1
|
Arango J, Wolc A, Owen J, Weston K, Fulton JE. Genetic Variation in Natural and Induced Antibody Responses in Layer Chickens. Animals (Basel) 2024; 14:1623. [PMID: 38891669 PMCID: PMC11171384 DOI: 10.3390/ani14111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Selection of livestock for disease resistance is challenging due to the difficulty in obtaining reliable phenotypes. Antibodies are immunological molecules that provide direct and indirect defenses against infection and link the activities of both the innate and adaptive compartments of the immune system. As a result, antibodies have been used as a trait in selection for immune defense. The goal of this study was to identify genomic regions associated with natural and induced antibodies in chickens using low-pass sequencing. Enzyme-linked immunosorbent assays were used to quantify innate (natural) antibodies binding KLH, OVA, and PHA and induced (adaptive) antibodies binding IBD, IBV, NDV, and REO. We collected plasma from four White Leghorn (WL), two White Plymouth Rock (WPR), and two Rhode Island Red (RIR) lines. Samples numbers ranged between 198 and 785 per breed. GWAS was performed within breed on data pre-adjusted for Line-Hatch-Sex effects using GCTA. A threshold of p = 10-6 was used to select genes for downstream annotation and enrichment analysis with SNPEff and Panther. Significant enrichment was found for the defense/immunity protein, immunoglobulin receptor superfamily, and the antimicrobial response protein in RIR; and the immunoglobulin receptor superfamily, defense/immunity protein, and protein modifying enzyme in WL. However, none were present in WPR, but some of the selected SNP were annotated in immune pathways. This study provides new insights regarding the genetics of the antibody response in layer chickens.
Collapse
Affiliation(s)
- Jesus Arango
- Hy-Line International, Dallas Center, IA 50063, USA; (J.A.); (J.E.F.)
- Cobb Genetics, Siloam Springs, AR 72761, USA
| | - Anna Wolc
- Hy-Line International, Dallas Center, IA 50063, USA; (J.A.); (J.E.F.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jeb Owen
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; (J.O.); (K.W.)
| | - Kendra Weston
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; (J.O.); (K.W.)
| | - Janet E. Fulton
- Hy-Line International, Dallas Center, IA 50063, USA; (J.A.); (J.E.F.)
| |
Collapse
|
2
|
Mseleku C, Chimonyo M, Slotow R, Mhlongo LC, Ngidi MSC. Contribution of Village Chickens in Sustainable and Healthy Food Systems for Children along a Rural-Urban Gradient: A Systematic Review. Foods 2023; 12:3553. [PMID: 37835206 PMCID: PMC10572642 DOI: 10.3390/foods12193553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Achieving sustainable and healthy food systems in support of human and planetary health is a global challenge. We systematically reviewed papers (n = 2322) showing how village chicken products (meat, eggs, and offal) contribute to sustainable and healthy food systems for children along a rural-urban gradient. A total of 72 articles, representing all different sections covered in this review, were finally included. Production of village chickens contributed positively on livestock-derived food consumption by children. Households who owned chickens were likely to move from medium to high dietary diversity. Children from households that owned chickens had lower odds of anemia (1.07) and higher height-for-age (HAZ) and weight-for-age (WAZ) scores. Egg intervention increased HAZ and WAZ for children by 0.63 [95% confidence interval (CI), 0.38-0.88] and 0.61 [95% CI, 0.45-0.77], respectively. Village chicken ownership had positive effect on children's poultry meat and egg consumption. Per capita consumption of chicken by girls and boys combined was 38.2 g/day, where girls had 36.9 g/day and boys had 39.4 g/day. Children from households that owned chickens consumed eggs 2.8 more times per week compared to children from households without chickens. Moving along a rural-urban gradient, village chicken production was less common. Improved production and quality of village chicken products, and policies supporting optimal maternal and child intake these products are required.
Collapse
Affiliation(s)
- Cresswell Mseleku
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa; (C.M.); (L.C.M.)
| | - Michael Chimonyo
- Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa;
| | - Rob Slotow
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa;
| | - Lindokuhle Christopher Mhlongo
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa; (C.M.); (L.C.M.)
| | - Mjabuliseni S. C. Ngidi
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa; (C.M.); (L.C.M.)
