RNA. The present review discusses the enzymes and proteins involved in mRNA m6A methylation modification and summarises current research progress and the mechanisms of mRNA m6A methylation in common orthopaedic diseases, including osteoporosis, arthritis and osteosarcoma.
Collapse
Affiliation(s)
- Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Xiaohui Zhao
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
26
|
Sang W, Xue S, Jiang Y, Lu H, Zhu L, Wang C, Ma J. METTL3 involves the progression of osteoarthritis probably by affecting ECM degradation and regulating the inflammatory response. Life Sci 2021; 278:119528. [PMID: 33894271 DOI: 10.1016/j.lfs.2021.119528] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022]
Abstract
We aimed to identify RNA N6-methyladenosine methylation associated genes in osteoarthritis (OA), and to explore possible regulatory mechanisms of these RNA methylation associated genes. Bioinformatics analyses, including differential expression analysis, functional enrichment analysis, verification analysis, and box plot analysis, were conducted based on different datasets from OA and non-OA patients. Gene expression at mRNA and protein levels was determined by quantitative reverse transcription PCR, western blot and immunofluorescence. Interleukin 1β (IL-1β)-treated SW1353 cells was used as cell model. Lentiviral vector was used for over-expression METTL3 in vitro. CCK-8 assay kit was used to determine cell viability and inflammatory cytokines (IL-1α, IL-6, IL-8, IL-10 and TNF-α) was detected using ELISA kits. Bioinformatics analysis showed that METTL3 expression was decreased in OA group, which was confirmed in clinical samples. Expression of METTL3 was also reduced in IL-1β-treated cells. Levels of inflammatory cytokines were obviously reduced in the METTL3 overexpression group, while IL-1β treatment reversed such decrease caused by METTL3 overexpression (p < 0.05). Both METTL3 overexpression and IL-1β treatment promoted expression of p65 protein and p-ERK (p < 0.01). Additionally, increased expression of MMP1 and MMP3, and decreased expression of MMP13, TIMP-1, and TIMP-2 at both mRNA and protein levels were observed in the METTL3 overexpression group when compared with the control group (p < 0.01). Expression of m6A methylation gene METTL3 was reduced in OA. METTL3 is involved in OA probably by regulating the inflammatory response. METTL3 overexpression may affect extracellular matrix degradation in OA by adjusting the balance between TIMPs and MMPs.
Collapse
Affiliation(s)
- Weilin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Song Xue
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Yafei Jiang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Haiming Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Libo Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Cong Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China.
| |
Collapse
|
27
|
Xiong Y, He X, Zhao D, Tian T, Hong L, Jiang T, Zeng J. Modeling multi-species RNA modification through multi-task curriculum learning. Nucleic Acids Res 2021; 49:3719-3734. [PMID: 33744973 PMCID: PMC8053129 DOI: 10.1093/nar/gkab124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
N6-methyladenosine (m6A) is the most pervasive modification in eukaryotic mRNAs. Numerous biological processes are regulated by this critical post-transcriptional mark, such as gene expression, RNA stability, RNA structure and translation. Recently, various experimental techniques and computational methods have been developed to characterize the transcriptome-wide landscapes of m6A modification for understanding its underlying mechanisms and functions in mRNA regulation. However, the experimental techniques are generally costly and time-consuming, while the existing computational models are usually designed only for m6A site prediction in a single-species and have significant limitations in accuracy, interpretability and generalizability. Here, we propose a highly interpretable computational framework, called MASS, based on a multi-task curriculum learning strategy to capture m6A features across multiple species simultaneously. Extensive computational experiments demonstrate the superior performances of MASS when compared to the state-of-the-art prediction methods. Furthermore, the contextual sequence features of m6A captured by MASS can be explained by the known critical binding motifs of the related RNA-binding proteins, which also help elucidate the similarity and difference among m6A features across species. In addition, based on the predicted m6A profiles, we further delineate the relationships between m6A and various properties of gene regulation, including gene expression, RNA stability, translation, RNA structure and histone modification. In summary, MASS may serve as a useful tool for characterizing m6A modification and studying its regulatory code. The source code of MASS can be downloaded from https://github.com/mlcb-thu/MASS.
