1
|
Xie L, Li H, Xiao M, Chen N, Zang X, Liu Y, Ye H, Tang C. Epigenetic insights into Fragile X Syndrome. Front Cell Dev Biol 2024; 12:1432444. [PMID: 39220684 PMCID: PMC11362040 DOI: 10.3389/fcell.2024.1432444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Fragile X Syndrome (FXS) is a genetic neurodevelopmental disorder closely associated with intellectual disability and autism spectrum disorders. The core of the disease lies in the abnormal expansion of the CGG trinucleotide repeat sequence at the 5'end of the FMR1 gene. When the repetition exceeds 200 times, it causes the silencing of the FMR1 gene, leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). Although the detailed mechanism by which the CGG repeat expansion triggers gene silencing is yet to be fully elucidated, it is known that this process does not alter the promoter region or the coding sequence of the FMR1 gene. This discovery provides a scientific basis for the potential reversal of FMR1 gene silencing through interventional approaches, thereby improving the symptoms of FXS. Epigenetics, a mechanism of genetic regulation that does not depend on changes in the DNA sequence, has become a new focus in FXS research by modulating gene expression in a reversible manner. The latest progress in molecular genetics has revealed that epigenetics plays a key role in the pathogenesis and pathophysiological processes of FXS. This article compiles the existing research findings on the role of epigenetics in Fragile X Syndrome (FXS) with the aim of deepening the understanding of the pathogenesis of FXS to identify potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Liangqun Xie
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Huiying Li
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - MengLiang Xiao
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Ningjing Chen
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Xiaoxiao Zang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingying Liu
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Hong Ye
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Chaogang Tang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
2
|
Kaul N, Pradhan SJ, Boin NG, Mason MM, Rosales J, Starke EL, Wilkinson EC, Chapman EG, Barbee SA. FMRP cooperates with miRISC components to repress translation and regulate neurite morphogenesis in Drosophila. RNA Biol 2024; 21:11-22. [PMID: 39190491 PMCID: PMC11352701 DOI: 10.1080/15476286.2024.2392304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and is caused by mutations in the gene encoding the Fragile X messenger ribonucleoprotein (FMRP). FMRP is an evolutionarily conserved and neuronally enriched RNA-binding protein (RBP) with functions in RNA editing, RNA transport, and protein translation. Specific target RNAs play critical roles in neurodevelopment, including the regulation of neurite morphogenesis, synaptic plasticity, and cognitive function. The different biological functions of FMRP are modulated by its cooperative interaction with distinct sets of neuronal RNA and protein-binding partners. Here, we focus on interactions between FMRP and components of the microRNA (miRNA) pathway. Using the Drosophila S2 cell model system, we show that the Drosophila ortholog of FMRP (dFMRP) can repress translation when directly tethered to a reporter mRNA. This repression requires the activity of AGO1, GW182, and MOV10/Armitage, conserved proteins associated with the miRNA-containing RNA-induced silencing complex (miRISC). Additionally, we find that untagged dFMRP can interact with a short stem-loop sequence in the translational reporter, a prerequisite for repression by exogenous miR-958. Finally, we demonstrate that dFmr1 interacts genetically with GW182 to control neurite morphogenesis. These data suggest that dFMRP may recruit the miRISC to nearby miRNA binding sites and repress translation via its cooperative interactions with evolutionarily conserved components of the miRNA pathway.
Collapse
Affiliation(s)
- Navneeta Kaul
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Sarala J. Pradhan
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Nathan G. Boin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Madeleine M. Mason
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Julian Rosales
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Emily L. Starke
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Emily C. Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich G. Chapman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| | - Scott A. Barbee
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| |
Collapse
|
3
|
Fedorova O, Arhin G, Pyle AM, Frank AT. In Silico Discovery of Group II Intron RNA Splicing Inhibitors. ACS Chem Biol 2023; 18:1968-1975. [PMID: 37602469 DOI: 10.1021/acschembio.3c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Here, we describe the discovery of compounds that inhibit self-splicing in group II introns. Using docking calculations, we targeted the catalytic active site within the Oceanobacillus iheyensis group IIC intron and virtually screened a library of lead-like compounds. From this initial virtual screen, we identified three unique scaffolds that inhibit splicing in vitro. Additional tests revealed that an analog of the lead scaffold inhibits splicing in an intron-dependent manner. Furthermore, this analog exhibited activity against the group II intron from a different class: the yeast ai5γ IIB intron. The splicing inhibitors we identified could serve as chemical tools for developing group II intron-targeted antifungals, and, more broadly, our results highlight the potential of in silico techniques for identifying bioactive hits against structured and functionally complex RNAs.
