1
|
Vallabh NA, Lane B, Simpson D, Fuchs M, Choudhary A, Criddle D, Cheeseman R, Willoughby C. Massively parallel sequencing of mitochondrial genome in primary open angle glaucoma identifies somatically acquired mitochondrial mutations in ocular tissue. Sci Rep 2024; 14:26324. [PMID: 39487142 PMCID: PMC11530638 DOI: 10.1038/s41598-024-72684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024] Open
Abstract
Glaucoma is a sight threatening neurodegenerative condition of the optic nerve head associated with ageing and marked by the loss of retinal ganglion cells. Mitochondrial dysfunction plays a crucial role in the pathogenesis of neurodegeneration in the most prevalent type of glaucoma: primary open angle glaucoma (POAG). All previous mitochondrial genome sequencing studies in POAG analyzed mitochondrial DNA (mtDNA) isolated from peripheral blood leukocytes and have not evaluated cells derived from ocular tissue, which better represent the glaucomatous disease context. In this study, we evaluated mitochondrial genome variation and heteroplasmy using massively parallel sequencing of mtDNA in a cohort of patients with POAG, and in a subset assess the role of somatic mitochondrial genome mutations in disease pathogenesis using paired samples of peripheral blood leukocytes and ocular tissue (Tenon's ocular fibroblasts). An enrichment of potentially pathogenic nonsynonymous mtDNA variants was identified in Tenon's ocular fibroblasts from participants with POAG. The absence of oxidative DNA damage and predominance of transition variants support the concept that errors in mtDNA replication represent the predominant mutation mechanism in Tenon's ocular fibroblasts from patients with POAG. Pathogenic somatic mitochondrial genome mutations were observed in people with POAG. This supports the role of somatic mitochondrial genome variants in the etiology of glaucoma.
Collapse
Affiliation(s)
- Neeru Amrita Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK.
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.
| | - Brian Lane
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, M20 4BX, UK
| | - David Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Marc Fuchs
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Anshoo Choudhary
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - David Criddle
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7BE, UK
| | - Robert Cheeseman
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Colin Willoughby
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK.
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
2
|
Huang S, Wu Z, Wang T, Yu R, Song Z, Wang H. MmisAT and MmisP: an efficient and accurate suite of variant analysis toolkit for primary mitochondrial diseases. Hum Genomics 2023; 17:108. [PMID: 38012712 PMCID: PMC10683248 DOI: 10.1186/s40246-023-00557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technology have greatly accelerated the need for efficient annotation to accurately interpret clinically relevant genetic variants in human diseases. Therefore, it is crucial to develop appropriate analytical tools to improve the interpretation of disease variants. Given the unique genetic characteristics of mitochondria, including haplogroup, heteroplasmy, and maternal inheritance, we developed a suite of variant analysis toolkits specifically designed for primary mitochondrial diseases: the Mitochondrial Missense Variant Annotation Tool (MmisAT) and the Mitochondrial Missense Variant Pathogenicity Predictor (MmisP). MmisAT can handle protein-coding variants from both nuclear DNA and mtDNA and generate 349 annotation types across six categories. It processes 4.78 million variant data in 76 min, making it a valuable resource for clinical and research applications. Additionally, MmisP provides pathogenicity scores to predict the pathogenicity of genetic variations in mitochondrial disease. It has been validated using cross-validation and external datasets and demonstrated higher overall discriminant accuracy with a receiver operating characteristic (ROC) curve area under the curve (AUC) of 0.94, outperforming existing pathogenicity predictors. In conclusion, the MmisAT is an efficient tool that greatly facilitates the process of variant annotation, expanding the scope of variant annotation information. Furthermore, the development of MmisP provides valuable insights into the creation of disease-specific, phenotype-specific, and even gene-specific predictors of pathogenicity, further advancing our understanding of specific fields.
Collapse
Affiliation(s)
- Shuangshuang Huang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhaoyu Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tong Wang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Rui Yu
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhijian Song
- OrigiMed, 5th Floor, Building 3, No.115 Xin Jun Huan Road, Minhang District, Shanghai, China.
| | - Hao Wang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
3
|
Grigalionienė K, Burnytė B, Ambrozaitytė L, Utkus A. Wide diagnostic and genotypic spectrum in patients with suspected mitochondrial disease. Orphanet J Rare Dis 2023; 18:307. [PMID: 37784170 PMCID: PMC10544509 DOI: 10.1186/s13023-023-02921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Mitochondrial Diseases (MDs) are a diverse group of neurometabolic disorders characterized by impaired mitochondrial oxidative phosphorylation and caused by pathogenic variants in more than 400 genes. The implementation of next-generation sequencing (NGS) technologies helps to increase the understanding of molecular basis and diagnostic yield of these conditions. The purpose of the study was to investigate diagnostic and genotypic spectrum in patients with suspected MD. The comprehensive analysis of mtDNA variants using Sanger sequencing was performed in the group of 83 unrelated individuals with clinically suspected mitochondrial disease. Additionally, targeted next generation sequencing or whole exome sequencing (WES) was performed for 30 patients of the study group. RESULTS The overall diagnostic rate was 21.7% for the patients with suspected MD, increasing to 36.7% in the group of patients where NGS methods were applied. Mitochondrial disease was confirmed in 11 patients (13.3%), including few classical mitochondrial syndromes (MELAS, MERRF, Leigh and Kearns-Sayre syndrome) caused by pathogenic mtDNA variants (8.4%) and MDs caused by pathogenic variants in five nDNA genes. Other neuromuscular diseases caused by pathogenic variants in seven nDNA genes, were confirmed in seven patients (23.3%). CONCLUSION The wide spectrum of identified rare mitochondrial or neurodevelopmental diseases proves that MD suspected patients would mostly benefit from an extensive genetic profiling allowing rapid diagnostics and improving the care of these patients.
Collapse
Affiliation(s)
- Kristina Grigalionienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania.
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania
| |
Collapse
|
4
|
Macken WL, Falabella M, Pizzamiglio C, Woodward CE, Scotchman E, Chitty LS, Polke JM, Bugiardini E, Hanna MG, Vandrovcova J, Chandler N, Labrum R, Pitceathly RDS. Enhanced mitochondrial genome analysis: bioinformatic and long-read sequencing advances and their diagnostic implications. Expert Rev Mol Diagn 2023; 23:797-814. [PMID: 37642407 DOI: 10.1080/14737159.2023.2241365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. AREAS COVERED In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. EXPERT OPINION We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Cathy E Woodward
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elizabeth Scotchman
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lyn S Chitty
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - James M Polke
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Natalie Chandler
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robyn Labrum
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
5
|
Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Chakole RD, Nemade LS, Kale NK, Borah S, Deokar SS, Behera A, Dhawal Bhandari D, Gaikwad N, Azad AK, Ghosh A. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease, and Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion 2023:S1567-7249(23)00051-X. [PMID: 37269968 DOI: 10.1016/j.mito.2023.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Misfolded proteins in the central nervous system can induce oxidative damage, which can contribute to neurodegenerative diseases in the mitochondria. Neurodegenerative patients face early mitochondrial dysfunction, impacting energy utilization. Amyloid-ß and tau problems both have an effect on mitochondria, which leads to mitochondrial malfunction and, ultimately, the onset of Alzheimer's disease. Cellular oxygen interaction yields reactive oxygen species within mitochondria, initiating oxidative damage to mitochondrial constituents. Parkinson's disease, linked to oxidative stress, α-synuclein aggregation, and inflammation, results from reduced brain mitochondria activity. Mitochondrial dynamics profoundly influence cellular apoptosis via distinct causative mechanisms. The condition known as Huntington's disease is characterized by an expansion of polyglutamine, primarily impactingthe cerebral cortex and striatum. Research has identified mitochondrial failure as an early pathogenic mechanism contributing to HD's selective neurodegeneration. The mitochondria are organelles that exhibit dynamism by undergoing fragmentation and fusion processes to attain optimal bioenergetic efficiency. They can also be transported along microtubules and regulateintracellular calcium homeostasis through their interaction with the endoplasmic reticulum. Additionally, the mitochondria produce free radicals. The functions of eukaryotic cells, particularly in neurons, have significantly deviated from the traditionally assigned role of cellular energy production. Most of them areimpaired in HD, which may lead to neuronal dysfunction before symptoms manifest. This article summarises the most important changes in mitochondrial dynamics that come from neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's and Amyotrophic Lateral Sclerosis. Finally, we discussed about novel techniques that can potentially treat mitochondrial malfunction and oxidative stress in four most dominating neuro disorders.