Collapse
Affiliation(s)
- Yuanpeng Xiong
- Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xuan He
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Tingzhong Tian
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Lixiang Hong
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
- Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Wardowska A. m6A RNA Methylation in Systemic Autoimmune Diseases-A New Target for Epigenetic-Based Therapy? Pharmaceuticals (Basel) 2021; 14:ph14030218. [PMID: 33807762 PMCID: PMC8001529 DOI: 10.3390/ph14030218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
The general background of autoimmune diseases is a combination of genetic, epigenetic and environmental factors, that lead to defective immune reactions. This erroneous immune cell activation results in an excessive production of autoantibodies and prolonged inflammation. During recent years epigenetic mechanisms have been extensively studied as potential culprits of autoreactivity. Alike DNA and proteins, also RNA molecules are subjected to an extensive repertoire of chemical modifications. N6-methyladenosine is the most prevalent form of internal mRNA modification in eukaryotic cells and attracts increasing attention due to its contribution to human health and disease. Even though m6A is confirmed as an essential player in immune response, little is known about its role in autoimmunity. Only few data have been published up to date in the field of RNA methylome. Moreover, only selected autoimmune diseases have been studied in respect of m6A role in their pathogenesis. In this review, I attempt to present all available research data regarding m6A alterations in autoimmune disorders and appraise its role as a potential target for epigenetic-based therapies.
Collapse
Affiliation(s)
- Anna Wardowska
- Department of Embryology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
29
|
Tang L, Wei X, Li T, Chen Y, Dai Z, Lu C, Zheng G. Emerging Perspectives of RNA N 6-methyladenosine (m 6A) Modification on Immunity and Autoimmune Diseases. Front Immunol 2021; 12:630358. [PMID: 33746967 PMCID: PMC7973041 DOI: 10.3389/fimmu.2021.630358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
N 6-methyladenosine (m6A) modification, the addition of a methylation decoration at the position of N6 of adenosine, is one of the most prevalent modifications among the over 100 known chemical modifications of RNA. Numerous studies have recently characterized that RNA m6A modification functions as a critical post-transcriptional regulator of gene expression through modulating various aspects of RNA metabolism. In this review, we will illustrate the current perspectives on the biological process of m6A methylation. Then we will further summarize the vital modulatory effects of m6A modification on immunity, viral infection, and autoinflammatory disorders. Recent studies suggest that m6A decoration plays an important role in immunity, viral infection, and autoimmune diseases, thereby providing promising biomarkers and therapeutic targets for viral infection and autoimmune disorders.
Collapse
Affiliation(s)
- Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingyan Wei
- Department of Pathogen Biology, The Chinses Center for Disease Control and Prevention, Beijing, China
| | - Tong Li
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Chuanjian Lu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Fan D, Xia Y, Lu C, Ye Q, Xi X, Wang Q, Wang Z, Wang C, Xiao C. Regulatory Role of the RNA N 6-Methyladenosine Modification in Immunoregulatory Cells and Immune-Related Bone Homeostasis Associated With Rheumatoid Arthritis. Front Cell Dev Biol 2021; 8:627893. [PMID: 33553167 PMCID: PMC7859098 DOI: 10.3389/fcell.2020.627893] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease for which the etiology has not been fully elucidated. Previous studies have shown that the development of RA has genetic and epigenetic components. As one of the most highly abundant RNA modifications, the N6-methyladenosine (m6A) modification is necessary for the biogenesis and functioning of RNA, and modification aberrancies are associated with various diseases. However, the specific functions of m6A in the cellular processes of RA remain unclear. Recent studies have revealed the relationship between m6A modification and immune cells associated with RA. Therefore, in this review, we focused on discussing the functions of m6A modification in the regulation of immune cells and immune-related bone homeostasis associated with RA. In addition, to gain a better understanding of the progress in this field of study and provide the proper direction and suggestions for further study, clinical application studies of m6A modification were also summarized.
Collapse
Affiliation(s)
- Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ya Xia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinbin Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Xi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Wang
- Clinical Medical School (China-Japan Friendship Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Chengyuan Wang
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.,Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
31
|
Xiao L, Zhao Q, Hu B, Wang J, Liu C, Xu H. METTL3 promotes IL-1β-induced degeneration of endplate chondrocytes by driving m6A-dependent maturation of miR-126-5p. J Cell Mol Med 2020; 24:14013-14025. [PMID: 33098220 PMCID: PMC7754036 DOI: 10.1111/jcmm.16012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8.