Collapse
Affiliation(s)
| | - Grace Arhin
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Aaron T Frank
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
LncRNA: a new perspective on the study of neurological diseases. Biochem Soc Trans 2022; 50:951-963. [PMID: 35383841 DOI: 10.1042/bst20211181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA with a length greater than 200 nt. It has a mRNA-like structure, formed by splicing after transcription, and contains a polyA tail and a promoter, of whom promoter plays a role by binding transcription factors. LncRNAs' sequences are low in conservation, and other species can only find a handful of the same lncRNAs as humans, and there are different splicing ways during the differentiation of identical species, with spatiotemporal expression specificity. With developing high-throughput sequencing and bioinformatics, found that more and more lncRNAs associated with nervous system disease. This article deals with the regulation of certain lncRNAs in the nervous system disease, by mean of to understand its mechanism of action, and the pathogenesis of some neurological diseases have a fresh understanding, deposit a foundation for resulting research and clinical treatment of disease.
Collapse
|
5
|
Sotoudeh Anvari M, Vasei H, Najmabadi H, Badv RS, Golipour A, Mohammadi-Yeganeh S, Salehi S, Mohamadi M, Goodarzynejad H, Mowla SJ. Identification of microRNAs associated with human fragile X syndrome using next-generation sequencing. Sci Rep 2022; 12:5011. [PMID: 35322102 PMCID: PMC8943156 DOI: 10.1038/s41598-022-08916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by a mutation in the FMR1 gene which can lead to a loss or shortage of the FMR1 protein. This protein interacts with specific miRNAs and can cause a range of neurological disorders. Therefore, miRNAs could act as a novel class of biomarkers for common CNS diseases. This study aimed to test this theory by exploring the expression profiles of various miRNAs in Iranian using deep sequencing-based technologies and validating the miRNAs affecting the expression of the FMR1 gene. Blood samples were taken from 15 patients with FXS (9 males, 6 females) and 12 controls. 25 miRNAs were differentially expressed in individuals with FXS compared to controls. Levels of 9 miRNAs were found to be significantly changed (3 upregulated and 6 downregulated). In Patients, the levels of hsa-miR-532-5p, hsa-miR-652-3p and hsa-miR-4797-3p were significantly upregulated while levels of hsa-miR-191-5p, hsa-miR-181-5p, hsa-miR-26a-5p, hsa-miR-30e-5p, hsa-miR-186-5p, and hsa-miR-4797-5p exhibited significant downregulation; and these dysregulations were confirmed by RT-qPCR. This study presents among the first evidence of altered miRNA expression in blood samples from patients with FXS, which could be used for diagnostic, prognostic, and treatment purposes. Larger studies are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Maryam Sotoudeh Anvari
- Department of Molecular Pathology, School of Medicine, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Vasei
- Department of Mathematical Science, Sharif University of Technology, Tehran, Iran
| | - Hossein Najmabadi
- Department of Genetics, School of Rehabilitation Sciences, Genetic Research Center, The University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Department of Pediatrics, School of Medicine, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Golipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Salehi
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Mohamadi
- Department of Pediatrics, School of Medicine, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Goodarzynejad
