1
|
Liao L, Yao Z, Kong J, Zhang X, Li H, Chen W, Xie Q. Exploring the role of miRNAs in early chicken embryonic development and their significance. Poult Sci 2023; 102:103105. [PMID: 37852050 PMCID: PMC10587638 DOI: 10.1016/j.psj.2023.103105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
In the early stages of embryonic development, a precise and strictly controlled hierarchy of gene expression is essential to ensure proper development of all cell types and organs. To better understand this gene control process, we constructed a small RNA library from 1- to 5-day-old chick embryos, and identified 2,459 miRNAs including 827 existing, 695 known, and 937 novel miRNAs with bioinformatic analysis. There was absolute high expression of a number of miRNAs in each stage, including gga-miR-363-3p (Em1d), gga-miR-26a-5p (Em2d and Em3d), gga-miR-10a-5p (Em4d), and gga-miR-199-5p (Em5d). We evaluated enriched miRNA profiles, identifying VEGF, Insulin, ErbB, MAPK, Hedgehog, TLR and Hippo signaling pathways as primary regulatory mechanisms enabling complex morphogenetic transformations within tight temporal constraints. Pathway analysis revealed miRNAs as pivotal nodes of interaction, coordinating cascades of gene expression critical for cell fate determination, proliferation, migration, and differentiation across germ layers and developing organ systems. Weighted Gene Co-Expression Network Analysis (WGCNA) generated hub miRNAs whose modular connections spanned regulatory networks, including: gga-miR-181a-3p (blue module), coordinating immunegenesis and myogenesis; gga-miR-126-3p (brown module), regulating vasculogenesis and angiogenesis; gga-miR-302c-5p (turquoise module), enabling pluripotency and self-renew; and gga-miR-429-3p (yellow module), modulating neurogenesis and osteogenesis. The findings of this study extend the knowledge of miRNA expression in early embryonic development of chickens, providing insights into the intricate gene control process that helps ensure proper development.
Collapse
Affiliation(s)
- Liqin Liao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Ziqi Yao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Kong
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
2
|
KLF7 promotes preadipocyte proliferation via activation of the Akt signaling pathway by Cis-regulating CDKN3. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1486-1496. [PMID: 36269137 PMCID: PMC9827951 DOI: 10.3724/abbs.2022144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Krüppel-like transcription factor 7 (KLF7) promotes preadipocyte proliferation; however, its target gene in this process has not yet been identified. Using KLF7 ChIP-seq analysis, we previously showed that a KLF7-binding peak is present upstream of the cyclin-dependent kinase inhibitor 3 gene ( CDKN3) in chicken preadipocytes. In the present study, we identify CDKN3 as a target gene of KLF7 that mediates the effects of KLF7 on preadipocyte proliferation. Furthermore, 5'-truncating mutation analysis shows that the minimal promoter is located between nt -160 and nt -7 (relative to the translation initiation codon ATG) of CDKN3. KLF7 overexpression increases CDKN3 promoter activity in the DF-1 and immortalized chicken preadipocyte (ICP1) cell lines. Deletion of the putative binding site of KLF7 abolishes the promotive effect of KLF7 overexpression on CDKN3 promoter activity. Moreover, CDKN3 knockdown and overexpression assays reveal that CDKN3 enhances ICP1 cell proliferation. Flow cytometry analysis shows that CDKN3 accelerates the G1/S transition. Furthermore, we find that KLF7 promotes ICP1 cell proliferation via Akt phosphorylation by regulating CDKN3. Taken together, our results suggest that KLF7 promotes preadipocyte proliferation by activating the Akt signaling pathway by cis-regulating CDKN3, thus driving the G1/S transition.
Collapse
|
3
|
Yang D, Zhu X, Liu Z, Wang X, Zhang L, Xing T, Gao F. Comparative transcriptome analyses reveal the dynamic responses of avian myotubes to acute heat stress. J Therm Biol 2022; 106:103235. [DOI: 10.1016/j.jtherbio.2022.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/27/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
|
4
|
Wu P, Zhou K, Zhang L, Li P, He M, Zhang X, Ye H, Zhang Q, Wei Q, Zhang G. High-throughput sequencing reveals crucial miRNAs in skeletal muscle development of Bian chicken. Br Poult Sci 2021; 62:658-665. [PMID: 33874802 DOI: 10.1080/00071668.2021.1919994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
1. Growth performance is significant for chickens. MicroRNAs (miRNAs) have been found to play important roles in the post-transcriptional regulation of skeletal muscle growth. However, the mechanism of miRNAs in this process has not been elucidated.2. This study involved collecting leg muscle from slow- and fast-growing groups of Bian chicken at 16 weeks of age for high-throughput sequencing. A total of 42 differentially expressed miRNAs (DEMs) were identified. Among them, 22 DEMs were up-regulated and 20 DEMs were down-regulated.3. Biological process terms, relating to growth, were found by GO enrichment for target genes of DEMs and KEGG pathway analysis of target genes. This revealed some significantly enriched pathways closely related to skeletal muscle development, such as the calcium signalling pathway, ECM-receptor interaction, lysine degradation, apoptosis and tight junctions. Network interaction analysis of DEMs and target genes showed that the top fifty hub genes were targeted by thirteen DEMs.4. Four important miRNAs (novel_miR_158, novel_miR_144, novel_miR_291, and miR-205a) as well as some other valuable miRNAs, such as gga-miR-214 and gga-miR-3525 were identified. The qPCR results of five DEMs were highly consistent with that of sequencing between the two groups, which proved the reliability of miRNA-seq.5. The study will help to improve the molecular mechanism of miRNAs in chickens and guide future experiments concerning miRNA function in chicken growth.