Collapse
Affiliation(s)
- Liang Xiao
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, China
| | - Quanlai Zhao
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, China
| | - Bo Hu
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, China
| | - Jing Wang
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, China
| | - Chen Liu
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, China
| | - Hongguang Xu
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
32
|
Sun S, Han Q, Liang M, Zhang Q, Zhang J, Cao J. Downregulation of m 6 A reader YTHDC2 promotes tumor progression and predicts poor prognosis in non-small cell lung cancer. Thorac Cancer 2020; 11:3269-3279. [PMID: 32956555 PMCID: PMC7606000 DOI: 10.1111/1759-7714.13667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Background m6A modification affects the pathological progress of many diseases by affecting RNA stability and translocation. YTHDC2, a m6A reader, is associated with multiple cancers; however, little is known of its role in non‐small cell lung cancer (NSCLC). Methods The GEPIA, Oncomine and GEO databases were analyzed to assess expression of YTHDC2 in NSCLC patients. Quantitative polymerase chain reaction, western blot and immunohistochemistry were used to detect YTHDC2 expression in different NSCLC cell lines (H1299, H460, H292 and A549) and patients. The effects of YTHDC2 on NSCLC cell lines (A549 and H1299) proliferation and migration were employed using CCK8 and transwell assays. The potential target RNAs of YTHDC2 were obtained from the POSTAR database. Functional enrichment analysis of YTHDC2 targeted RNAs was performed using the Metascape database. Results GEPIA, Oncomine and GEO databases showed low expression of YTHDC2 in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. YTHDC2 expression was significantly decreased in different NSCLC cell lines and our clinical samples. Moreover, low expression of YTHDC2 was significantly associated with poor differentiation, lymph node metastasis, tumor size and stage. In addition, YTHDC2 could suppress the proliferation and migration ability of A549 and H1299 cell lines. Kaplan‐Meier Plotter database analysis revealed that patients with low level of YTHDC2 had a significantly poor prognosis. Finally, functional enrichment analysis of YTHDC2 targeted RNAs indicated several enriched pathways related to cancer. Conclusions These findings elucidate that YTHDC2 suppresses tumorigenesis in NSCLC, indicating that YTHDC2 may be a promising therapeutic target for NSCLC. Key points Significant findings of the study This study demonstrated that the downregulation of YTHDC2 promotes tumor progression and predicts poor prognosis in non‐small cell lung cancer (NSCLC). What this study adds YTHDC2 might be a promising therapeutic target for non‐small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Shulei Sun
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Han
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, China
| | - Maoli Liang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
33
|
Zhang W, He L, Liu Z, Ren X, Qi L, Wan L, Wang W, Tu C, Li Z. Multifaceted Functions and Novel Insight Into the Regulatory Role of RNA N 6-Methyladenosine Modification in Musculoskeletal Disorders. Front Cell Dev Biol 2020; 8:870. [PMID: 32984346 PMCID: PMC7493464 DOI: 10.3389/fcell.2020.00870] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
RNA modifications have emerged as key regulators of transcript expression in diverse physiological and pathological processes. As one of the most prevalent types of RNA modifications, N6-methyladenosine (m6A) has become the highlight in modulation of various diseases through interfering RNA splicing, translation, nuclear export, and decay. In many cases, the detailed functions of m6A in cellular processes and diseases remain unclear. Notably, recent studies have determined the relationship between m6A modification and musculoskeletal disorders containing osteosarcoma, osteoarthritis, rheumatoid arthritis, osteoporosis, etc. Herein, this review comprehensively summarizes the recent advances of m6A modification in pathogenesis and progression of musculoskeletal diseases. Specifically, the underlying molecular mechanisms, detection technologies, regulatory functions, clinical implications, and future perspectives of m6A in musculoskeletal disorders are discussed, with the aim to provide a novel insight into their association.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lile He
