1
|
Dawson A, Karimi AH, Shaikh MH, Gazala W, Zeng PYF, Ryan SEB, Pan H, Khan H, Cecchini M, Mendez A, Palma DA, Mymryk JS, Barrett JW, Nichols AC. Loss of MACROD2 drives radioresistance but not cisplatin resistance in HPV-positive head and neck cancer. Oral Oncol 2024; 159:107061. [PMID: 39357386 DOI: 10.1016/j.oraloncology.2024.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer type worldwide. In recent years, there has been an increase in the rate of HNSCC cases attributed to the infection of the oropharynx by the human papillomavirus (HPV). Given the significant treatment-related toxicities of the current standard of care for HPV-positive HNSCC, there is an urgent need for the development of precision patient stratification and treatment strategies to improve patients' quality of life while maintaining excellent survival rates. We have previously carried out whole genome sequencing of HPV+ HNSCC tumors that failed concurrent cisplatin and radiation treatment and discovered that MACROD2 deletion is enriched among these tumors. In the current study, we sought to investigate the mechanistic role of MACROD2 in HPV+ HNSCC treatment resistance. Our results indicate that MACROD2 depletion in HNSCC cell lines leads to increased cell viability and colony formation capacity. Interestingly, MACROD2 depletion did not alter cisplatin sensitivity but led to an increase in radiation resistance of HPV+ HNSCC cell lines. RNA sequencing and immunofluorescence microscopy demonstrated that MACROD2-depleted HPV+ HNSCC cells displayed elevated levels of hypoxia and an altered DNA damage response. Taken together, this study establishes and characterizes the role of MACROD2 in HPV+ HNSCC radioresistance. Further work is needed to validate MACROD2 as a biomarker of treatment failure and to understand how to overcome the identified molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Alice Dawson
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Amir Hossein Karimi
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Mushfiq H Shaikh
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Walid Gazala
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Peter Y F Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Sarah E B Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Harrison Pan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Halema Khan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Matthew Cecchini
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Adrian Mendez
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - David A Palma
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada; Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Han Y, Kim M, Yoo HJ. The MACROD2 rs6110695 A>G Polymorphism and the Metabolites Indoleacrylic Acid and Butyrylcarnitine Potentially Have Clinical Relevance to WBC Count Prediction. J Pers Med 2024; 14:889. [PMID: 39202079 PMCID: PMC11355238 DOI: 10.3390/jpm14080889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Our previous study suggested that the Mono-ADP ribosylhydrolase 2 (MACROD2) rs6110695 A>G polymorphism is significantly associated with white blood cell (WBC) count in the Korean population. The present study aimed to evaluate the clinical relevance of the MACROD2 rs6110695 A>G polymorphism for predicting WBC count by utilizing plasma metabolites and a single-nucleotide polymorphism (SNP). Two groups were characterized by MACROD2 rs6110695 A>G SNP genotypes among 139 healthy subjects based on the genetic information provided in our previous work: rs6110695 AA genotype group (n = 129) and rs6110695 AG genotype group (n = 10). Plasma global metabolic profiling was performed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). To estimate the predictive abilities of WBC count models using the rs6110695 genotype and/or significant differential metabolites, multiple linear regression analysis and receiver operating characteristic (ROC) curve analysis were conducted. The AG genotype had greater WBC-to-apolipoprotein (apo) A-I ratios; counts of WBCs, lymphocytes, monocytes, and granulocytes; monocyte-to-lymphocyte ratio (MLR); and monocyte-to-platelet ratio (MPR) than the AA genotype. In terms of metabolic profile, indoleacetic acid, and butyrylcarnitine levels were considerably distinct between the two groups, and these metabolites were considered to be meaningful prognostic variables for the rs6110695 genotype. Finally, ROC curve analysis demonstrated that the model containing the rs6110695 genotype and the two main metabolites was reliable. The present study revealed that individuals carrying the rs6110695 AG genotype with high plasma indoleacrylic acid and butyrylcarnitine levels might have elevated WBC counts. The rs6110695 genotype and the concentrations of indoleacrylic acid and butyrylcarnitine could contribute to reducing the risk of chronic diseases in the future.
Collapse
Affiliation(s)
- Youngmin Han
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Republic of Korea;
| | - Minjoo Kim
- Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea;
| | - Hye Jin Yoo
- Institute for Specialized Teaching and Research (INSTAR), Inha University, Incheon 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
3
|
Frohlich J, Liorni N, Mangoni M, Lochmanová G, Pírek P, Kaštánková N, Pata P, Kucera J, Chaldakov GN, Tonchev AB, Pata I, Gorbunova V, Leire E, Zdráhal Z, Mazza T, Vinciguerra M. Epigenetic and transcriptional control of adipocyte function by centenarian-associated SIRT6 N308K/A313S mutant. Clin Epigenetics 2024; 16:96. [PMID: 39033117 PMCID: PMC11265064 DOI: 10.1186/s13148-024-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Niccolò Liorni
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Manuel Mangoni
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Gabriela Lochmanová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Pírek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nikola Kaštánková
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | | | - Jan Kucera
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - George N Chaldakov
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Faculty of Medicine, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Faculty of Medicine, Varna, Bulgaria
| | | | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Eric Leire
- GenFlow Biosciences Srl, Charleroi, Belgium
- Clinique 135, Brussels, Belgium
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.