Collapse
Affiliation(s)
- Taha Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | | | | | | | - Ritika Sharma
- University institute of pharma sciences, Chandigarh University, Mohali, Punjab.
| | - Rita Dadarao Chakole
- Government College of Pharmacy Vidyanagar Karad Dist Satara Maharashtra Pin 415124.
| | - Lalita S Nemade
- Govindrao Nikam College of Pharmacy Sawarde Maharashtra 415606.
| | | | - Sudarshana Borah
- Department of Pharmacognosy, University of Science and Technology Meghalaya Technocity, Ri-Bhoi District Meghalaya.
| | | | - Ashok Behera
- Faculty of Pharmacy, DIT University, Dehradun,Uttarakhand.
| | - Divya Dhawal Bhandari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014. India.
| | - Nikita Gaikwad
- Department of Pharmaceutics, P.E.S. Modern College of Pharmacy, Nigdi, Pune-411044.
| | - Abul Kalam Azad
- Faculty of Pharmacy MAHSA University Bandar Saujana putra, 42610, Selangor, Malaysia
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, Guwahati, 781014, Assam, India
| |
Collapse
|
6
|
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, Całka P, Osuchowski J, Szmygin P, Jarosz B, Ostrowska-Leśko M, Dudka J, Tkaczyk-Wlizło A, Ślaska B. Mitochondrial DNA Changes in Respiratory Complex I Genes in Brain Gliomas. Biomedicines 2023; 11:biomedicines11041183. [PMID: 37189801 DOI: 10.3390/biomedicines11041183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Mitochondria are organelles necessary for oxidative phosphorylation. The interest in the role of mitochondria in the process of carcinogenesis results from the fact that a respiratory deficit is found in dividing cells, especially in cells with accelerated proliferation. The study included tumor and blood material from 30 patients diagnosed with glioma grade II, III and IV according to WHO (World Health Organization). DNA was isolated from the collected material and next-generation sequencing was performed on the MiSeqFGx apparatus (Illumina). The study searched for a possible relationship between the occurrence of specific mitochondrial DNA polymorphisms in the respiratory complex I genes and brain gliomas of grade II, III and IV. The impact of missense changes on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness, were assessed in silico along with their belonging to a given mitochondrial subgroup. The A3505G, C3992T, A4024G, T4216C, G5046A, G7444A, T11253C, G12406A and G13604C polymorphisms were assessed as deleterious changes in silico, indicating their association with carcinogenesis.
Collapse
Affiliation(s)
- Paulina Kozakiewicz
- Department of Radiotherapy, Oncology Centre of Lublin St. Jana z Dukli Jaczewskiego 7, 20-090 Lublin, Poland
| | | | - Marzanna Ciesielka
- Chair and Department of Forensic Medicine, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Paulina Całka
- Chair and Department of Forensic Medicine, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jacek Osuchowski
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University in Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Paweł Szmygin
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University in Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Bożena Jarosz
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University in Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Marta Ostrowska-Leśko
- Chair and Department of Toxicology, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Angelika Tkaczyk-Wlizło
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
7
|
Guo L, An T, Wan Z, Huang Z, Chong T. SERPINE1 and its co-expressed genes are associated with the progression of clear cell renal cell carcinoma. BMC Urol 2023; 23:43. [PMID: 36959648 PMCID: PMC10037920 DOI: 10.1186/s12894-023-01217-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma(ccRCC) is a frequently occurring malignant tumor of the urinary system. Despite extensive research, the regulatory mechanisms underlying the pathogenesis and progression of ccRCC remain largely unknown. METHODS We downloaded 5 ccRCC expression profiles from the Gene Expression Omnibus (GEO) database and obtained the list of differentially expressed genes (DEGs). Using String and Cytoscape tools, we determined the hub genes of ccRCC, and then analyzed their relationship with ccRCC patient survival. Ultimately, we identified SERPINE1 as a prognostic factor in ccRCC. Meanwhile, we confirmed the role of SERPINE1 in 786-O cells by cell transfection and in vitro experiments. RESULTS Our analysis yielded a total of 258 differentially expressed genes, comprising 105 down-regulated genes and 153 up-regulated genes. Survival analysis of SERPINE1 expression in The Cancer Genome Atlas (TCGA) confirmed its association with the increase of tumor grade, lymph node metastasis, and tumor stage, as well as with shorter survival. Furthermore, we found that SERPINE1 expression levels were associated with CD8 + T cells, CD4 + T cells, B cells, macrophages, neutrophils, and dendritic cells. Cell experiments showed that knockdown SERPINE1 expression could inhibit the proliferation, migration and invasion of ccRCC cells. Among the co-expressed genes with the highest correlation, ITGA5, SLC2A3, SLC2A14, SHC1, CEBPB, and ADA were overexpressed and associated with shorter overall survival (OS) in ccRCC. CONCLUSIONS In this study, we identified hub genes that are strongly related to ccRCC, and highlights the potential utility of overexpressed SERPINE1 and its co-expressed genes could be used as prognostic and diagnostic biomarkers in ccRCC.
Collapse
Affiliation(s)
- Lingyu Guo
- Department of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Tian An
- Department of Dermatology and Plastic Surgery, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Ziyan Wan
- Department of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Zhixin Huang
- Department of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Road, Xi'an, 710000, China.
| |
Collapse
|
8
|
Genetics of mitochondrial diseases: Current approaches for the molecular diagnosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:141-165. [PMID: 36813310 DOI: 10.1016/b978-0-12-821751-1.00011-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a genetically and phenotypically variable set of monogenic disorders. The main characteristic of mitochondrial diseases is a defective oxidative phosphorylation. Both nuclear and mitochondrial DNA encode the approximately 1500 mitochondrial proteins. Since identification of the first mitochondrial disease gene in 1988 a total of 425 genes have been associated with mitochondrial diseases. Mitochondrial dysfunctions can be caused both by pathogenic variants in the mitochondrial DNA or the nuclear DNA. Hence, besides maternal inheritance, mitochondrial diseases can follow all modes of Mendelian inheritance. The maternal inheritance and tissue specificity distinguish molecular diagnostics of mitochondrial disorders from other rare disorders. With the advances made in the next-generation sequencing technology, whole exome sequencing and even whole-genome sequencing are now the established methods of choice for molecular diagnostics of mitochondrial diseases. They reach a diagnostic rate of more than 50% in clinically suspected mitochondrial disease patients. Moreover, next-generation sequencing is delivering a constantly growing number of novel mitochondrial disease genes. This chapter reviews mitochondrial and nuclear causes of mitochondrial diseases, molecular diagnostic methodologies, and their current challenges and perspectives.
Collapse
|
9
|
Paredes-Fuentes AJ, Oliva C, Urreizti R, Yubero D, Artuch R. Laboratory testing for mitochondrial diseases: biomarkers for diagnosis and follow-up. Crit Rev Clin Lab Sci 2023; 60:270-289. [PMID: 36694353 DOI: 10.1080/10408363.2023.2166013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The currently available biomarkers generally lack the specificity and sensitivity needed for the diagnosis and follow-up of patients with mitochondrial diseases (MDs). In this group of rare genetic disorders (mutations in approximately 350 genes associated with MDs), all clinical presentations, ages of disease onset and inheritance types are possible. Blood, urine, and cerebrospinal fluid surrogates are well-established biomarkers that are used in clinical practice to assess MD. One of the main challenges is validating specific and sensitive biomarkers for the diagnosis of disease and prediction of disease progression. Profiling of lactate, amino acids, organic acids, and acylcarnitine species is routinely conducted to assess MD patients. New biomarkers, including some proteins and circulating cell-free mitochondrial DNA, with increased diagnostic specificity have been identified in the last decade and have been proposed as potentially useful in the assessment of clinical outcomes. Despite these advances, even these new biomarkers are not sufficiently specific and sensitive to assess MD progression, and new biomarkers that indicate MD progression are urgently needed to monitor the success of novel therapeutic strategies. In this report, we review the mitochondrial biomarkers that are currently analyzed in clinical laboratories, new biomarkers, an overview of the most common laboratory diagnostic techniques, and future directions regarding targeted versus untargeted metabolomic and genomic approaches in the clinical laboratory setting. Brief descriptions of the current methodologies are also provided.
Collapse
Affiliation(s)
- Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Clara Oliva
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Roser Urreizti
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Delia Yubero
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetic and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. Int J Mol Sci 2022; 23:ijms232012131. [PMID: 36292984 PMCID: PMC9603055 DOI: 10.3390/ijms232012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system—Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted.