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Hua R, Liu J, Fu W, Zhu J, Zhang J, Cheng J, Li S, Zhou H, Xia H, He J, Zhuo Z. ALKBH5 gene polymorphisms and Wilms tumor risk in Chinese children: A five-center case-control study. J Clin Lab Anal 2020; 34:e23251. [PMID: 32091154 PMCID: PMC7307367 DOI: 10.1002/jcla.23251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor is a frequently diagnosed renal cancer among children with unclear genetic causes. N6-methyladenosine (m6 A) modification genes play critical roles in tumorigenesis. However, whether genetic variations of m6 A modification genes predispose to Wilms tumor remain unclear. ALKBH5 (AlkB homolog 5), a crucial member of m6 A modification genes, encodes a demethylase that functions to reverse m6 A RNA methylation. METHODS Herein, we evaluated the association of single nucleotide polymorphisms (SNPs) in the m6 A modification gene ALKBH5 and Wilms tumor susceptibility in a large multi-center case-control study. A total of 414 Wilms tumor cases and 1199 healthy controls were genotyped for ALKBH5 rs1378602 and rs8400 polymorphisms by TaqMan. RESULTS No significant association was detected between these two polymorphisms and Wilms tumor risk. Moreover, 1, 2, and 1-2 protective genotypes (rs1378602 AG/AA or rs8400 GG) did not significantly reduce Wilms tumor risk, compared with risk genotypes only. Stratification analysis revealed a significant relationship between rs1378602 AG/AA genotypes and decreased Wilms tumor risk in children in clinical stage I diseases [adjusted odds ratio (OR) = 0.56, 95% confidence interval (CI) = 0.32-0.98, P = .042]. The presence of 1-2 protective genotypes was correlated with decreased Wilms tumor risk in subgroups of age > 18 months, when compared to the absence of protective genotypes (adjusted OR = 0.74, 95% CI = 0.56-0.98, P = .035). CONCLUSION Collectively, our results demonstrate that ALKBH5 SNPs may exert a weak influence on susceptibility to Wilms tumor. This finding increases the understanding of the role of the m6 A gene in tumorigenesis of Wilms tumor.
Collapse
Affiliation(s)
- Rui‐Xi Hua
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jiabin Liu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Wen Fu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jinhong Zhu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Jiao Zhang
- Department of Pediatric Surgerythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiwen Cheng
- Department of Pediatric Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Suhong Li
- Department of PathologyChildren Hospital and Women Health Center of ShanxiTaiyuanChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huimin Xia
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Zhenjian Zhuo
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
35
|
Sun X, Dai Y, Tan G, Liu Y, Li N. Integration Analysis of m 6A-SNPs and eQTLs Associated With Sepsis Reveals Platelet Degranulation and Staphylococcus aureus Infection are Mediated by m 6A mRNA Methylation. Front Genet 2020; 11:7. [PMID: 32174955 PMCID: PMC7054457 DOI: 10.3389/fgene.2020.00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a major threat with high mortality rate for critically ill patients. Response to pathogen infection by the host immune system is a key biological process involved in the onset and development of sepsis. Heterogeneous host genome variation, especially single nucleotide polymorphisms (SNPs), has long been suggested to contribute to differences in disease progression. However, the function of SNPs located in non-coding regions remains to be elucidated. Recently, m6A mRNA modification levels were revealed to differ at SNPs. As m6A is a crucial regulator of gene expression, these SNPs might control genes by changing the m6A level on mRNA. To investigate the potential role of m6A SNPs in sepsis, we integrated m6A-SNP and expression quantitative trait loci (eQTLs) data. Analysis revealed 15,720 m6A-cis-eQTLs and 381 m6A-trans-eQTLs associated with sepsis. We identified 1321 genes as locations of m6A-cis-eQTLs. These were enriched in platelet degranulation and Staphylococcus aureus infection pathways, which are vital for the pathophysiological process of sepsis. We conclude that m6A modification of mRNA plays a very important role in sepsis, with m6A-cis-eQTLs potentially having the most effect on individual variation in sepsis progression.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Yishuang Dai
- Department of Outpatient operating room, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Guoliang Tan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Yuqi Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Neng Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
36
|