Collapse
Affiliation(s)
- P Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - K Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - L Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - P Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - M He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - X Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - H Ye
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Q Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Q Wei
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - G Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Aránega AE, Lozano-Velasco E, Rodriguez-Outeiriño L, Ramírez de Acuña F, Franco D, Hernández-Torres F. MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22084236. [PMID: 33921834 PMCID: PMC8072594 DOI: 10.3390/ijms22084236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue. Within this framework, miRNAs are emerging as implicated in muscle stem cell response in neuromuscular disorders and new methodologies to regulate the expression of key microRNAs are coming up. In this review, we summarize recent advances highlighting the potential of miRNAs to be used in conjunction with gene replacement therapies, in order to improve muscle regeneration in the context of Duchenne Muscular Dystrophy (DMD).
Collapse
Affiliation(s)
- Amelia Eva Aránega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Correspondence:
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Francisco Hernández-Torres
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avda. de la Investigación 11, 18016 Granada, Spain
| |
Collapse
|
6
|
Zhang G, Chen F, Wu P, Li T, He M, Yin X, Shi H, Duan Y, Zhang T, Wang J, Xie K, Dai G. MicroRNA-7 Targets the KLF4 Gene to Regulate the Proliferation and Differentiation of Chicken Primary Myoblasts. Front Genet 2020; 11:842. [PMID: 33193566 PMCID: PMC7530283 DOI: 10.3389/fgene.2020.00842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
The proliferation and differentiation of chicken primary myoblasts (CPMs) play an important role in the development of skeletal muscle. In our previous research, RNA-seq analysis showed that microRNA-7 (miR-7) was relatively highly expressed in the proliferation phase of CPMs, but its expression level decreased significantly after CPMS-induced differentiation. Meanwhile, the mechanism by which the miR-7 regulates the proliferation and differentiation of CPMs is still unknown. In this study, we found that the expression levels of miR-7 and the Krüppel-like factor 4 (KLF4) gene were negatively correlated during the embryonic phase, and in vitro induced differentiation. A dual-luciferase assay and a rescue experiment show that there is a target relationship between miR-7 and the KLF4 gene. Meanwhile, the results show that overexpression of miR-7 inhibited the proliferation and differentiation of CPMs, while inhibition of miR-7 had the opposite effects. Furthermore, overexpression of the KLF4 gene was found to significantly promote the proliferation and differentiation of CPMs. Conversely, inhibition of the KLF4 gene was able to significantly decrease the proliferation and differentiation of CPMs. Our results demonstrate, for the first time, that miR-7 inhibits the proliferation and differentiation of myoblasts by targeting the KLF4 gene in chicken primary myoblasts.
Collapse
Affiliation(s)
- Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - TingTing Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xuemei Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Nantong, China
| | - Yanjun Duan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
CircAST: Full-length Assembly and Quantification of Alternatively Spliced Isoforms in Circular RNAs. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 17:522-534. [PMID: 32007626 PMCID: PMC7056934 DOI: 10.1016/j.gpb.2019.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 03/09/2019] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs), covalently closed continuous RNA loops, are generated from cognate linear RNAs through back splicing events, and alternative splicing events may generate different circRNA isoforms at the same locus. However, the challenges of reconstruction and quantification of alternatively spliced full-length circRNAs remain unresolved. On the basis of the internal structural characteristics of circRNAs, we developed CircAST, a tool to assemble alternatively spliced circRNA transcripts and estimate their expression by using multiple splice graphs. Simulation studies showed that CircAST correctly assembled the full sequences of circRNAs with a sensitivity of 85.63%–94.32% and a precision of 81.96%–87.55%. By assigning reads to specific isoforms, CircAST quantified the expression of circRNA isoforms with correlation coefficients of 0.85–0.99 between theoretical and estimated values. We evaluated CircAST on an in-house mouse testis RNA-seq dataset with RNase R treatment for enriching circRNAs and identified 380 circRNAs with full-length sequences different from those of their corresponding cognate linear RNAs. RT-PCR and Sanger sequencing analyses validated 32 out of 37 randomly selected isoforms, thus further indicating the good performance of CircAST, especially for isoforms with low abundance. We also applied CircAST to published experimental data and observed substantial diversity in circular transcripts across samples, thus suggesting that circRNA expression is highly regulated. CircAST can be accessed freely at https://github.com/xiaofengsong/CircAST.
Collapse
|
8
|
MiR-34b-5p Mediates the Proliferation and Differentiation of Myoblasts by Targeting IGFBP2. Cells 2019; 8:cells8040360. [PMID: 30999686 PMCID: PMC6523632 DOI: 10.3390/cells8040360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/12/2022] Open
Abstract
As key post-transcriptional regulators, microRNAs (miRNAs) play an indispensable role in skeletal muscle development. Our previous study suggested that miR-34b-5p and IGFBP2 could have a potential role in skeletal muscle growth. Our goal in this study is to explore the function and regulatory mechanism of miR-34b-5p and IGFBP2 in myogenesis. In this study, the dual-luciferase reporter assay and Western blot analysis showed that IGFBP2 is a direct target of miR-34b-5p. Flow cytometric analysis and EdU assay showed that miR-34b-5p could repress the cell cycle progression of myoblasts, and miR-34b-5p could promote the formation of myotubes by promoting the expression of MyHC. On the contrary, the overexpression of IGFBP2 significantly facilitated the proliferation of myoblasts and hampered the formation of myotubes. Together, our results indicate that miR-34b-5p could mediate the proliferation and differentiation of myoblasts by targeting IGFBP2.
Collapse
|