- Faculty of Science, Liverpool John Moores University (LJMU), Liverpool, UK.
| |
Collapse
|
4
|
Yang J, Han Y, Lee JH, Yoo HJ. Association of the MACROD2 rs6110695 A>G polymorphism with an increasing WBC count in a Korean population. Immun Inflamm Dis 2022; 10:e669. [PMID: 35759225 PMCID: PMC9233196 DOI: 10.1002/iid3.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION We aimed to find a novel candidate gene related to the white blood cell (WBC) count in a Korean population. Since WBC count has been reported to have a relation to the risk of chronic diseases according to previous literature, WBC level prediction can be helpful for managing future risk of chronic disease development. In this aspect, a gene newly found in the present study is expected to be utilized as a tool for judging an individual's WBC level. METHODS Based on the 153 study participants' genotype data produced by the Korean Chip. The mono-adenosine diphosphate ribosylhydrolase 2 (MACROD2) rs6110695 A>G polymorphism had a significant strong association with WBC count, thus, the MACROD2 gene emerged as a novel candidate gene for WBC count. To verify the effects of the single-nucleotide polymorphisms on WBC count, the participants were grouped according to the rs6110695 AA and AG genotypes. RESULTS WBC to apolipoprotein A-I ratio, WBC count, granulocyte to lymphocyte ratio, monocyte to platelet ratio, and interferon-γ level were significantly higher in the AG genotype group than in the AA genotype group. Through the receiver operating characteristic curve analysis, the rs6110695 AA and AG genotypes were discriminated by the optimal WBC count cutoff value of 5.450. As expected, the results in the participants having a WBC count over 5.450 were similar to the AG genotype group. CONCLUSIONS We revealed that the MACROD2 rs6110695 AG genotype has an association with increasing WBC count. Since, as previous literature described, WBC count is one of the main risk factors for chronic diseases, WBC count measurement in individuals with the rs6110695 AG genotype that was found in the present study may help manage future chronic disease risk.
Collapse
Affiliation(s)
- Jihye Yang
- Department of Food and NutritionNational Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human EcologyYonsei UniversitySeoulRepublic of Korea
| | - Youngmin Han
- Department of Food and NutritionNational Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human EcologyYonsei UniversitySeoulRepublic of Korea
| | - Jong Ho Lee
- Department of Food and NutritionNational Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human EcologyYonsei UniversitySeoulRepublic of Korea
- Research Center for Silver Science, Institute of Symbiotic Life‐TECHYonsei UniversitySeoulRepublic of Korea
| | - Hye Jin Yoo
- Department of Food and NutritionNational Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, College of Human EcologyYonsei UniversitySeoulRepublic of Korea
- Research Center for Silver Science, Institute of Symbiotic Life‐TECHYonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Crawford K, Oliver PL, Agnew T, Hunn BHM, Ahel I. Behavioural Characterisation of Macrod1 and Macrod2 Knockout Mice. Cells 2021; 10:368. [PMID: 33578760 PMCID: PMC7916507 DOI: 10.3390/cells10020368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Adenosine diphosphate ribosylation (ADP-ribosylation; ADPr), the addition of ADP-ribose moieties onto proteins and nucleic acids, is a highly conserved modification involved in a wide range of cellular functions, from viral defence, DNA damage response (DDR), metabolism, carcinogenesis and neurobiology. Here we study MACROD1 and MACROD2 (mono-ADP-ribosylhydrolases 1 and 2), two of the least well-understood ADPr-mono-hydrolases. MACROD1 has been reported to be largely localized to the mitochondria, while the MACROD2 genomic locus has been associated with various neurological conditions such as autism, attention deficit hyperactivity disorder (ADHD) and schizophrenia; yet the potential significance of disrupting these proteins in the context of mammalian behaviour is unknown. Therefore, here we analysed both Macrod1 and Macrod2 gene knockout (KO) mouse models in a battery of well-defined, spontaneous behavioural testing paradigms. Loss of Macrod1 resulted in a female-specific motor-coordination defect, whereas Macrod2 disruption was associated with hyperactivity that became more pronounced with age, in combination with a bradykinesia-like gait. These data reveal new insights into the importance of ADPr-mono-hydrolases in aspects of behaviour associated with both mitochondrial and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kerryanne Crawford
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (K.C.); (T.A.)
| | - Peter L. Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK; (P.L.O.); (B.H.M.H.)
- MRC Harwell Institute, Harwell Campus, Didcot OX11 0RD, UK
| | - Thomas Agnew
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (K.C.); (T.A.)
| | - Benjamin H. M. Hunn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK; (P.L.O.); (B.H.M.H.)