Lin W, Xu H, Wu Y, Wang J, Yuan Q. In silico genome‐wide identification of m6A‐associated SNPs as potential functional variants for periodontitis. J Cell Physiol 2019; 235:900-908. [PMID: 31245852 DOI: 10.1002/jcp.29005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Weimin Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hao Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Periodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Oral Implantology, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
37
|
METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte. Biochem Biophys Res Commun 2019; 516:22-27. [PMID: 31186141 DOI: 10.1016/j.bbrc.2019.05.168] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study was to investigate the functional role of RNA methyltransferase METTL3, an enzyme catalyzes the formation of N6-methyladenosine (m6A) on the target mRNA, in the development of osteoarthritis (OA) and the underlying mechanism. METHODS Cytokine IL-1β was used to stimulate the chondroprogenitor cell line ATDC5 cells to mimic the inflammatory condition in vitro. The level of METTL3 mRNA and m6A as well as inflammatory cytokines were detected by qRT-PCR. Cell activity was detected by CCK-8. The rate of apoptotic cell was measured by flow cytometry. Western blot was used to detect the levels of NF-κB signaling molecules and collagen in cells. Methylation inhibitor cycloleucine and methyl donor betaine were used to treat collagenase-induced OA mice. RESULTS In IL-1β-treated ATDC5 cells, the METTL3 mRNA levels and the percentage of m6A methylated mRNA of total mRNA were increased in a dose-dependent manner. Silencing of METTL3 by shRNA reduced the percentage of IL-1β-induced apoptosis, suppressed IL-1β-induced increased inflammatory cytokines levels and activation of NF-κB signaling in chondrocytes. Moreover, silencing of METTL3 promotes degradation of extracellular matrix (ECM) by reducing the expression of MMP-13 and Coll X, elevating the expression of Aggrecan and Coll II. In a OA mouse model induced by collagenase, injection of methylation inhibitor cycloleucine or methyl donor betaine does not affects METTL3 mRNA expression, but significantly inhibits or promotes the total level of m6A as well as inflammatory condition and ECM degradation, respectively. CONCLUSION METTL3 has a functional role in mediates osteoarthritis progression by regulating NF-κB signaling and ECM synthesis in chondrocytes that shed insight on developing preventive and curative strategies for OA by focusing on METTL3 and mRNA methylation.
Collapse
|
38
|
Tang Y, Chen K, Wu X, Wei Z, Zhang SY, Song B, Zhang SW, Huang Y, Meng J. DRUM: Inference of Disease-Associated m 6A RNA Methylation Sites From a Multi-Layer Heterogeneous Network. Front Genet 2019; 10:266. [PMID: 31001320 PMCID: PMC6456716 DOI: 10.3389/fgene.2019.00266] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/11/2019] [Indexed: 01/27/2023] Open
Abstract
Recent studies have revealed that the RNA N 6-methyladenosine (m6A) modification plays a critical role in a variety of biological processes and associated with multiple diseases including cancers. Till this day, transcriptome-wide m6A RNA methylation sites have been identified by high-throughput sequencing technique combined with computational methods, and the information is publicly available in a few bioinformatics databases; however, the association between individual m6A sites and various diseases are still largely unknown. There are yet computational approaches developed for investigating potential association between individual m6A sites and diseases, which represents a major challenge in the epitranscriptome analysis. Thus, to infer the disease-related m6A sites, we implemented a novel multi-layer heterogeneous network-based approach, which incorporates the associations among diseases, genes and m6A RNA methylation sites from gene expression, RNA methylation and disease similarities data with the Random Walk with Restart (RWR) algorithm. To evaluate the performance of the proposed approach, a ten-fold cross validation is performed, in which our approach achieved a reasonable good performance (overall AUC: 0.827, average AUC 0.867), higher than a hypergeometric test-based approach (overall AUC: 0.7333 and average AUC: 0.723) and a random predictor (overall AUC: 0.550 and average AUC: 0.486). Additionally, we show that a number of predicted cancer-associated m6A sites are supported by existing literatures, suggesting that the proposed approach can effectively uncover the underlying epitranscriptome circuits of disease mechanisms. An online database DRUM, which stands for disease-associated ribonucleic acid methylation, was built to support the query of disease-associated RNA m6A methylation sites, and is freely available at: www.xjtlu.edu.cn/biologicalsciences/drum.