Collapse
|
11
|
Desquiret-Dumas V, D’Ottavi M, Monnin A, Goudenège D, Méda N, Vizeneux A, Kankasa C, Tylleskar T, Bris C, Procaccio V, Nagot N, Van de Perre P, Reynier P, Molès JP. Long-Term Persistence of Mitochondrial DNA Instability in HIV-Exposed Uninfected Children during and after Exposure to Antiretroviral Drugs and HIV. Biomedicines 2022; 10:biomedicines10081786. [PMID: 35892686 PMCID: PMC9331317 DOI: 10.3390/biomedicines10081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
HIV-exposed uninfected (HEU) children show impaired health outcomes during childhood. A high rate of mitochondrial DNA (mtDNA) instability was reported in the blood of HEU at birth. We aimed to explore the relationship between these health outcomes and mtDNA deletions over time in a case series of 24 HEU children. MtDNA instability was assessed by deep sequencing and analyzed by eKLIPse-v2 algorithm at three time points, namely birth, 1 year, and 6 years of age. Association between mtDNA deletion and health outcomes, including growth, clinical, and neurodevelopmental parameters, were explored using univariate statistical analyses and after stratification with relevant variables. HEU children were selected with an equal male:female ratio. An elevated number of mtDNA deletions and duplications events was observed at 7 days’ post-partum. Median heteroplasmy increased at one year of life and then returned to baseline by six years of age. The mtDNA instability was acquired and was not transmitted by the mother. No risk factors were significantly associated with mtDNA instability. In this small case series, we did not detect any association between any health outcome at 6 years and mtDNA instability measures. A significant effect modification of the association between the duration of maternal prophylaxis and child growth was observed after stratification with heteroplasmy rate. Genomic instability persists over time among HEU children but, despite its extension, stays subclinical at six years.
Collapse
Affiliation(s)
- Valérie Desquiret-Dumas
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Morgana D’Ottavi
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Audrey Monnin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - David Goudenège
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Nicolas Méda
- Centre MURAZ, Bobo-Dioulasso 01 B.P. 390, Burkina Faso;
| | - Amélie Vizeneux
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Chipepo Kankasa
- Department of Paediatrics and Child Health, University Teaching Hospital, Lusaka P.O. Box 50001, Zambia;
| | - Thorkild Tylleskar
- Centre for International Health, University of Bergen, N-5020 Bergen, Norway;
| | - Céline Bris
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Vincent Procaccio
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
| | - Pascal Reynier
- Department of Biochemistry and Genetics, University Hospital of Angers, F-49000 Angers, France; (V.D.-D.); (D.G.); (C.B.); (V.P.); (P.R.)
- UMR MITOVASC, CNRS 6015, INSERM U1083, University of Angers, F-49000 Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Etablissement Français du Sang, University of Montpellier, University of Antilles, F-34394 Montpellier, France; (M.D.); (A.M.); (A.V.); (N.N.); (P.V.d.P.)
- Correspondence: ; Tel.: +33-434-35-91-07
| |
Collapse
|
12
|
Ludwig-Słomczyńska AH, Rehm M. Mitochondrial genome variations, mitochondrial-nuclear compatibility, and their association with metabolic diseases. Obesity (Silver Spring) 2022; 30:1156-1169. [PMID: 35491673 DOI: 10.1002/oby.23424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022]
Abstract
Two genomes regulate the energy metabolism of eukaryotic cells: the nuclear genome, which codes for most cellular proteins, and the mitochondrial genome, which, together with the nuclear genome, coregulates cellular bioenergetics. Therefore, mitochondrial genome variations can affect, directly or indirectly, all energy-dependent cellular processes and shape the metabolic state of the organism. This review provides a current and up-to-date overview on how codependent these two genomes are, how they appear to have coevolved, and how variations within the mitochondrial genome might be associated with the manifestation of metabolic diseases. This review summarizes and structures results obtained from epidemiological studies that identified links between mitochondrial haplogroups and individual risks for developing obesity and diabetes. This is complemented by findings on the compatibility of mitochondrial and nuclear genomes and cellular bioenergetic fitness, which have been acquired from well-controlled studies in conplastic animal models. These elucidate, more mechanistically, how single-nucleotide variants can influence cellular metabolism and physiology. Overall, it seems that certain mitochondrial genome variations negatively affect mitochondrial-nuclear compatibility and are statistically linked with the onset of metabolic diseases, whereas, for others, greater uncertainty exists, and additional research into this exciting field is required.
Collapse
Affiliation(s)
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
13
|
Ip EKK, Troup M, Xu C, Winlaw DS, Dunwoodie SL, Giannoulatou E. Benchmarking the Effectiveness and Accuracy of Multiple Mitochondrial DNA Variant Callers: Practical Implications for Clinical Application. Front Genet 2022; 13:692257. [PMID: 35350246 PMCID: PMC8957813 DOI: 10.3389/fgene.2022.692257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations contribute to human disease across a range of severity, from rare, highly penetrant mutations causal for monogenic disorders to mutations with milder contributions to phenotypes. mtDNA variation can exist in all copies of mtDNA or in a percentage of mtDNA copies and can be detected with levels as low as 1%. The large number of copies of mtDNA and the possibility of multiple alternative alleles at the same DNA nucleotide position make the task of identifying allelic variation in mtDNA very challenging. In recent years, specialized variant calling algorithms have been developed that are tailored to identify mtDNA variation from whole-genome sequencing (WGS) data. However, very few studies have systematically evaluated and compared these methods for the detection of both homoplasmy and heteroplasmy. A publicly available synthetic gold standard dataset was used to assess four mtDNA variant callers (Mutserve, mitoCaller, MitoSeek, and MToolBox), and the commonly used Genome Analysis Toolkit “best practices” pipeline, which is included in most current WGS pipelines. We also used WGS data from 126 trios and calculated the percentage of maternally inherited variants as a metric of calling accuracy, especially for homoplasmic variants. We additionally compared multiple pathogenicity prediction resources for mtDNA variants. Although the accuracy of homoplasmic variant detection was high for the majority of the callers with high concordance across callers, we found a very low concordance rate between mtDNA variant callers for heteroplasmic variants ranging from 2.8% to 3.6%, for heteroplasmy thresholds of 5% and 1%. Overall, Mutserve showed the best performance using the synthetic benchmark dataset. The analysis of mtDNA pathogenicity resources also showed low concordance in prediction results. We have shown that while homoplasmic variant calling is consistent between callers, there remains a significant discrepancy in heteroplasmic variant calling. We found that resources like population frequency databases and pathogenicity predictors are now available for variant annotation but still need refinement and improvement. With its peculiarities, the mitochondria require special considerations, and we advocate that caution needs to be taken when analyzing mtDNA data from WGS data.
Collapse
Affiliation(s)
- Eddie K K Ip
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Colin Xu
- School of Computer Science and Engineering, Sydney, NSW, Australia
| | - David S Winlaw
- Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Centre, Heart Institute, Cincinnati, OH, United States
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| |
Collapse
|
14
|
Shi Y, Chen G, Sun D, Hu C, Liu Z, Shen D, Wang J, Song T, Zhang W, Li J, Ren X, Han T, Ding C, Wang Y, Fang F. Phenotypes and genotypes of mitochondrial diseases with mtDNA variations in Chinese children: A multi-center study. Mitochondrion 2021; 62:139-150. [PMID: 34800692 DOI: 10.1016/j.mito.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022]
Abstract
Mitochondrial DNA (mtDNA) associated mitochondrial diseases hold a crucial position but comprehensive and systematic studies are relatively rare. Among the 262 patients of four children's hospitals in China, 96%-point mutations (30 alleles in 11 genes encoding tRNA, rRNA, Complex I and V) and 4%-deletions (seven of ten had not been reported before) were identified as the cause of 14 phenotypes. MILS presented the highest genetic heterogeneity, while the m.3243A > G mutation was the only "hotspot" mutation with a wide range of phenotypes. The degrees of heteroplasmy in the leukocytes of MM were higher than MELAS. The heteroplasmy level of patients was higher than that in mild and carrier group, while we found low-level heteroplasmy pathogenic mutations as well. Some homoplasmic variations (e.g., m.9176 T > C mutation) are having high incomplete penetrance. For a suspected MELAS, m.3243A > G mutation was recommended to detect first; while for a suspected LS, trios-WES and mtDNA genome sequencing by NGS were recommended first in both blood and urine.
Collapse
Affiliation(s)
- Yuqing Shi
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Guohong Chen
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou 450053, Henan, China
| | - Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Chaoping Hu
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Danmin Shen
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Junling Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Tianyu Song
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Weihua Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jiuwei Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaotun Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Tongli Han
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
15
|
Cortes-Figueiredo F, Carvalho FS, Fonseca AC, Paul F, Ferro JM, Schönherr S, Weissensteiner H, Morais VA. From Forensics to Clinical Research: Expanding the Variant Calling Pipeline for the Precision ID mtDNA Whole Genome Panel. Int J Mol Sci 2021; 22:12031. [PMID: 34769461 PMCID: PMC8584537 DOI: 10.3390/ijms222112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023] Open
Abstract
Despite a multitude of methods for the sample preparation, sequencing, and data analysis of mitochondrial DNA (mtDNA), the demand for innovation remains, particularly in comparison with nuclear DNA (nDNA) research. The Applied Biosystems™ Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific, USA) is an innovative library preparation kit suitable for degraded samples and low DNA input. However, its bioinformatic processing occurs in the enterprise Ion Torrent Suite™ Software (TSS), yielding BAM files aligned to an unorthodox version of the revised Cambridge Reference Sequence (rCRS), with a heteroplasmy threshold level of 10%. Here, we present an alternative customizable pipeline, the PrecisionCallerPipeline (PCP), for processing samples with the correct rCRS output after Ion Torrent sequencing with the Precision ID library kit. Using 18 samples (3 original samples and 15 mixtures) derived from the 1000 Genomes Project, we achieved overall improved performance metrics in comparison with the proprietary TSS, with optimal performance at a 2.5% heteroplasmy threshold. We further validated our findings with 50 samples from an ongoing independent cohort of stroke patients, with PCP finding 98.31% of TSS's variants (TSS found 57.92% of PCP's variants), with a significant correlation between the variant levels of variants found with both pipelines.