| |
Collapse
|
3
|
Genetic Analyses of Response of Local Ghanaian Tanzanian Chicken Ecotypes to a Natural Challenge with Velogenic Newcastle Disease Virus. Animals (Basel) 2022; 12:ani12202755. [PMID: 36290141 PMCID: PMC9597780 DOI: 10.3390/ani12202755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Newcastle disease (ND) is a global threat to poultry production and often has a major impact on chicken welfare and the livelihoods of rural poultry farmers. We exposed unvaccinated Ghanaian and Tanzanian local chicken ecotypes to velogenic Newcastle disease virus strains, and measured response traits to understand the genetic basis of ND. We identified heritable ND response traits and revealed differences in survival between Ghanaian and Tanzanian local chicken ecotype birds. Our findings indicate that velogenic ND resistance could be improved through selective breeding of local chicken ecotypes in regions where the disease is endemic. Abstract Newcastle disease is a devastating poultry disease that often causes significant economic losses in poultry in the developing countries of Africa, Asia, as well as South and Central America. Velogenic Newcastle disease virus (NDV) outbreaks are associated with high mortalities, which can threaten household livelihoods, especially in the rural areas, and lead to loss of high-quality proteins in the form of meat and eggs, as well as household purchasing power. In this study, we exposed unvaccinated Ghanaian and Tanzanian chickens of six local ecotypes to velogenic NDV strains, measured NDV response traits, sequenced their DNA on a genotyping-by-sequencing platform, and performed variance component analyses. The collected phenotypes included: growth rates (pre- and post-exposure); lesion scores (gross lesion severity) in the trachea, proventriculus, intestine, and cecal tonsils; natural antibody levels; anti-NDV antibody levels at 7 days post exposure (dpe); tear and cloacal viral load at 2, 4, and 6 dpe; and survival time. Heritability estimates were low to moderate, ranging from 0.11 for average lesion scores to 0.36 for pre-exposure growth rate. Heritability estimates for survival time were 0.23 and 0.27 for the Tanzanian and Ghanaian ecotypes, respectively. Similar heritability estimates were observed when data were analyzed either separately or combined for the two countries. Survival time was genetically negatively correlated with lesion scores and with viral load. Results suggested that response to mesogenic or velogenic NDV of these local chicken ecotypes could be improved by selective breeding. Chickens that are more resilient to velogenic NDV can improve household livelihoods in developing countries.
Collapse
|
4
|
Botchway P, Amuzu-Aweh E, Naazie A, Aning G, Otsyina H, Saelao P, Wang Y, Zhou H, Walugembe M, Dekkers J, Lamont S, Gallardo R, Kelly T, Bunn D, Kayang B. Host response to successive challenges with lentogenic and velogenic Newcastle disease virus in local chickens of Ghana. Poult Sci 2022; 101:102138. [PMID: 36126448 PMCID: PMC9489513 DOI: 10.1016/j.psj.2022.102138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Newcastle disease (ND) is a highly contagious viral disease that constantly threatens poultry production. The velogenic (highly virulent) form of ND inflicts the most damage and can lead to 100% mortality in unvaccinated village chicken flocks. This study sought to characterize responses of local chickens in Ghana after challenging them with lentogenic and velogenic Newcastle disease virus (NDV) strains. At 4 wk of age, chicks were challenged with lentogenic NDV. Traits measured were pre- and post-lentogenic infection growth rates (GR), viral load at 2 and 6 d post-lentogenic infection (DPI), viral clearance rate and antibody levels at 10 DPI. Subsequently, the chickens were naturally exposed to velogenic NDV (vNDV) after anti-NDV antibody titers had waned to levels ≤1:1,700. Body weights and blood samples were again collected for analysis. Finally, chickens were euthanized and lesion scores (LS) across tissues were recorded. Post-velogenic exposure GR; antibody levels at 21 and 34 days post-velogenic exposure (DPE); LS for trachea, proventriculus, intestines, and cecal tonsils; and average LS across tissues were measured. Variance components and heritabilities were estimated for all traits using univariate animal models. Mean pre- and post-lentogenic NDV infection GRs were 6.26 g/day and 7.93 g/day, respectively, but mean post-velogenic NDV exposure GR was −1.96 g/day. Mean lesion scores ranged from 0.52 (trachea) to 1.33 (intestine), with males having significantly higher (P < 0.05) lesion scores compared to females. Heritability estimates for the lentogenic NDV trial traits ranged from moderate (0.23) to high (0.55) whereas those for the vNDV natural exposure trial were very low (≤ 0.08). Therefore, in contrast to the vNDV exposure trial, differences in the traits measured in the lentogenic challenge were more affected by genetics and thus selection for these traits may be more feasible compared to those following vNDV exposure. Our results can form the basis for identifying local chickens with improved resilience in the face of NDV infection for selective breeding to improve productivity.