Collapse
Affiliation(s)
- Yujiao Tang
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kunqi Chen
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Xiangyu Wu
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Zhen Wei
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Song-Yao Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Bowen Song
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Yufei Huang
- Department of Epidemiology and Biostatistics, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jia Meng
- Department of Biological Sciences, Research Center for Precision Medicine, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of & Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
39
|
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Comparative study for haplotype block partitioning methods - Evidence from chromosome 6 of the North American Rheumatoid Arthritis Consortium (NARAC) dataset. PLoS One 2019; 13:e0209603. [PMID: 30596705 PMCID: PMC6312333 DOI: 10.1371/journal.pone.0209603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 11/19/2022] Open
Abstract
Haplotype-based methods compete with “one-SNP-at-a-time” approaches on being preferred for association studies. Chromosome 6 contains most of the known genetic biomarkers for rheumatoid arthritis (RA) disease. Therefore, chromosome 6 serves as a benchmark for the haplotype methods testing. The aim of this study is to test the North American Rheumatoid Arthritis Consortium (NARAC) dataset to find out if haplotype block methods or single-locus approaches alone can sufficiently provide the significant single nucleotide polymorphisms (SNPs) associated with RA. In addition, could we be satisfied with only one method of the haplotype block methods for partitioning chromosome 6 of the NARAC dataset? In the NARAC dataset, chromosome 6 comprises 35,574 SNPs for 2,062 individuals (868 cases, 1,194 controls). Individual SNP approach and three haplotype block methods were applied to the NARAC dataset to identify the RA biomarkers. We employed three haplotype partitioning methods which are confidence interval test (CIT), four gamete test (FGT), and solid spine of linkage disequilibrium (SSLD). P-values after stringent Bonferroni correction for multiple testing were measured to assess the strength of association between the genetic variants and RA susceptibility. Moreover, the block size (in base pairs (bp) and number of SNPs included), number of blocks, percentage of uncovered SNPs by the block method, percentage of significant blocks from the total number of blocks, number of significant haplotypes and SNPs were used to compare among the three haplotype block methods. Individual SNP, CIT, FGT, and SSLD methods detected 432, 1,086, 1,099, and 1,322 associated SNPs, respectively. Each method identified significant SNPs that were not detected by any other method (Individual SNP: 12, FGT: 37, CIT: 55, and SSLD: 189 SNPs). 916 SNPs were discovered by all the three haplotype block methods. 367 SNPs were discovered by the haplotype block methods and the individual SNP approach. The P-values of these 367 SNPs were lower than those of the SNPs uniquely detected by only one method. The 367 SNPs detected by all the methods represent promising candidates for RA susceptibility. They should be further investigated for the European population. A hybrid technique including the four methods should be applied to detect the significant SNPs associated with RA for chromosome 6 of the NARAC dataset. Moreover, SSLD method may be preferred for its favored benefits in case of selecting only one method.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
- * E-mail: ,
| | - Mai S. Mabrouk
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Ayman M. Eldeib
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
40
|
Chen X, Hua W, Huang X, Chen Y, Zhang J, Li G. Regulatory Role of RNA N 6-Methyladenosine Modification in Bone Biology and Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:911. [PMID: 31998240 PMCID: PMC6965011 DOI: 10.3389/fendo.2019.00911] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a metabolic skeletal disorder in which bone mass is depleted and bone structure is destroyed to the degree that bone becomes fragile and prone to fractures. Emerging evidence suggests that N6-methyladenosine (m6A) modification, a novel epitranscriptomic marker, has a significant role in bone development and metabolism. M6A modification not only participates in bone development, but also plays important roles as writers and erasers in the osteoporosis. M6A methyltransferase METTL3 and demethyltransferase FTO involves in the delicate process between adipogenesis differentiation and osteogenic differentiation, which is important for the pathological development of osteoporosis. Conditional knockdown of the METTL3 in bone marrow stem cells (BMSCs) could suppress PI3K-Akt signaling, limit the expression of bone formation-related genes (such as Runx2 and Osterix), restrain the expression of vascular endothelial growth factor (VEGF) and down-regulate the decreased translation efficiency of parathyroid hormone receptor-1 mRNA. Meanwhile, knockdown of the METTL3 significantly promoted the adipogenesis process and janus kinase 1 (JAK1) protein expression via an m6A-dependent way. Specifically, there was a negative correlation between METTL3 expression and porcine BMSCs adipogenesis. The evidence above suggested that the relationship between METTL3 expression and adipogenesis was inverse, and osteogenesis was positive, respectively. Similarly, FTO regulated for BMSCs fate determination during osteoporosis through the GDF11-FTO-PPARγ axis, prompting the shift of MSC lineage commitment to adipocyte and inhibiting bone formation during osteoporosis. In this systematic review, we summarize the most up-to-date evidence of m6A RNA modification in osteoporosis and highlight the potential role of m6A in prevention, treatment, and management of osteoporosis.
Collapse
Affiliation(s)
- Xuejiao Chen
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenfeng Hua
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuming Chen
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junguo Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada
- *Correspondence: Guowei Li
| |
Collapse
|