Collapse
Affiliation(s)
- Filipe Cortes-Figueiredo
- VMorais Lab—Mitochondria Biology & Neurodegeneration, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.C.-F.); (F.S.C.)
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Filipa S. Carvalho
- VMorais Lab—Mitochondria Biology & Neurodegeneration, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.C.-F.); (F.S.C.)
| | - Ana Catarina Fonseca
- José Ferro Lab—Clinical Research in Non-communicable Neurological Diseases, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.C.F.); (J.M.F.)
- Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - José M. Ferro
- José Ferro Lab—Clinical Research in Non-communicable Neurological Diseases, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.C.F.); (J.M.F.)
- Serviço de Neurologia, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Vanessa A. Morais
- VMorais Lab—Mitochondria Biology & Neurodegeneration, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (F.C.-F.); (F.S.C.)
| |
Collapse
|
16
|
The Tumor Dynamism Is the Dark Matter of the NGS Galaxy: How to Understand It? Cancers (Basel) 2021; 13:cancers13215476. [PMID: 34771638 PMCID: PMC8582436 DOI: 10.3390/cancers13215476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022] Open
|
17
|
Moreira JD, Gopal DM, Kotton DN, Fetterman JL. Gaining Insight into Mitochondrial Genetic Variation and Downstream Pathophysiology: What Can i(PSCs) Do? Genes (Basel) 2021; 12:1668. [PMID: 34828274 PMCID: PMC8624338 DOI: 10.3390/genes12111668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized organelles involved in energy production that have retained their own genome throughout evolutionary history. The mitochondrial genome (mtDNA) is maternally inherited and requires coordinated regulation with nuclear genes to produce functional enzyme complexes that drive energy production. Each mitochondrion contains 5-10 copies of mtDNA and consequently, each cell has several hundreds to thousands of mtDNAs. Due to the presence of multiple copies of mtDNA in a mitochondrion, mtDNAs with different variants may co-exist, a condition called heteroplasmy. Heteroplasmic variants can be clonally expanded, even in post-mitotic cells, as replication of mtDNA is not tied to the cell-division cycle. Heteroplasmic variants can also segregate during germ cell formation, underlying the inheritance of some mitochondrial mutations. Moreover, the uneven segregation of heteroplasmic variants is thought to underlie the heterogeneity of mitochondrial variation across adult tissues and resultant differences in the clinical presentation of mitochondrial disease. Until recently, however, the mechanisms mediating the relation between mitochondrial genetic variation and disease remained a mystery, largely due to difficulties in modeling human mitochondrial genetic variation and diseases. The advent of induced pluripotent stem cells (iPSCs) and targeted gene editing of the nuclear, and more recently mitochondrial, genomes now provides the ability to dissect how genetic variation in mitochondrial genes alter cellular function across a variety of human tissue types. This review will examine the origins of mitochondrial heteroplasmic variation and propagation, and the tools used to model mitochondrial genetic diseases. Additionally, we discuss how iPSC technologies represent an opportunity to advance our understanding of human mitochondrial genetics in disease.
Collapse
Affiliation(s)
- Jesse D. Moreira
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (J.D.M.); (D.M.G.)
| | - Deepa M. Gopal
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (J.D.M.); (D.M.G.)
- Cardiovascular Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Boston Medical Center, Center for Regenerative Medicine of Boston University, Boston, MA 02118, USA;
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jessica L. Fetterman
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (J.D.M.); (D.M.G.)
| |
Collapse
|
18
|
Lo Faro V, Ten Brink JB, Snieder H, Jansonius NM, Bergen AA. Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma. BMC Genomics 2021; 22:590. [PMID: 34348663 PMCID: PMC8336345 DOI: 10.1186/s12864-021-07846-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To investigate whether copy number variations (CNVs) are implicated in molecular mechanisms underlying primary open-angle glaucoma (POAG), we used genotype data of POAG individuals and healthy controls from two case-control studies, AGS (n = 278) and GLGS-UGLI (n = 1292). PennCNV, QuantiSNP, and cnvPartition programs were used to detect CNV. Stringent quality controls at both sample and marker levels were applied. The identified CNVs were intersected in CNV region (CNVR). After, we performed burden analysis, CNV-genome-wide association analysis, gene set overrepresentation and pathway analysis. In addition, in human eye tissues we assessed the expression of the genes lying within significant CNVRs. RESULTS We reported a statistically significant greater burden of CNVs in POAG cases compared to controls (p-value = 0,007). In common between the two cohorts, CNV-association analysis identified statistically significant CNVRs associated with POAG that span 11 genes (APC, BRCA2, COL3A1, HLA-DRB1, HLA-DRB5, HLA-DRB6, MFSD8, NIPBL, SCN1A, SDHB, and ZDHHC11). Functional annotation and pathway analysis suggested the involvement of cadherin, Wnt signalling, and p53 pathways. CONCLUSIONS Our data suggest that CNVs may have a role in the susceptibility of POAG and they can reveal more information on the mechanism behind this disease. Additional genetic and functional studies are warranted to ascertain the contribution of CNVs in POAG.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nomdo M Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arthur A Bergen
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Department of Ophthalmology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands. .,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands.
| |
Collapse
|
19
|
mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life (Basel) 2021; 11:life11070633. [PMID: 34209862 PMCID: PMC8307225 DOI: 10.3390/life11070633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is predominately uniparentally transmitted. This results in organisms with a single type of mtDNA (homoplasmy), but two or more mtDNA haplotypes have been observed in low frequency in several species (heteroplasmy). In this review, we aim to highlight several aspects of heteroplasmy regarding its origin and its significance on mtDNA function and evolution, which has been progressively recognized in the last several years. Heteroplasmic organisms commonly occur through somatic mutations during an individual’s lifetime. They also occur due to leakage of paternal mtDNA, which rarely happens during fertilization. Alternatively, heteroplasmy can be potentially inherited maternally if an egg is already heteroplasmic. Recent advances in sequencing techniques have increased the ability to detect and quantify heteroplasmy and have revealed that mitochondrial DNA copies in the nucleus (NUMTs) can imitate true heteroplasmy. Heteroplasmy can have significant evolutionary consequences on the survival of mtDNA from the accumulation of deleterious mutations and for its coevolution with the nuclear genome. Particularly in humans, heteroplasmy plays an important role in the emergence of mitochondrial diseases and determines the success of the mitochondrial replacement therapy, a recent method that has been developed to cure mitochondrial diseases.
Collapse
|
20
|
Shen L, McCormick EM, Muraresku CC, Falk MJ, Gai X. Clinical Bioinformatics in Precise Diagnosis of Mitochondrial Disease. Clin Lab Med 2021; 40:149-161. [PMID: 32439066 DOI: 10.1016/j.cll.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clinical bioinformatics system is well-established for diagnosing genetic disease based on next-generation sequencing, but requires special considerations when being adapted for the next-generation sequencing-based genetic diagnosis of mitochondrial diseases. Challenges are caused by the involvement of mitochondrial DNA genome in disease etiology. Heteroplasmy and haplogroup are key factors in interpreting mitochondrial DNA variant effects. Data resources and tools for analyzing variant and sequencing data are available at MSeqDR, MitoMap, and HmtDB. Revised specifications of the American College of Medical Genetics/Association of Molecular Pathology standards and guidelines for mitochondrial DNA variant interpretation are proposed by the MSeqDr Consortium and community experts.