Collapse
|
5
|
Tudeka CK, Aning GK, Naazie A, Botchway PK, Amuzu-Aweh EN, Agbenyegah GK, Enyetornye B, Fiadzomor D, Saelao P, Wang Y, Kelly TR, Gallardo R, Dekkers JCM, Lamont SJ, Zhou H, Kayang BB. Response of three local chicken ecotypes of Ghana to lentogenic and velogenic Newcastle disease virus challenge. Trop Anim Health Prod 2022; 54:134. [PMID: 35266056 DOI: 10.1007/s11250-022-03124-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
Abstract
This study was carried out to assess the response of three Ghanaian local chicken ecotypes to LaSota (lentogenic) and virulent field strains of Newcastle disease virus (NDV). Local chickens sampled from the Interior Savannah (IS), Forest (FO) and Coastal Savannah (CS) agro-ecological zones were bred and their offspring were challenged with LaSota NDV at 4 weeks of age. The LaSota challenge was replicated four times with different chicken groups. A total of 1438 chicks comprising 509 Coastal Savannah, 518 Forest and 411 Interior Savannah ecotypes were used. Pre- and post-challenge anti-NDV antibody titre levels were determined via ELISA assays. A second trial was conducted by introducing sick birds infected with virulent NDV to a flock of immunologically naïve chickens at 4 weeks old. Body weights were measured pre- and post-infection. Sex of the chickens was determined using a molecular method. In both trials, there was no significant difference among ecotypes in body weight and growth rate. In the LaSota trial, anti-NDV antibody titre did not differ by ecotype or sex. However, there was a positive linear relationship between body weight and antibody titre. In the velogenic NDV trial, survivability and lesion scores were similar among the three ecotypes. This study confirms that a relatively high dose of LaSota (NDV) challenge has no undesirable effect on Ghanaian local chicken ecotypes. All three Ghanaian local chicken ecotypes were susceptible to velogenic NDV challenge. Resistance to NDV by Ghanaian local chickens appears to be determined more by the individual's genetic makeup than by their ecotype.
Collapse
Affiliation(s)
- Christopher K Tudeka
- Department of Animal Science, University of Ghana, P.O. Box LG 226, Legon, Accra, Ghana
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- Livestock and Poultry Research Centre, University of Ghana, P.O. Box LG 38, Legon, Accra, Ghana
| | - George K Aning
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- School of Veterinary Medicine, University of Ghana, P.O. Box LG 68, Legon, Accra, Ghana
| | - Augustine Naazie
- Department of Animal Science, University of Ghana, P.O. Box LG 226, Legon, Accra, Ghana
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Princess K Botchway
- Department of Animal Science, University of Ghana, P.O. Box LG 226, Legon, Accra, Ghana
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Esinam N Amuzu-Aweh
- Department of Animal Science, University of Ghana, P.O. Box LG 226, Legon, Accra, Ghana
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Godwin K Agbenyegah
- Department of Animal Science, University of Ghana, P.O. Box LG 226, Legon, Accra, Ghana
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- Animal Production Directorate, Ministry of Food and Agriculture, Accra, Ghana
| | - Ben Enyetornye
- Department of Animal Science, University of Ghana, P.O. Box LG 226, Legon, Accra, Ghana
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- School of Veterinary Medicine, University of Ghana, P.O. Box LG 68, Legon, Accra, Ghana
| | - Diana Fiadzomor
- Department of Animal Science, University of Ghana, P.O. Box LG 226, Legon, Accra, Ghana
| | - Perot Saelao
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Ying Wang
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Terra R Kelly
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Rodrigo Gallardo
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jack C M Dekkers
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Susan J Lamont
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Huaijun Zhou
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Boniface B Kayang
- Department of Animal Science, University of Ghana, P.O. Box LG 226, Legon, Accra, Ghana.