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Yoshida K, Yokoi A, Sugiyama M, Oda S, Kitami K, Tamauchi S, Ikeda Y, Yoshikawa N, Nishino K, Niimi K, Suzuki S, Kikkawa F, Yokoi T, Kajiyama H. Expression of the chrXq27.3 miRNA cluster in recurrent ovarian clear cell carcinoma and its impact on cisplatin resistance. Oncogene 2021; 40:1255-1268. [PMID: 33420363 PMCID: PMC7892337 DOI: 10.1038/s41388-020-01595-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Ovarian clear cell carcinoma (OCCC) is a histological subtype of epithelial ovarian cancer and exhibits dismal prognosis due to chemoresistance. Moreover, only few effective therapeutic options exist for patients with recurrent OCCC, and an understanding of its molecular characteristics is essential for the development of novel therapeutic approaches. In the present study, we investigated unique MicroRNAs (miRNA) profiles in recurrent/metastatic OCCC and the role of miRNAs in cisplatin resistance. Comprehensive miRNA sequencing revealed that expression of several miRNAs, including miR-508-3p, miR-509-3p, miR-509-3-5p, and miR-514a-3p was remarkably less in recurrent cancer tissues when compared with that in paired primary cancer tissues. These miRNAs are located in the chrXq27.3 region on the genome. Moreover, its expression was negative in omental metastases in two patients with advanced OCCC. In vitro analyses revealed that overexpression of miR-509-3p and miR-509-3-5p reversed cisplatin resistance and yes-associated protein 1 (YAP1) was partially responsible for the resistance. Immunohistochemistry revealed that YAP1 expression was inversely correlated with the chrXq27.3 miRNA cluster expression. In conclusion, these findings suggest that alteration of the chrXq27.3 miRNA cluster could play a critical role in chemoresistance and miRNAs in the cluster and their target genes can be potential therapeutic targets.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Arsenault J, Hooper AWM, Gholizadeh S, Kong T, Pacey LK, Koxhioni E, Niibori Y, Eubanks JH, Wang LY, Hampson DR. Interregulation between fragile X mental retardation protein and methyl CpG binding protein 2 in the mouse posterior cerebral cortex. Hum Mol Genet 2020; 29:3744-3756. [PMID: 33084871 PMCID: PMC7861017 DOI: 10.1093/hmg/ddaa226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Several X-linked neurodevelopmental disorders including Rett syndrome, induced by mutations in the MECP2 gene, and fragile X syndrome (FXS), caused by mutations in the FMR1 gene, share autism-related features. The mRNA coding for methyl CpG binding protein 2 (MeCP2) has previously been identified as a substrate for the mRNA-binding protein, fragile X mental retardation protein (FMRP), which is silenced in FXS. Here, we report a homeostatic relationship between these two key regulators of gene expression in mouse models of FXS (Fmr1 Knockout (KO)) and Rett syndrome (MeCP2 KO). We found that the level of MeCP2 protein in the cerebral cortex was elevated in Fmr1 KO mice, whereas MeCP2 KO mice displayed reduced levels of FMRP, implicating interplay between the activities of MeCP2 and FMRP. Indeed, knockdown of MeCP2 with short hairpin RNAs led to a reduction of FMRP in mouse Neuro2A and in human HEK-293 cells, suggesting a reciprocal coupling in the expression level of these two regulatory proteins. Intra-cerebroventricular injection of an adeno-associated viral vector coding for FMRP led to a concomitant reduction in MeCP2 expression in vivo and partially corrected locomotor hyperactivity. Additionally, the level of MeCP2 in the posterior cortex correlated with the severity of the hyperactive phenotype in Fmr1 KO mice. These results demonstrate that MeCP2 and FMRP operate within a previously undefined homeostatic relationship. Our findings also suggest that MeCP2 overexpression in Fmr1 KO mouse posterior cerebral cortex may contribute to the fragile X locomotor hyperactivity phenotype.