Collapse
Affiliation(s)
- Lishuang Shen
- Keck School of Medicine of USC, Center for Personalized Medicine, Children's Hospital Los Angeles, Suite 300, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Colleen Clarke Muraresku
- Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Marni J Falk
- CHOP Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, ARC 1002c, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Xiaowu Gai
- Keck School of Medicine of USC, Center for Personalized Medicine, Children's Hospital Los Angeles, Suite 300, 2100 West 3rd Street, Los Angeles, CA 90057, USA.
| |
Collapse
|
21
|
Ni J, Liu Z, Yuan Y, Li W, Hu Y, Liu P, Hou X, Zhu X, Tang X, Liang M, Zheng S, Hou X, Du J, Tang J, Jiang H, Shen L, Tang B, Wang J. Mitochondrial genome variations are associated with amyotrophic lateral sclerosis in patients from mainland China. J Neurol 2021; 269:805-814. [PMID: 34129120 DOI: 10.1007/s00415-021-10659-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder. Mitochondrial dysfunction is involved in the complex pathophysiology of ALS; however, the role of mitochondrial DNA (mtDNA) variants in ALS is poorly understood. We aimed to elucidate the role of mtDNA variants in the pathogenesis of ALS. METHODS The mitochondrial haplogroups of 585 ALS patients and 371 healthy controls were determined; 38 ALS patients and 42 controls underwent long-range polymerase chain reaction combined with next-generation sequencing technology to analyze whole mitochondrial genome variants. RESULTS A higher percentage of variants accumulated in ALS patients than in controls. Analysis of coding region variations that were further stratified by mtDNA genes revealed that nonsynonymous variants were more vulnerable in ALS patients than in controls, particularly in the ND4L, ND5, and ATP8 genes. Moreover, pathogenic nonsynonymous variants tended to over-represent in ALS patients. Unsurprisingly, nonsynonymous variants were not related to the phenotype. Haplogroup analysis did not found evidence of association between haplogroups with the risk of ALS, however, patients belonging to haplogroup Y and M7c were prone to develop later onset of ALS. CONCLUSIONS This is the first study to profile mtDNA variants in ALS patients from mainland China. Our results suggest that an increase in the number of nonsynonymous variants is linked to the pathogenesis of ALS. Moreover, haplogroup Y and M7c may modulate the clinical expression of ALS. Our findings provide independent, albeit limited, evidence for the role of mtDNA in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Jie Ni
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Yiting Hu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Pan Liu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Xiangyu Zhu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Xuxiong Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Mingyu Liang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Siqi Zheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Jianguang Tang
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China. .,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
22
|
Mitochondrial DNA Instability Is Common in HIV-Exposed Uninfected Newborns. J Clin Med 2021; 10:jcm10112399. [PMID: 34071681 PMCID: PMC8197798 DOI: 10.3390/jcm10112399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023] Open
Abstract
Worldwide, one million HIV-exposed uninfected (HEU) children are born yearly, and chronic health impairments have been reported in these children. Mitochondrial DNA (mtDNA) instability and altered mtDNA content have been evidenced in these children, but an exhaustive characterization of altered mitochondrial genomes has never been reported. We applied deep mtDNA sequencing coupled to the deletion identification algorithm eKLIPse to the blood of HEU neonates (n = 32), which was compared with healthy controls (n = 15). Dried blood spots (DBS) from African HEU children were collected seven days after birth between November 2009 and May 2012. DBS from French healthy controls were collected at birth (or <3 days of life) in 2012 and in 2019. In contrast to the absence of mtDNA instability observed at the nucleotide level, we identified significant amounts of heteroplasmic mtDNA deletions in 75% of HEU children and in none of controls. The heteroplasmy rate of the 62 mtDNA deletions identified varied from 0.01% to up to 50%, the highest rates being broadly compatible with bioenergetic defect and clinical expression. mtDNA integrity is commonly affected in HEU neonates. The nature of the deletions suggests a mechanism related to aging or tumor-associated mtDNA instability. This child population may be at risk of additional mtDNA genetic alterations considering that they will be exposed to other mitotoxic drugs including antiretroviral or anti-tuberculosis treatment.
Collapse
|
23
|
Ji K, Wang W, Lin Y, Xu X, Liu F, Wang D, Zhao Y, Yan C. Mitochondrial encephalopathy Due to a Novel Pathogenic Mitochondrial tRNA Gln m.4349C>T Variant. Ann Clin Transl Neurol 2021; 7:980-991. [PMID: 32588991 PMCID: PMC7318088 DOI: 10.1002/acn3.51069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA, among which, mutations in mitochondrial tRNA genes possessing prominent status. In most of the cases, however, the detailed molecular pathogenesis of these tRNA gene mutations remains unclear. METHODS We performed the clinical emulation, muscle histochemistry, northern blotting analysis of tRNA levels, biochemical measurement of respiratory chain complex activities and mitochondrial respirations in muscle tissue and cybrid cells. RESULTS We found a novel m.4349C>T mutation in mitochondrial tRNAGln gene in a patient present with encephalopathy, epilepsy, and deafness. We demonstrated molecular pathomechanisms of this mutation. This mutation firstly disturbed the translation machinery of mitochondrial tRNAGln and impaired mitochondrial respiratory chain complex activities, followed by remarkable mitochondrial dysfunction and ROS production. INTERPRETATION This study illustrated the pathogenicity of a novel m.4349C>T mutation and provided a better understanding of the phenotype associated with mutations in mitochondrial tRNAGln gene.
Collapse
Affiliation(s)
- Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Xuebi Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Fuchen Liu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China.,Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, 266035, China.,Brain Science Research Institute, Shandong University, Jinan, Shandong, 250000, China
| |
Collapse
|
24
|
Kristan A, Gašperšič J, Režen T, Kunej T, Količ R, Vuga A, Fink M, Žula Š, Anžej Doma S, Preložnik Zupan I, Pajič T, Podgornik H, Debeljak N. Genetic analysis of 39 erythrocytosis and hereditary hemochromatosis-associated genes in the Slovenian family with idiopathic erythrocytosis. J Clin Lab Anal 2021; 35:e23715. [PMID: 33534944 PMCID: PMC8059723 DOI: 10.1002/jcla.23715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Erythrocytosis is a condition with an excessive number of erythrocytes, accompanied by an elevated haemoglobin and/or haematocrit value. Congenital erythrocytosis has a diverse genetic background with several genes involved in erythropoiesis. In clinical practice, nine genes are usually examined, but in approximately 70% of patients, no causative mutation can be identified. In this study, we screened 39 genes, aiming to identify potential disease-driving variants in the family with erythrocytosis of unknown cause. PATIENTS AND METHODS Two affected family members with elevated haemoglobin and/or haematocrit and negative for acquired causes and one healthy relative from the same family were selected for molecular-genetic analysis of 24 erythrocytosis and 15 hereditary haemochromatosis-associated genes with targeted NGS. The identified variants were further analysed for pathogenicity using various bioinformatic tools and review of the literature. RESULTS Of the 12 identified variants, two heterozygous variants, the missense variant c.471G>C (NM_022051.2) (p.(Gln157His)) in the EGLN1 gene and the intron variant c.2572-13A>G (NM_004972.3) in the JAK2 gene, were classified as low-frequency variants in European population. None of the two variants were present in a healthy family member. Variant c.2572-13A>G has potential impact on splicing by one prediction tool. CONCLUSION For the first time, we included 39 genes in the erythrocytosis clinical panel and identified two potential disease-driving variants in the Slovene family studied. Based on the reported functional in vitro studies combined with our bioinformatics analysis, we suggest further functional analysis of variant in the JAK2 gene and evaluation of a cumulative effect of both variants.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Jernej Gašperšič
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio‐ChipsFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Tanja Kunej
- Department of Animal ScienceBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Rok Količ
- Kemomed Research and DevelopmentKemomed LtdKranjSlovenia
| | - Andrej Vuga
- Kemomed Research and DevelopmentKemomed LtdKranjSlovenia
| | - Martina Fink
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Špela Žula
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Saša Anžej Doma
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Irena Preložnik Zupan
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Department of Internal MedicineFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tadej Pajič
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Clinical Institute of Genomic MedicineUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Helena Podgornik
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Chair of Clinical BiochemistryFaculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Nataša Debeljak
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
25
|
Dong Y, Li C, Kim K, Cui L, Liu X. Genome annotation of disease-causing microorganisms. Brief Bioinform 2021; 22:845-854. [PMID: 33537706 PMCID: PMC7986607 DOI: 10.1093/bib/bbab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 11/13/2022] Open
Abstract
Humans have coexisted with pathogenic microorganisms throughout its history of evolution. We have never halted the exploration of pathogenic microorganisms. With the improvement of genome-sequencing technology and the continuous reduction of sequencing costs, an increasing number of complete genome sequences of pathogenic microorganisms have become available. Genome annotation of this massive sequence information has become a daunting task in biological research. This paper summarizes the approaches to the genome annotation of pathogenic microorganisms and the available popular genome annotation tools for prokaryotes, eukaryotes and viruses. Furthermore, real-world comparisons of different annotation tools using 12 genomes from prokaryotes, eukaryotes and viruses were conducted. Current challenges and problems were also discussed.