- Feed the Future Innovation Lab for Genomics To Improve Poultry, Department of Animal Science, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Habimana R, Ngeno K, Okeno TO, Hirwa CDA, Keambou Tiambo C, Yao NK. Genome-Wide Association Study of Growth Performance and Immune Response to Newcastle Disease Virus of Indigenous Chicken in Rwanda. Front Genet 2021; 12:723980. [PMID: 34745207 PMCID: PMC8570395 DOI: 10.3389/fgene.2021.723980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
A chicken genome has several regions with quantitative trait loci (QTLs). However, replication and confirmation of QTL effects are required particularly in African chicken populations. This study identified single nucleotide polymorphisms (SNPs) and putative genes responsible for body weight (BW) and antibody response (AbR) to Newcastle disease (ND) in Rwanda indigenous chicken (IC) using genome-wide association studies (GWAS). Multiple testing was corrected using chromosomal false detection rates of 5 and 10% for significant and suggestive thresholds, respectively. BioMart data mining and variant effect predictor tools were used to annotate SNPs and candidate genes, respectively. A total of four significant SNPs (rs74098018, rs13792572, rs314702374, and rs14123335) significantly (p ≤ 7.6E-5) associated with BW were identified on chromosomes (CHRs) 8, 11, and 19. In the vicinity of these SNPs, four genes such as pre-B-cell leukaemia homeobox 1 (PBX1), GPATCH1, MPHOSPH6, and MRM1 were identified. Four other significant SNPs (rs314787954, rs13623466, rs13910430, and rs737507850) all located on chromosome 1 were strongly (p ≤ 7.6E-5) associated with chicken antibody response to ND. The closest genes to these four SNPs were cell division cycle 16 (CDC16), zinc finger, BED-type containing 1 (ZBED1), myxovirus (influenza virus) resistance 1 (MX1), and growth factor receptor bound protein 2 (GRB2) related adaptor protein 2 (GRAP2). Besides, other SNPs and genes suggestively (p ≤ 1.5E-5) associated with BW and antibody response to ND were reported. This work offers a useful entry point for the discovery of causative genes accountable for essential QTLs regulating BW and antibody response to ND traits. Results provide auspicious genes and SNP-based markers that can be used in the improvement of growth performance and ND resistance in IC populations based on gene-based and/or marker-assisted breeding selection.
Collapse
Affiliation(s)
- Richard Habimana
- College of Agriculture, Animal Science and Veterinary Medicine, University of Rwanda, Kigali, Rwanda.,Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | - Kiplangat Ngeno
- Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | - Tobias Otieno Okeno
- Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | | | - Christian Keambou Tiambo
- Centre for Tropical Livestock Genetics and Health, International Livestock Research Institute, Nairobi, Kenya
| | - Nasser Kouadio Yao
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
7
|
Hu G, Do DN, Karimi K, Miar Y. Genetic and phenotypic parameters for Aleutian disease tests and their correlations with pelt quality, reproductive performance, packed-cell volume, and harvest length in mink. J Anim Sci 2021; 99:6323592. [PMID: 34279039 DOI: 10.1093/jas/skab216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/16/2021] [Indexed: 11/14/2022] Open
Abstract
Aleutian disease (AD), caused by the Aleutian mink disease virus (AMDV), is a major health concern that results in global economic losses to the mink industry. The unsatisfactory outcome of the culling strategy, immunoprophylaxis, and medical treatment in controlling AD have urged mink farmers to select AD resilient mink based on several detection tests, including enzyme-linked immunosorbent assay (ELISA), counterimmunoelectrophoresis (CIEP), and iodine agglutination test (IAT). However, the genetic analysis of these AD tests and their correlations with pelt quality, reproductive performance, packed-cell volume (PCV), and harvest length (HL) have not been investigated. In this study, data on 5,824 mink were used to estimate the genetic and phenotypic parameters of four AD tests, including two systems of ELISA, CIEP, and IAT, and their genetic and phenotypic correlations with two pelt quality, five female reproductive performance, PCV, and HL traits. Significances (P < 0.05) of fixed effects (sex, year, dam age, and color type), covariates (age at harvest and blood sampling), and random effects (additive genetic, permanent environmental, and maternal effects) were determined under univariate models using ASReml 4.1 software. The genetic and phenotypic parameters for all traits were estimated under bivariate models using ASReml 4.1 software. Estimated heritabilities (±SE) were 0.39 ± 0.06, 0.61 ± 0.07, 0.11 ± 0.07, and 0.26 ± 0.05 for AMDV antigen-based ELISA (ELISA-G), AMDV capsid protein-based ELISA, CIEP, and IAT, respectively. The ELISA-G also showed a moderate repeatability (0.58 ± 0.04) and had significant negative genetic correlations (±SE) with reproductive performance traits (from -0.41 ± 0.16 to -0.49 ± 0.12), PCV (-0.53 ± 0.09), and HL (-0.45 ± 0.16). These results indicated that ELISA-G had the potential to be applied as an indicator trait for genetic selection of AD resilient mink in AD endemic ranches and therefore help mink farmers to reduce the adverse effects caused by AD.