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (K.C.); (T.A.)
| |
Collapse
|
6
|
Giallongo S, Rehakova D, Raffaele M, Lo Re O, Koutna I, Vinciguerra M. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation. Antioxid Redox Signal 2021; 34:335-349. [PMID: 32567336 DOI: 10.1089/ars.2019.7983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Since their discovery, induced pluripotent stem cells (iPSCs) had generated considerable interest in the scientific community for their great potential in regenerative medicine, disease modeling, and cell-based therapeutic approach, due to their unique characteristics of self-renewal and pluripotency. Recent Advances: Technological advances in iPSC genome-wide epigenetic profiling led to the elucidation of the epigenetic control of cellular identity during nuclear reprogramming. Moreover, iPSC physiology and metabolism are tightly regulated by oxidation-reduction events that mainly occur during the respiratory chain. In theory, iPSC-derived differentiated cells would be ideal for stem cell transplantation as autologous cells from donors, as the risks of rejection are minimal. Critical Issues: However, iPSCs experience high oxidative stress that, in turn, confers a high risk of increased genomic instability, which is most often linked to DNA repair deficiencies. Genomic instability has to be assessed before iPSCs can be used in therapeutic designs. Future Directions: This review will particularly focus on the links between redox balance and epigenetic modifications-in particular based on the histone variant macroH2A1-that determine DNA damage response in iPSCs and derived differentiated cells, and that might be exploited to decrease the teratogenic potential on iPSC transplantation. Antioxid. Redox Signal. 34, 335-349.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Rehakova
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Marco Raffaele
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic
| | - Oriana Lo Re
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic
| | - Irena Koutna
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St' Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Human papilloma virus (HPV) integration signature in Cervical Cancer: identification of MACROD2 gene as HPV hot spot integration site. Br J Cancer 2020; 124:777-785. [PMID: 33191407 PMCID: PMC7884736 DOI: 10.1038/s41416-020-01153-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Background Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality with infection by human papilloma virus (HPV) being the most important risk factor. We analysed the association between different viral integration signatures, clinical parameters and outcome in pre-treated CCs. Methods Different integration signatures were identified using HPV double capture followed by next-generation sequencing (NGS) in 272 CC patients from the BioRAIDs study [NCT02428842]. Correlations between HPV integration signatures and clinical, biological and molecular features were assessed. Results Episomal HPV was much less frequent in CC as compared to anal carcinoma (p < 0.0001). We identified >300 different HPV-chromosomal junctions (inter- or intra-genic). The most frequent integration site in CC was in MACROD2 gene followed by MIPOL1/TTC6 and TP63. HPV integration signatures were not associated with histological subtype, FIGO staging, treatment or PFS. HPVs were more frequently episomal in PIK3CA mutated tumours (p = 0.023). Viral integration type was dependent on HPV genotype (p < 0.0001); HPV18 and HPV45 being always integrated. High HPV copy number was associated with longer PFS (p = 0.011). Conclusions This is to our knowledge the first study assessing the prognostic value of HPV integration in a prospectively annotated CC cohort, which detects a hotspot of HPV integration at MACROD2; involved in impaired PARP1 activity and chromosome instability.
Collapse
|
8
|
Feijs KL, Cooper CD, Žaja R. The Controversial Roles of ADP-Ribosyl Hydrolases MACROD1, MACROD2 and TARG1 in Carcinogenesis. Cancers (Basel) 2020; 12:E604. [PMID: 32151005 PMCID: PMC7139919 DOI: 10.3390/cancers12030604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 01/12/2023] Open
Abstract
Post-translational modifications (PTM) of proteins are crucial for fine-tuning a cell's response to both intracellular and extracellular cues. ADP-ribosylation is a PTM, which occurs in two flavours: modification of a target with multiple ADP-ribose moieties (poly(ADP-ribosyl)ation or PARylation) or with only one unit (MARylation), which are added by the different enzymes of the PARP family (also known as the ARTD family). PARylation has been relatively well-studied, particularly in the DNA damage response. This has resulted in the development of PARP inhibitors such as olaparib, which are increasingly employed in cancer chemotherapeutic approaches. Despite the fact that the majority of PARP enzymes catalyse MARylation, MARylation is not as well understood as PARylation. MARylation is a dynamic process: the enzymes reversing intracellular MARylation of acidic amino acids (MACROD1, MACROD2, and TARG1) were discovered in 2013. Since then, however, little information has been published about their physiological function. MACROD1, MACROD2, and TARG1 have a 'macrodomain' harbouring the catalytic site, but no other domains have been identified. Despite the lack of information regarding their cellular roles, there are a number of studies linking them to cancer. However, some of these publications oppose each other, some rely on poorly-characterised antibodies, or on aberrant localisation of overexpressed rather than native protein. In this review, we critically assess the available literature on a role for the hydrolases in cancer and find that, currently, there is limited evidence for a role for MACROD1, MACROD2, or TARG1 in tumorigenesis.
Collapse
Affiliation(s)
- Karla L.H. Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
| | - Christopher D.O. Cooper
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield West Yorkshire HD3 4AP, UK;
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
| |
Collapse
|