Collapse
Affiliation(s)
- Yibo Dong
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Chang Li
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Kami Kim
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Liwang Cui
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Xiaoming Liu
- College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
26
|
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett 2021; 595:1132-1158. [PMID: 33655490 DOI: 10.1002/1873-3468.14068] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany
| |
Collapse
|
27
|
Investigating the importance of individual mitochondrial genotype in susceptibility to drug-induced toxicity. Biochem Soc Trans 2021; 48:787-797. [PMID: 32453388 PMCID: PMC7329340 DOI: 10.1042/bst20190233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
The mitochondrion is an essential organelle responsible for generating cellular energy. Additionally, mitochondria are a source of inter-individual variation as they contain their own genome. Evidence has revealed that mitochondrial DNA (mtDNA) variation can confer differences in mitochondrial function and importantly, these differences may be a factor underlying the idiosyncrasies associated with unpredictable drug-induced toxicities. Thus far, preclinical and clinical data are limited but have revealed evidence in support of an association between mitochondrial haplogroup and susceptibility to specific adverse drug reactions. In particular, clinical studies have reported associations between mitochondrial haplogroup and antiretroviral therapy, chemotherapy and antibiotic-induced toxicity, although study limitations and conflicting findings mean that the importance of mtDNA variation to toxicity remains unclear. Several studies have used transmitochondrial cybrid cells as personalised models with which to study the impact of mitochondrial genetic variation. Cybrids allow the effects of mtDNA to be assessed against a stable nuclear background and thus the in vitro elucidation of the fundamental mechanistic basis of such differences. Overall, the current evidence supports the tenet that mitochondrial genetics represent an exciting area within the field of personalised medicine and drug toxicity. However, further research effort is required to confirm its importance. In particular, efforts should focus upon translational research to connect preclinical and clinical data that can inform whether mitochondrial genetics can be useful to identify at risk individuals or inform risk assessment during drug development.
Collapse
|
28
|
Allouche S, Schaeffer S, Chapon F. [Mitochondrial diseases in adults: An update]. Rev Med Interne 2021; 42:541-557. [PMID: 33455836 DOI: 10.1016/j.revmed.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial diseases, characterized by a respiratory chain deficiency, are considered as rare genetic diseases but are the most frequent among inherited metabolic disorders. The complexity of their diagnosis is due to the dual control by the mitochondrial (mtDNA) and the nuclear DNA (nDNA), and to the heterogeneous clinical presentations; illegitimate association of symptoms should prompt the clinician to evoke a mitochondrial disorder. The goals of this review are to provide clinicians a better understanding of mitochondrial diseases in adults. After a brief overview on the mitochondrial origin and functions, especially their role in the energy metabolism, we will describe the genetic bases for mitochondrial diseases, then we will describe the various clinical presentations with the different affected tissues as well as the main symptoms encountered. Even if the new sequencing approaches have profoundly changed the diagnostic process, the brain imaging, the biological, the biochemical, and the histological explorations are still important highlighting the need for a multidisciplinary approach. While for most of the patients with a mitochondrial disease, only supportive and symptomatic therapies are available, recent advances in the understanding of the pathophysiological mechanisms have been made and new therapies are being developed and are evaluated in human clinical trials.
Collapse
Affiliation(s)
- S Allouche
- Laboratoire de biochimie, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France.
| | - S Schaeffer
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| | - F Chapon
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| |
Collapse
|
29
|
Swietlik EM, Prapa M, Martin JM, Pandya D, Auckland K, Morrell NW, Gräf S. 'There and Back Again'-Forward Genetics and Reverse Phenotyping in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:E1408. [PMID: 33256119 PMCID: PMC7760524 DOI: 10.3390/genes11121408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Although the invention of right heart catheterisation in the 1950s enabled accurate clinical diagnosis of pulmonary arterial hypertension (PAH), it was not until 2000 when the landmark discovery of the causative role of bone morphogenetic protein receptor type II (BMPR2) mutations shed new light on the pathogenesis of PAH. Since then several genes have been discovered, which now account for around 25% of cases with the clinical diagnosis of idiopathic PAH. Despite the ongoing efforts, in the majority of patients the cause of the disease remains elusive, a phenomenon often referred to as "missing heritability". In this review, we discuss research approaches to uncover the genetic architecture of PAH starting with forward phenotyping, which in a research setting should focus on stable intermediate phenotypes, forward and reverse genetics, and finally reverse phenotyping. We then discuss potential sources of "missing heritability" and how functional genomics and multi-omics methods are employed to tackle this problem.
Collapse
Affiliation(s)
- Emilia M. Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Matina Prapa
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jennifer M. Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Kathryn Auckland
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| |
Collapse
|
30
|
Montano V, Gruosso F, Simoncini C, Siciliano G, Mancuso M. Clinical features of mtDNA-related syndromes in adulthood. Arch Biochem Biophys 2020; 697:108689. [PMID: 33227288 DOI: 10.1016/j.abb.2020.108689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
Mitochondrial diseases are the most common inheritable metabolic diseases, due to defects in oxidative phosphorylation. They are caused by mutations of nuclear or mitochondrial DNA in genes involved in mitochondrial function. The peculiarity of "mitochondrial DNA genetics rules" in part explains the marked phenotypic variability, the complexity of genotype-phenotype correlations and the challenge of genetic counseling. The new massive genetic sequencing technologies have changed the diagnostic approach, enhancing mitochondrial DNA-related syndromes diagnosis and often avoiding the need of a tissue biopsy. Here we present the most common phenotypes associated with a mitochondrial DNA mutation with the recent advances in diagnosis and in therapeutic perspectives.
Collapse
Affiliation(s)
- V Montano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - F Gruosso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - C Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - M Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy.
| |
Collapse
|
31
|
McCormick EM, Lott MT, Dulik MC, Shen L, Attimonelli M, Vitale O, Karaa A, Bai R, Pineda-Alvarez DE, Singh LN, Stanley CM, Wong S, Bhardwaj A, Merkurjev D, Mao R, Sondheimer N, Zhang S, Procaccio V, Wallace DC, Gai X, Falk MJ. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum Mutat 2020; 41:2028-2057. [PMID: 32906214 DOI: 10.1002/humu.24107] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) variant pathogenicity interpretation has special considerations given unique features of the mtDNA genome, including maternal inheritance, variant heteroplasmy, threshold effect, absence of splicing, and contextual effects of haplogroups. Currently, there are insufficient standardized criteria for mtDNA variant assessment, which leads to inconsistencies in clinical variant pathogenicity reporting. An international working group of mtDNA experts was assembled within the Mitochondrial Disease Sequence Data Resource Consortium and obtained Expert Panel status from ClinGen. This group reviewed the 2015 American College of Medical Genetics and Association of Molecular Pathology standards and guidelines that are widely used for clinical interpretation of DNA sequence variants and provided further specifications for additional and specific guidance related to mtDNA variant classification. These Expert Panel consensus specifications allow for consistent consideration of the unique aspects of the mtDNA genome that directly influence variant assessment, including addressing mtDNA genome composition and structure, haplogroups and phylogeny, maternal inheritance, heteroplasmy, and functional analyses unique to mtDNA, as well as specifications for utilization of mtDNA genomic databases and computational algorithms.
Collapse
Affiliation(s)
- Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew C Dulik
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lishuang Shen
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Ornella Vitale
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Amel Karaa
- Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christine M Stanley
- Variantyx, Inc, Framingham, Massachusetts, USA.,QNA Diagnostics, Cambridge, Massachusetts, USA
| | | | - Anshu Bhardwaj
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Daria Merkurjev
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Rong Mao
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Neal Sondheimer
- Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vincent Procaccio
- Department of Biochemistry and Genetics, MitoVasc Institute, UMR CNRS 6015- INSERM U1083, CHU Angers, Angers, France
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Labory J, Fierville M, Ait-El-Mkadem S, Bannwarth S, Paquis-Flucklinger V, Bottini S. Multi-Omics Approaches to Improve Mitochondrial Disease Diagnosis: Challenges, Advances, and Perspectives. Front Mol Biosci 2020; 7:590842. [PMID: 33240932 PMCID: PMC7667268 DOI: 10.3389/fmolb.2020.590842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/14/2020] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial diseases (MD) are rare disorders caused by deficiency of the mitochondrial respiratory chain, which provides energy in each cell. They are characterized by a high clinical and genetic heterogeneity and in most patients, the responsible gene is unknown. Diagnosis is based on the identification of the causative gene that allows genetic counseling, prenatal diagnosis, understanding of pathological mechanisms, and personalized therapeutic approaches. Despite the emergence of Next Generation Sequencing (NGS), to date, more than one out of two patients has no diagnosis in the absence of identification of the responsible gene. Technologies currently used for detecting causal variants (genetic alterations) is far from complete, leading many variants of unknown significance (VUS) and mainly based on the use of whole exome sequencing thus neglecting the identification of non-coding variants. The complexity of human genome and its regulation at multiple levels has led biologists to develop several assays to interrogate the different aspects of biological processes. While one-dimension single omics investigation offers a peek of this complex system, the combination of different omics data allows the discovery of coherent signatures. The community of computational biologists and bioinformaticians, in order to integrate data from different omics, has developed several approaches and tools. However, it is difficult to understand which suits the best to predict diverse phenotypic outcome. First attempts to use multi-omics approaches showed an improvement of the diagnostic power. However, we are far from a complete understanding of MD and their diagnosis. After reviewing multi-omics algorithms developed in the latest years, we are proposing here a novel data-driven classification and we will discuss how multi-omics will change and improve the diagnosis of MD. Due to the growing use of multi-omics approaches in MD, we foresee that this work will contribute to set up good practices to perform multi-omics data integration to improve the prediction of phenotypic outcomes and the diagnostic power of MD.