Collapse
Affiliation(s)
- Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| |
Collapse
|
8
|
Gao G, Gao D, Zhao X, Xu S, Zhang K, Wu R, Yin C, Li J, Xie Y, Hu S, Wang Q. Genome-Wide Association Study-Based Identification of SNPs and Haplotypes Associated With Goose Reproductive Performance and Egg Quality. Front Genet 2021; 12:602583. [PMID: 33777090 PMCID: PMC7994508 DOI: 10.3389/fgene.2021.602583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Geese are one of the most economically important waterfowl. However, the low reproductive performance and egg quality of geese hinder the development of the goose industry. The identification and application of genetic markers may improve the accuracy of beneficial trait selection. To identify the genetic markers associated with goose reproductive performance and egg quality traits, we performed a genome-wide association study (GWAS) for body weight at birth (BBW), the number of eggs at 48 weeks of age (EN48), the number of eggs at 60 weeks of age (EN60) and egg yolk color (EYC). The GWAS acquired 2.896 Tb of raw sequencing data with an average depth of 12.44× and identified 9,279,339 SNPs. The results of GWAS showed that 26 SNPs were significantly associated with BBW, EN48, EN60, and EYC. Moreover, five of these SNPs significantly associated with EN48 and EN60 were in a haplotype block on chromosome 35 from 4,512,855 to 4,541,709 bp, oriented to TMEM161A and another five SNPs significantly correlated to EYC were constructed in haplotype block on chromosome 5 from 21,069,009 to 21,363,580, which annotated by TMEM161A, CALCR, TFPI2, and GLP1R. Those genes were enriched in epidermal growth factor-activated receptor activity, regulation of epidermal growth factor receptor signaling pathway. The SNPs, haplotype markers, and candidate genes identified in this study can be used to improve the accuracy of marker-assisted selection for the reproductive performance and egg quality traits of geese. In addition, the candidate genes significantly associated with these traits may provide a foundation for better understanding the mechanisms underlying reproduction and egg quality in geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xianzhi Zhao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | | | - Keshan Zhang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Chunhui Yin
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Jing Li
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qigui Wang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| |
Collapse
|
9
|
Transcriptome Analysis Reveals Inhibitory Effects of Lentogenic Newcastle Disease Virus on Cell Survival and Immune Function in Spleen of Commercial Layer Chicks. Genes (Basel) 2020; 11:genes11091003. [PMID: 32859030 PMCID: PMC7565929 DOI: 10.3390/genes11091003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
As a major infectious disease in chickens, Newcastle disease virus (NDV) causes considerable economic losses in the poultry industry, especially in developing countries where there is limited access to effective vaccination. Therefore, enhancing resistance to the virus in commercial chickens through breeding is a promising way to promote poultry production. In this study, we investigated gene expression changes at 2 and 6 days post inoculation (dpi) at day 21 with a lentogenic NDV in a commercial egg-laying chicken hybrid using RNA sequencing analysis. By comparing NDV-challenged and non-challenged groups, 526 differentially expressed genes (DEGs) (false discovery rate (FDR) < 0.05) were identified at 2 dpi, and only 36 at 6 dpi. For the DEGs at 2 dpi, Ingenuity Pathway Analysis predicted inhibition of multiple signaling pathways in response to NDV that regulate immune cell development and activity, neurogenesis, and angiogenesis. Up-regulation of interferon induced protein with tetratricopeptide repeats 5 (IFIT5) in response to NDV was consistent between the current and most previous studies. Sprouty RTK signaling antagonist 1 (SPRY1), a DEG in the current study, is in a significant quantitative trait locus associated with virus load at 6 dpi in the same population. These identified pathways and DEGs provide potential targets to further study breeding strategy to enhance NDV resistance in chickens.