Collapse
Affiliation(s)
- Jason Arsenault
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Alexander W M Hooper
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Shervin Gholizadeh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Tian Kong
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Laura K Pacey
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Enea Koxhioni
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yosuke Niibori
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Lu-Yang Wang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - David R Hampson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Mo D, Liu W, Li Y, Cui W. Long Non-coding RNA Zinc Finger Antisense 1 (ZFAS1) Regulates Proliferation, Migration, Invasion, and Apoptosis by Targeting MiR-7-5p in Colorectal Cancer. Med Sci Monit 2019; 25:5150-5158. [PMID: 31295229 PMCID: PMC6640168 DOI: 10.12659/msm.916619] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common tumors, the causes of which remain unclear. Recently, many kinds of long non-coding RNAs (lncRNAs) have been identified to have an important role in the biological function of CRC. However, the effect of lncRNA zinc finger antisense 1 (ZFAS1) on development of CRC is still incompletely clear. Material/Methods Firstly, the expression of ZFAS1 and microRNA (miR)-7-5p in 40 CRC tissues and adjacent tissues was measured by real-time polymerase chain reaction. Then, we detected the cell proliferation, migration, invasion, and apoptosis in CRC cell lines by using Cell Counting Kit-8 assay, colony formation assay, flow analysis, and Transwell assay, respectively. Then, the relationship between ZFAS1 and miR-7-5p was verified by luciferase reporter assay. Finally, rescue experiments were conducted to confirmed that interaction of ZFAS1 and miR-7-5p in vitro. Results Our results showed that ZFAS1 was upregulated in CRC tissues, correlated with overall survival rates, and negatively related to the expression of miR-7-5p. It was verified that miR-7-5p was a direct target of ZFAS1 by bioinformatics analysis and luciferase reporter assay. In addition, knockdown of miR-7-5p inhibited proliferation, migration, and invasion, and promoted apoptosis in CRC cell lines, which could be rescue by miR-7-5p inhibitor. Conclusions Our study indicated that ZFAS1 directly targeted miR-7-5p, and knockdown of it could inhibit tumor growth, migration, invasion, and induce apoptosis in CRC. These data might provide a potent treatment mechanism or promising biomarker for CRC.
Collapse
Affiliation(s)
- Dianjun Mo
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Wenwen Liu
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Yanqiu Li
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Wenbo Cui
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| |
Collapse
|
9
|
Huang G, Zhu H, Wu S, Cui M, Xu T. Long Noncoding RNA Can Be a Probable Mechanism and a Novel Target for Diagnosis and Therapy in Fragile X Syndrome. Front Genet 2019; 10:446. [PMID: 31191598 PMCID: PMC6541098 DOI: 10.3389/fgene.2019.00446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/30/2019] [Indexed: 01/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common congenital hereditary disease of low intelligence after Down syndrome. Its main pathogenic gene is fragile X mental retardation 1 (FMR1) gene associated with intellectual disability, autism, and fragile X-related primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS). FMR1 gene transcription leads to the absence of fragile X mental retardation protein (FMRP). How to relieve or cure disorders associated with FXS has also become a clinically disturbing problem. Previous studies have recently shown that long noncoding RNAs (lncRNAs) contribute to the pathogenesis. And it has been identified that several lncRNAs including FMR4, FMR5, and FMR6 contribute to developing FXPOI/FXTAS, originating from the FMR1 gene locus. FMR4 is a product of RNA polymerase II and can regulate the expression of relevant genes during differentiation of human neural precursor cells. FMR5 is a sense-oriented transcript while FMR6 is an antisense lncRNA produced by the 3' UTR of FMR1. FMR6 is likely to contribute to developing FXPOI, and it overlaps exons 15-17 of FMR1 as well as two microRNA binding sites. Additionally, BC1 can bind FMRP to form an inhibitory complex and lncRNA TUG1 also can control axonal development by directly interacting with FMRP through modulating SnoN-Ccd1 pathway. Therefore, these lncRNAs provide pharmaceutical targets and novel biomarkers. This review will: (1) describe the clinical manifestations and traditional pathogenesis of FXS and FXTAS/FXPOI; (2) summarize what is known about the role of lncRNAs in the pathogenesis of FXS and FXTAS/FXPOI; and (3) provide an outlook of potential effects and future directions of lncRNAs in FXS and FXTAS/FXPOI researches.
Collapse
Affiliation(s)
- Ge Huang
- The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- The Second Hospital of Jilin University, Changchun, China
| | - Shuying Wu
- The Second Hospital of Jilin University, Changchun, China
| | - Manhua Cui
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|