Collapse
Affiliation(s)
- Justine Labory
- Université Côte d’Azur, Center of Modeling, Simulation and Interactions, Nice, France
| | - Morgane Fierville
- Université Côte d’Azur, Center of Modeling, Simulation and Interactions, Nice, France
| | - Samira Ait-El-Mkadem
- Université Côte d’Azur, Inserm U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre hospitalier universitaire (CHU) de Nice, Nice, France
| | - Sylvie Bannwarth
- Université Côte d’Azur, Inserm U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre hospitalier universitaire (CHU) de Nice, Nice, France
| | - Véronique Paquis-Flucklinger
- Université Côte d’Azur, Center of Modeling, Simulation and Interactions, Nice, France
- Université Côte d’Azur, Inserm U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Centre hospitalier universitaire (CHU) de Nice, Nice, France
| | - Silvia Bottini
- Université Côte d’Azur, Center of Modeling, Simulation and Interactions, Nice, France
| |
Collapse
|
33
|
Bornstein R, Gonzalez B, Johnson SC. Mitochondrial pathways in human health and aging. Mitochondrion 2020; 54:72-84. [PMID: 32738358 PMCID: PMC7508824 DOI: 10.1016/j.mito.2020.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
Abstract
Mitochondria are eukaryotic organelles known best for their roles in energy production and metabolism. While often thought of as simply the 'powerhouse of the cell,' these organelles participate in a variety of critical cellular processes including reactive oxygen species (ROS) production, regulation of programmed cell death, modulation of inter- and intracellular nutrient signaling pathways, and maintenance of cellular proteostasis. Disrupted mitochondrial function is a hallmark of eukaryotic aging, and mitochondrial dysfunction has been reported to play a role in many aging-related diseases. While mitochondria are major players in human diseases, significant questions remain regarding their precise mechanistic role. In this review, we detail mechanisms by which mitochondrial dysfunction participate in disease and aging based on findings from model organisms and human genetics studies.
Collapse
Affiliation(s)
| | - Brenda Gonzalez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simon C Johnson
- Department of Neurology, University of Washington, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
34
|
Kargaran PK, Evans JM, Bodbin SE, Smith JGW, Nelson TJ, Denning C, Mosqueira D. Mitochondrial DNA: Hotspot for Potential Gene Modifiers Regulating Hypertrophic Cardiomyopathy. J Clin Med 2020; 9:E2349. [PMID: 32718021 PMCID: PMC7463557 DOI: 10.3390/jcm9082349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and untreatable cardiovascular disease with a highly complex clinical and genetic causation. HCM patients bearing similar sarcomeric mutations display variable clinical outcomes, implying the involvement of gene modifiers that regulate disease progression. As individuals exhibiting mutations in mitochondrial DNA (mtDNA) present cardiac phenotypes, the mitochondrial genome is a promising candidate to harbor gene modifiers of HCM. Herein, we sequenced the mtDNA of isogenic pluripotent stem cell-cardiomyocyte models of HCM focusing on two sarcomeric mutations. This approach was extended to unrelated patient families totaling 52 cell lines. By correlating cellular and clinical phenotypes with mtDNA sequencing, potentially HCM-protective or -aggravator mtDNA variants were identified. These novel mutations were mostly located in the non-coding control region of the mtDNA and did not overlap with those of other mitochondrial diseases. Analysis of unrelated patients highlighted family-specific mtDNA variants, while others were common in particular population haplogroups. Further validation of mtDNA variants as gene modifiers is warranted but limited by the technically challenging methods of editing the mitochondrial genome. Future molecular characterization of these mtDNA variants in the context of HCM may identify novel treatments and facilitate genetic screening in cardiomyopathy patients towards more efficient treatment options.
Collapse
Affiliation(s)
- Parisa K. Kargaran
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jared M. Evans
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara E. Bodbin
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - James G. W. Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
| | - Timothy J. Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA;
| | - Chris Denning
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Diogo Mosqueira
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
35
|
Lanillos J, Santos M, Carcajona M, Roldan-Romero JM, Martinez AM, Calsina B, Monteagudo M, Leandro-García LJ, Montero-Conde C, Cascón A, Maietta P, Alvarez S, Robledo M, Rodriguez-Antona C. A Novel Approach for the Identification of Pharmacogenetic Variants in MT-RNR1 through Next-Generation Sequencing Off-Target Data. J Clin Med 2020; 9:jcm9072082. [PMID: 32630724 PMCID: PMC7408883 DOI: 10.3390/jcm9072082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
Specific genetic variants in the mitochondrially encoded 12S ribosomal RNA gene (MT-RNR1) cause aminoglycoside-induced irreversible hearing loss. Mitochondrial DNA is usually not included in targeted sequencing experiments; however, off-target data may deliver this information. Here, we extract MT-RNR1 genetic variation, including the most relevant ototoxicity variant m.1555A>G, using the off-target reads of 473 research samples, sequenced through a capture-based, custom-targeted panel and whole exome sequencing (WES), and of 1245 diagnostic samples with clinical WES. Sanger sequencing and fluorescence-based genotyping were used for genotype validation. There was a correlation between off-target reads and mitochondrial coverage (rcustomPanel = 0.39, p = 2 × 10−13 and rWES = 0.67, p = 7 × 10−21). The median read depth of MT-RNR1 m.1555 was similar to the average mitochondrial genome coverage, with saliva and blood samples giving comparable results. The genotypes from 415 samples, including three m.1555G carriers, were concordant with fluorescence-based genotyping data. In clinical WES, median MT-RNR1 coverage was 56×, with 90% of samples having ≥20 reads at m.1555 position, and one m.1494T and three m.1555G carriers were identified with no evidence for heteroplasmy. Altogether, this study shows that obtaining MT-RNR1 genotypes through off-target reads is an efficient strategy that can impulse preemptive pharmacogenetic screening of this mitochondrial gene.
Collapse
Affiliation(s)
- Javier Lanillos
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - María Santos
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | | | - Juan María Roldan-Romero
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Angel M. Martinez
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - María Monteagudo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Luis Javier Leandro-García
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Paolo Maietta
- Nimgenetics, 28049 Madrid, Spain; (M.C.); (P.M.); (S.A.)
| | - Sara Alvarez
- Nimgenetics, 28049 Madrid, Spain; (M.C.); (P.M.); (S.A.)
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-732-8000 (ext. 3321)
| |
Collapse
|
36
|
Stendel C, D’Adamo MC, Wiessner M, Dusl M, Cenciarini M, Belia S, Nematian-Ardestani E, Bauer P, Senderek J, Klopstock T, Pessia M. Association of A Novel Splice Site Mutation in P/Q-Type Calcium Channels with Childhood Epilepsy and Late-Onset Slowly Progressive Non-Episodic Cerebellar Ataxia. Int J Mol Sci 2020; 21:E3810. [PMID: 32471306 PMCID: PMC7312673 DOI: 10.3390/ijms21113810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023] Open
Abstract
Episodic ataxia type 2 (EA2) is characterized by paroxysmal attacks of ataxia with typical onset in childhood or early adolescence. The disease is associated with mutations in the voltage-gated calcium channel alpha 1A subunit (Cav2.1) that is encoded by the CACNA1A gene. However, previously unrecognized atypical symptoms and the genetic overlap existing between EA2, spinocerebellar ataxia type 6, familial hemiplegic migraine type 1, and other neurological diseases blur the genotype/phenotype correlations, making a differential diagnosis difficult to formulate correctly and delaying early therapeutic intervention. Here we report a new clinical phenotype of a CACNA1A-associated disease characterized by absence epilepsy occurring during childhood. However, much later in life the patient displayed non-episodic, slowly progressive gait ataxia. Gene panel sequencing for hereditary ataxias led to the identification of a novel heterozygous CACNA1A mutation (c.1913 + 2T > G), altering the donor splice site of intron 14. This genetic defect was predicted to result in an in-frame deletion removing 44 amino acids from the voltage-gated calcium channel Cav2.1. An RT-PCR analysis of cDNA derived from patient skin fibroblasts confirmed the skipping of the entire exon 14. Furthermore, two-electrode voltage-clamp recordings performed from Xenopus laevis oocytes expressing a wild-type versus mutant channel showed that the genetic defect caused a complete loss of channel function. This represents the first description of distinct clinical manifestations that remarkably expand the genetic and phenotypic spectrum of CACNA1A-related diseases and should be considered for an early diagnosis and effective therapeutic intervention.