Collapse
|
10
|
Walugembe M, Amuzu-Aweh EN, Botchway PK, Naazie A, Aning G, Wang Y, Saelao P, Kelly T, Gallardo RA, Zhou H, Lamont SJ, Kayang BB, Dekkers JCM. Genetic Basis of Response of Ghanaian Local Chickens to Infection With a Lentogenic Newcastle Disease Virus. Front Genet 2020; 11:739. [PMID: 32849779 PMCID: PMC7402339 DOI: 10.3389/fgene.2020.00739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease (ND) is a global threat to domestic poultry, especially in rural areas of Africa and Asia, where the loss of entire backyard local chicken flocks often threatens household food security and income. To investigate the genetics of Ghanaian local chicken ecotypes to Newcastle disease virus (NDV), in this study, three popular Ghanaian chicken ecotypes (regional populations) were challenged with a lentogenic NDV strain at 28 days of age. This study was conducted in parallel with a similar study that used three popular Tanzanian local chicken ecotypes and after two companion studies in the United States, using Hy-line Brown commercial laying birds. In addition to growth rate, NDV response traits were measured following infection, including anti-NDV antibody levels [pre-infection and 10 days post-infection (dpi)], and viral load (2 and 6 dpi). Genetic parameters were estimated, and two genome-wide association study analysis methods were used on data from 1,440 Ghanaian chickens that were genotyped on a chicken 600K Single Nucleotide Polymorphism (SNP) chip. Both Ghana and Tanzania NDV challenge studies revealed moderate to high (0.18 – 0.55) estimates of heritability for all traits, except viral clearance where the heritability estimate was not different from zero for the Tanzanian ecotypes. For the Ghana study, 12 quantitative trait loci (QTL) for growth and/or response to NDV from single-SNP analyses and 20 genomic regions that explained more than 1% of genetic variance using the Bayes B method were identified. Seven of these windows were also identified as having at least one significant SNP in the single SNP analyses for growth rate, anti-NDV antibody levels, and viral load at 2 and 6 dpi. An important gene for growth during stress, CHORDC1 associated with post-infection growth rate was identified as a positional candidate gene, as well as other immune related genes, including VAV2, IL12B, DUSP1, and IL17B. The QTL identified in the Ghana study did not overlap with those identified in the Tanzania study. However, both studies revealed QTL with genes vital for growth and immune response during NDV challenge. The Tanzania parallel study revealed an overlapping QTL on chromosome 24 for viral load at 6 dpi with the US NDV study in which birds were challenged with NDV under heat stress. This QTL region includes genes related to immune response, including TIRAP, ETS1, and KIRREL3. The moderate to high estimates of heritability and the identified QTL suggest that host response to NDV of local African chicken ecotypes can be improved through selective breeding to enhance increased NDV resistance and vaccine efficacy.
Collapse
Affiliation(s)
- Muhammed Walugembe
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Esinam N Amuzu-Aweh
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Princess K Botchway
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Augustine Naazie
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - George Aning
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Ying Wang
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Perot Saelao
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Terra Kelly
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States.,School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rodrigo A Gallardo
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Huaijun Zhou
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Boniface B Kayang
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Del Vesco AP, Kaiser MG, Monson MS, Zhou H, Lamont SJ. Genetic responses of inbred chicken lines illustrate importance of eIF2 family and immune-related genes in resistance to Newcastle disease virus. Sci Rep 2020; 10:6155. [PMID: 32273535 PMCID: PMC7145804 DOI: 10.1038/s41598-020-63074-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease virus (NDV) replication depends on the translation machinery of the host cell; therefore, the eukaryotic translation initiation factor 2 (eIF2) gene family is a likely candidate for control of viral replication. We hypothesized that differential expression of host genes related to translation and innate immune response could contribute to differential resistance to NDV in inbred Fayoumi and Leghorn lines. The expression of twenty-one genes related to the interferon signaling pathway and the eIF2 family was evaluated at two- and six-days post infection (dpi) in the spleen from both lines, either challenged by NDV or nonchallenged. Higher expression of OASL in NDV challenged versus nonchallenged spleen was observed in Leghorns at 2 dpi. Lower expression of EIF2B5 was found in NDV challenged than nonchallenged Fayoumis and Leghorns at 2 dpi. At 2 dpi, NDV challenged Fayoumis had lower expression of EIF2B5 and EIF2S3 than NDV challenged Leghorns. At 6 dpi, NDV challenged Fayoumis had lower expression of EIF2S3 and EIF2B4 than NDV challenged Leghorns. The genetic line differences in expression of eIF2-related genes may contribute to their differential resistance to NDV and also to understanding the interaction between protein synthesis shut-off and virus control in chickens.
Collapse
Affiliation(s)
- Ana Paula Del Vesco
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Department of Animal Science, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Michael G Kaiser
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
12
|
Rowland K, Persia ME, Rothschild MF, Schmidt C, Lamont SJ. Venous blood gas and chemistry components are moderately heritable in commercial white egg-laying hens under acute or chronic heat exposure. Poult Sci 2019; 98:3426-3430. [PMID: 31002114 PMCID: PMC6698185 DOI: 10.3382/ps/pez204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/21/2019] [Indexed: 11/20/2022] Open
Abstract
Heat stress has a large negative impact on poultry around the world in both intensive and small-scale production systems. Better understanding of genetic factors contributing to response to high ambient temperatures would provide a basis to develop strategies for alleviating negative impacts of heat on poultry production. The objective of this work was to characterize the genetic control (heritability estimate and quantitative trait loci (QTL)) of blood chemistry components before and after exposure to acute and chronic high ambient temperature in a commercial egg laying line Hy-Line W-36 female parent line mature hens were exposed to 4 wk of daily cyclic heat exposure. Blood was collected pre-heat, on the first day of heat, and 2 and 4 wk post heat initiation and analyzed immediately using an i-STAT® hand-held blood analyzer. Thirteen blood components were quantified at the 4 time points: pH, pCO2, pO2, HCO3, TCO2, sO2, iCa, Na, K, base excess, glucose, "hematocrit" (estimated from blood electrical conductivity, BEC), and "hemoglobin" (calculated from BEC). Heritabilities were estimated using genomic relationship information obtained from 600k SNP chip data. All 13 parameters exhibited a significant change after 5 h of heat exposure and most did not return to pre-heat levels throughout the duration of the study. Eight parameters (base excess, glucose, hemoglobin, HCO3, hematocrit, K, pCO2, TCO2) had heritability estimates differing from zero at one or more time points (0.21 to 0.45). The traits with significant heritability would be good candidates for use as biomarkers in a selection program if they are correlated with traits of economic importance that are more difficult to measure. QTL were identified for nine of the traits at one or more time point. These nine traits, however, did not have significant heritability estimates suggesting that while some QTL have been identified their effects are generally small.