Collapse
Affiliation(s)
- Claudia Stendel
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Maria Cristina D’Adamo
- Faculty of Medicine, Department of Physiology & Biochemistry, University of Malta, MSD 2080 Msida, Malta; (M.C.D.); (E.N.-A.)
| | - Manuela Wiessner
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
| | - Marina Dusl
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
| | - Marta Cenciarini
- Section of Physiology & Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, 06132 Perugia, Italy;
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06132 Perugia, Italy;
| | - Ehsan Nematian-Ardestani
- Faculty of Medicine, Department of Physiology & Biochemistry, University of Malta, MSD 2080 Msida, Malta; (M.C.D.); (E.N.-A.)
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany;
| | - Jan Senderek
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
| | - Thomas Klopstock
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Mauro Pessia
- Faculty of Medicine, Department of Physiology & Biochemistry, University of Malta, MSD 2080 Msida, Malta; (M.C.D.); (E.N.-A.)
- Department of Physiology, United Arab Emirates University, Al Ain Po Box 17666, UAE
| |
Collapse
|
37
|
Cappa R, de Campos C, Maxwell AP, McKnight AJ. "Mitochondrial Toolbox" - A Review of Online Resources to Explore Mitochondrial Genomics. Front Genet 2020; 11:439. [PMID: 32457801 PMCID: PMC7225359 DOI: 10.3389/fgene.2020.00439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/09/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondria play a significant role in many biological systems. There is emerging evidence that differences in the mitochondrial genome may contribute to multiple common diseases, leading to an increasing number of studies exploring mitochondrial genomics. There is often a large amount of complex data generated (for example via next generation sequencing), which requires optimised bioinformatics tools to efficiently and effectively generate robust outcomes from these large datasets. Twenty-four online resources dedicated to mitochondrial genomics were reviewed. This 'mitochondrial toolbox' summary resource will enable researchers to rapidly identify the resource(s) most suitable for their needs. These resources fulfil a variety of functions, with some being highly specialised. No single tool will provide all users with the resources they require; therefore, the most suitable tool will vary between users depending on the nature of the work they aim to carry out. Genetics resources are well established for phylogeny and DNA sequence changes, but further epigenetic and gene expression resources need to be developed for mitochondrial genomics.
Collapse
Affiliation(s)
- Ruaidhri Cappa
- Centre for Public Health, Institute of Clinical Sciences B, Queen's University Belfast, Royal Victoria Hospital, Belfast, United Kingdom
| | - Cassio de Campos
- School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, United Kingdom
| | - Alexander P Maxwell
- Centre for Public Health, Institute of Clinical Sciences B, Queen's University Belfast, Royal Victoria Hospital, Belfast, United Kingdom
| | - Amy J McKnight
- Centre for Public Health, Institute of Clinical Sciences B, Queen's University Belfast, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
38
|
Mohammad G, Radhakrishnan R, Kowluru RA. Epigenetic Modifications Compromise Mitochondrial DNA Quality Control in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 60:3943-3951. [PMID: 31546260 PMCID: PMC6759036 DOI: 10.1167/iovs.19-27602] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Diabetes causes dysfunction in the retinal mitochondria and increases base mismatches in their DNA (mtDNA). The enzyme responsible for repairing the base mismatches, MutL homolog 1 (Mlh1), is compromised. Diabetes also favors many epigenetic modifications and activates DNA methylation machinery, and Mlh1 has a CpG-rich promoter. Our aim is to identify the molecular mechanism responsible for impaired mtDNA mismatch repair in the pathogenesis of diabetic retinopathy. Methods Human retinal endothelial cells, incubated in 20 mM glucose, were analyzed for mitochondrial localization of Mlh1 by an immunofluorescence technique, Mlh1 promoter DNA methylation by the methylated DNA capture method, and the binding of Dnmt1 and transcriptional factor Sp1 by chromatin immunoprecipitation. The results were confirmed in retinal microvessels from streptozotocin-induced diabetic mice, with or without Dnmt inhibitors, and from human donors with diabetic retinopathy. Results Compared with cells in 5 mM glucose, high glucose decreased Mlh1 mitochondrial localization, and its promoter DNA was hypermethylated with increased Dnmt-1 binding and decreased Sp1 binding. Dnmt inhibitors attenuated Mlh1 promoter hypermethylation and prevented a decrease in its gene transcripts and an increase in mtDNA mismatches. The administration of Dnmt inhibitors in mice ameliorated a diabetes-induced increase in Mlh1 promoter hypermethylation and a decrease in its gene transcripts. Similar decreases in Mlh1 gene transcripts and its promoter DNA hypermethylation were observed in human donors. Conclusions Thus, as a result of the epigenetic modifications of the Mlh1 promoter, its transcription is decreased, and decreased mitochondrial accumulation fails to repair mtDNA mismatches. Therapies targeted to halt DNA methylation have the potential to prevent/halt mtDNA damage and the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, Michigan, United States
| | - Rakesh Radhakrishnan
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
39
|
Attimonelli M, Preste R, Vitale O, Lott MT, Procaccio V, Shiping Z, Wallace DC. Bioinformatics resources, databases, and tools for human mtDNA. THE HUMAN MITOCHONDRIAL GENOME 2020:277-304. [DOI: 10.1016/b978-0-12-819656-4.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
The Authors' Reply: The tRNA(Ile) Variant m.4309G>A May Not Cause Kearns-Sayre Syndrome. Transplantation 2019; 103:e396. [PMID: 31764893 DOI: 10.1097/tp.0000000000002953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Müller-Nedebock AC, Brennan RR, Venter M, Pienaar IS, van der Westhuizen FH, Elson JL, Ross OA, Bardien S. The unresolved role of mitochondrial DNA in Parkinson's disease: An overview of published studies, their limitations, and future prospects. Neurochem Int 2019; 129:104495. [PMID: 31233840 PMCID: PMC6702091 DOI: 10.1016/j.neuint.2019.104495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, has long been associated with mitochondrial dysfunction in both sporadic and familial forms of the disease. Mitochondria are crucial for maintaining cellular homeostasis, and their dysfunction is detrimental to dopaminergic neurons. These neurons are highly dependent on mitochondrial adenosine triphosphate (ATP) and degenerate in PD. Mitochondria contain their own genomes (mtDNA). The role of mtDNA has been investigated in PD on the premise that it encodes vital components of the ATP-generating oxidative phosphorylation (OXPHOS) complexes and accumulates somatic variation with age. However, the association between mtDNA variation and PD remains controversial. Herein, we provide an overview of previously published studies on the role of inherited as well as somatic (acquired) mtDNA changes in PD including point mutations, deletions and depletion. We outline limitations of previous investigations and the difficulties associated with studying mtDNA, which have left its role unresolved in the context of PD. Lastly, we highlight the potential for further research in this field and provide suggestions for future studies. Overall, the mitochondrial genome is indispensable for proper cellular function and its contribution to PD requires further, more extensive investigation.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | | | - Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom; Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
42
|
Huang H, Huang Q, Tang T, Zhou X, Gu L, Lu X, Liu F. Differentially Expressed Gene Screening, Biological Function Enrichment, and Correlation with Prognosis in Non-Small Cell Lung Cancer. Med Sci Monit 2019; 25:4333-4341. [PMID: 31181055 PMCID: PMC6582684 DOI: 10.12659/msm.916962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The aim of this study was to explore the differently expressed genes and pathways in non-small cell lung cancer (NSCLC) and their correlation with the prognosis. Material/Methods Gene expression data series of GSE19804, GSE101929, and GSE33532 were downloaded from the Gene Expression Ominibus (GEO) database. The overlaping differently expressed genes (DEGs) were identified form the above 3 data series. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEEG) were used to analyze the biological functions and signal pathways of DEGs. The protein–protein interaction (PPI) was analyzed thorough Search Tool for the Retrieval of Interacting Gens (STRING). The relationship between the expression of hub genes and the prognosis of patients was analyzed by Kaplan-Meier Plotter online software. Results Twenty-nine DEGs were identified, with 22 upregulated genes and 7 downregulated genes. The enriched biological processes were mainly related to diet-induced thermogenesis and actin filament binding. The KEGG pathways were enriched in calcium signaling, regulation of lipolysis in adipocytes, and PPAR signaling. Two downregulated genes (MMP1 and SPP1) were identified as hub genes by Cytohubba. Twenty-two dysregulated genes were correlated with patient prognosis. Conclusions Differentially expressed genes are common in NSCLC patients and can be used as biomarkers for patient prognosis.
Collapse
Affiliation(s)
- He Huang
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Qingdong Huang
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Tingyu Tang
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoxi Zhou
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Liang Gu
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoling Lu
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Fang Liu
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
43
|
Pereira C, Souza CFD, Vedolin L, Vairo F, Lorea C, Sobreira C, Nogueira C, Vilarinho L. Leigh Syndrome Due to mtDNA Pathogenic Variants. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2019. [DOI: 10.1590/2326-4594-jiems-2018-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
| | | | | | | | - Cláudia Lorea
- Department of Clinical Genomics, USA; Universidade Federal de Pelotas, Brazil
| | | | - Célia Nogueira
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Portugal
| | | |
Collapse
|