Collapse
Affiliation(s)
- Kaylee Rowland
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Michael E Persia
- Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA 24061
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Carl Schmidt
- University of Delaware, Animal and Food Sciences, Newark, DE 19716
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011
| |
Collapse
|
13
|
Walugembe M, Mushi JR, Amuzu-Aweh EN, Chiwanga GH, Msoffe PL, Wang Y, Saelao P, Kelly T, Gallardo RA, Zhou H, Lamont SJ, Muhairwa AP, Dekkers JCM. Genetic Analyses of Tanzanian Local Chicken Ecotypes Challenged with Newcastle Disease Virus. Genes (Basel) 2019; 10:genes10070546. [PMID: 31319636 PMCID: PMC6678660 DOI: 10.3390/genes10070546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 01/03/2023] Open
Abstract
Newcastle Disease (ND) is a continuing global threat to domestic poultry, especially in developing countries, where severe outbreaks of velogenic ND virus (NDV) often cause major economic losses to households. Local chickens are of great importance to rural family livelihoods through provision of high-quality protein. To investigate the genetic basis of host response to NDV, three popular Tanzanian chicken ecotypes (regional populations) were challenged with a lentogenic (vaccine) strain of NDV at 28 days of age. Various host response phenotypes, including anti-NDV antibody levels (pre-infection and 10 days post-infection, dpi), and viral load (2 and 6 dpi) were measured, in addition to growth rate. We estimated genetic parameters and conducted genome-wide association study analyses by genotyping 1399 chickens using the Affymetrix 600K chicken SNP chip. Estimates of heritability of the evaluated traits were moderate (0.18–0.35). Five quantitative trait loci (QTL) associated with growth and/or response to NDV were identified by single-SNP analyses, with some regions explaining ≥1% of genetic variance based on the Bayes-B method. Immune related genes, such as ETS1, TIRAP, and KIRREL3, were located in regions associated with viral load at 6 dpi. The moderate estimates of heritability and identified QTL indicate that NDV response traits may be improved through selective breeding of chickens to enhance increased NDV resistance and vaccine efficacy in Tanzanian local ecotypes.
Collapse
Affiliation(s)
- Muhammed Walugembe
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | - James R Mushi
- Department of Veterinary Medicine and Public Health, Sokoine University, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - Esinam N Amuzu-Aweh
- Department of Animal Science, University of Ghana, P.O. Box LG 25 Legon, Accra, Ghana
| | - Gaspar H Chiwanga
- Department of Veterinary Medicine and Public Health, Sokoine University, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - Peter L Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Terra Kelly
- Department of Animal Science, University of California, Davis, CA 95616, USA
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | - Amandus P Muhairwa
- Department of Veterinary Medicine and Public Health, Sokoine University, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Rowland K, Ashwell CM, Persia ME, Rothschild MF, Schmidt C, Lamont SJ. Genetic analysis of production, physiological, and egg quality traits in heat-challenged commercial white egg-laying hens using 600k SNP array data. Genet Sel Evol 2019; 51:31. [PMID: 31238874 PMCID: PMC6593552 DOI: 10.1186/s12711-019-0474-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/13/2019] [Indexed: 12/02/2022] Open
Abstract
Background Heat stress negatively affects the welfare and production of chickens. High ambient temperature is considered one of the most ubiquitous abiotic environmental challenges to laying hens around the world. In this study, we recorded several production traits, feed intake, body weight, digestibility, and egg quality of 400 commercial white egg-laying hens before and during a 4-week heat treatment. For the phenotypes that had estimated heritabilities (using 600k SNP chip data) higher than 0, SNP associations were tested using the same 600k genotype data. Results Seventeen phenotypes had heritability estimates higher than 0, including measurements at various time points for feed intake, feed efficiency, body weight, albumen weight, egg quality expressed in Haugh units, egg mass, and also for change in egg mass from prior to heat exposure to various time points during the 4-week heat treatment. Quantitative trait loci (QTL) were identified for 10 of these 17 phenotypes. Some of the phenotypes shared QTL including Haugh units before heat exposure and after 4 weeks of heat treatment. Conclusions Estimated heritabilities differed from 0 for 17 traits, which indicates that they are under genetic control and that there is potential for improving these traits through selective breeding. The association of different QTL with the same phenotypes before heat exposure and during heat treatment indicates that genomic control of traits under heat stress is distinct from that under thermoneutral conditions. This study contributes to the knowledge on the genomic control of response to heat stress in laying hens. Electronic supplementary material The online version of this article (10.1186/s12711-019-0474-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaylee Rowland
- Department of Animal Science, Iowa State University, Ames, USA
| | - Chris M Ashwell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, USA
| | - Michael E Persia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, USA
| | | | - Carl Schmidt
- University of Delaware, Animal and Food Sciences, Newark, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, USA.
| |
Collapse
|
15
|
Saelao P, Wang Y, Chanthavixay G, Gallardo RA, Wolc A, Dekkers JCM, Lamont SJ, Kelly T, Zhou H. Genetics and Genomic Regions Affecting Response to Newcastle Disease Virus Infection under Heat Stress in Layer Chickens. Genes (Basel) 2019; 10:genes10010061. [PMID: 30669351 PMCID: PMC6356198 DOI: 10.3390/genes10010061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
Newcastle disease virus (NDV) is a highly contagious avian pathogen that poses a tremendous threat to poultry producers in endemic zones due to its epidemic potential. To investigate host genetic resistance to NDV while under the effects of heat stress, a genome-wide association study (GWAS) was performed on Hy-Line Brown layer chickens that were challenged with NDV while under high ambient temperature to identify regions associated with host viral titer, circulating anti-NDV antibody titer, and body weight change. A single nucleotide polymorphism (SNP) on chromosome 1 was associated with viral titer at two days post-infection (dpi), while 30 SNPs spanning a quantitative trait loci (QTL) on chromosome 24 were associated with viral titer at 6 dpi. Immune related genes, such as CAMK1d and CCDC3 on chromosome 1, associated with viral titer at 2 dpi, and TIRAP, ETS1, and KIRREL3, associated with viral titer at 6 dpi, were located in two QTL regions for viral titer that were identified in this study. This study identified genomic regions and candidate genes that are associated with response to NDV during heat stress in Hy-Line Brown layer chickens. Regions identified for viral titer on chromosome 1 and 24, at 2 and 6 dpi, respectively, included several genes that have key roles in regulating the immune response.
Collapse
Affiliation(s)
- Perot Saelao
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ganrea Chanthavixay
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
- Hy-Line International, Dallas Center, IA 50063, USA.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Terra Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Association of Candidate Genes with Response to Heat and Newcastle Disease Virus. Genes (Basel) 2018; 9:genes9110560. [PMID: 30463235 PMCID: PMC6267452 DOI: 10.3390/genes9110560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease is considered the number one disease constraint to poultry production in low and middle-income countries, however poultry that is raised in resource-poor areas often experience multiple environmental challenges. Heat stress has a negative impact on production, and immune response to pathogens can be negatively modulated by heat stress. Candidate genes and regions chosen for this study were based on previously reported associations with response to immune stimulants, pathogens, or heat, including: TLR3, TLR7, MX, MHC-B (major histocompatibility complex, gene complex), IFI27L2, SLC5A1, HSPB1, HSPA2, HSPA8, IFRD1, IL18R1, IL1R1, AP2A2, and TOLLIP. Chickens of a commercial egg-laying line were infected with a lentogenic strain of NDV (Newcastle disease virus); half the birds were maintained at thermoneutral temperature and the other half were exposed to high ambient temperature before the NDV challenge and throughout the remainder of the study. Phenotypic responses to heat, to NDV, or to heat + NDV were measured. Selected SNPs (single nucleotide polymorphisms) within 14 target genes or regions were genotyped; and genotype effects on phenotypic responses to NDV or heat + NDV were tested in each individual treatment group and the combined groups. Seventeen significant haplotype effects, among seven genes and seven phenotypes, were detected for response to NDV or heat or NDV + heat. These findings identify specific genetic variants that are associated with response to heat and/or NDV which may be useful in the genetic improvement of chickens to perform favorably when faced with pathogens and heat stress.
Collapse
|