1
|
Li X, Zhu L, Zhang CL, Wang X, Li Y, Zhou W, Han Z, Yang R, Peng Y, Han Y, Zhang L, Zheng L, Liu S. Genetic structure and selective sweeps in Kirghiz sheep using SNP50K bead chip. Front Genet 2024; 15:1432105. [PMID: 39233740 PMCID: PMC11371558 DOI: 10.3389/fgene.2024.1432105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
The objective of this study is to analyze environmental genetic selection signals in large-scale sheep populations with conflicting environmental adaptations, aiming to identify and isolate genes associated with environmental adaptations in sheep populations. Kirghiz sheep, which inhabit high-altitude environments year-round, demonstrate the ability to adapt to extreme conditions. In this study, 42 Kirghiz sheep, 24 Tien-Shan in Kyrgyzstan sheep, 189 Qira black sheep, and 160 Chinese Merino sheep were genotyped using Illumina Ovine SNP50K chip. Regions exhibiting a selection signal threshold of 5%, as well as PI analysis and haplotype statistical scanning gene data were annotated, and intersecting genes were identified as candidate genes. Through Fst and haplotype statistical analysis revealed the key gene PDGFD and its vicinity's impact on fat deposition in sheep tails. Additionally, Fst and PI analysis uncovered genes related to high-altitude adaptation as well as those linked to animal growth and reproduction.Further GO and KEGG enrichment pathway analyses unveiled pathways associated with high-altitude adaptation such as negative regulation of peptidyl-tyrosine phosphorylation and xenobiotic metabolism processes.This investigation into the adaptability of Kirghiz sheep provides theoretical support and practical guidance for the conservation and genetic enhancement of Kirghiz sheep germplasm resources.
Collapse
Affiliation(s)
- Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Lijun Zhu
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Xueyan Wang
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Yanhao Li
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Ruizhi Yang
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Yuwei Peng
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Yahui Han
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Langman Zheng
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| |
Collapse
|
2
|
Zhu M, Li P, Wu W, Zheng W, Huang J, Tulafu H, Lin C, Tao W, Aladaer Q. The genetic characterization of germplasm and identification of the litter size trait associated candidate genes in Dexin mutton and fine-wool sheep. Front Genet 2024; 15:1457634. [PMID: 39211736 PMCID: PMC11359847 DOI: 10.3389/fgene.2024.1457634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Xinjiang is a major province of sheep breeding in China, which plays an important role in meeting people's needs for meat products, increasing farmers' income and sustainable development of animal husbandry. However, the genetic differentiation relationship between breeds was not clear, and most sheep had low fecundity, which seriously restricted the efficient development of sheep industry. Therefore, this study used the whole genome resequencing to detect the genetic variation of Dexin mutton and fine-wool sheep, explored the selected regions and important genes of the litter size traits, analyzed the genetic mechanism of reproductive traits, and provided new insights for the high fecundity breeding of sheep. A total of 5,236.338 G genome data and 35,884,037 SNPs were obtained. Furthermore, we identified 39 selection signals spanning candidate genes, 99 genes were significantly associated related to growth, reproduction and immunity, among which, BRIP1, BMPR1B, BMP4, NGF, etc. genes, and MAKP signaling pathway, Fanconi anemia pathway and Thyroid hormone signaling pathway and other signaling pathways were significantly correlated with litter size trait. Among them, we identified NGF, TrKA and BRIP1 genes was the important genes for sheep litter size traits and the mutation frequencies of 9 SNPs in BRIP1 gene were significantly different in domestic sheep in the world. The research provided new insights for the breeding of self-cultivated meat fine-wool sheep.
Collapse
Affiliation(s)
- Mengting Zhu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Pengfei Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Wenxin Zheng
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Juncheng Huang
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Hanikzi Tulafu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Changchun Lin
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Weikun Tao
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Qi Aladaer
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
3
|
Zhao L, Yuan L, Li F, Zhang X, Tian H, Ma Z, Zhang D, Zhang Y, Zhao Y, Huang K, Li X, Cheng J, Xu D, Yang X, Han K, Weng X, Wang W. Whole-genome resequencing of Hu sheep identifies candidate genes associated with agronomic traits. J Genet Genomics 2024; 51:866-876. [PMID: 38582298 DOI: 10.1016/j.jgg.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
The phenotypic diversity resulting from artificial or natural selection of sheep has made a significant contribution to human civilization. Hu sheep are a local sheep breed unique to China with high reproductive rates and rapid growth. Genomic selection signatures have been widely used to investigate the genetic mechanisms underlying phenotypic variation in livestock. Here, we conduct whole-genome sequencing of 207 Hu sheep and compare them with the wild ancestors of domestic sheep (Asiatic mouflon) to investigate the genetic characteristics and selection signatures of Hu sheep. Based on six signatures of selection approaches, we detect genomic regions containing genes related to reproduction (BMPR1B, BMP2, PGFS, CYP19, CAMK4, GGT5, and GNAQ), vision (ALDH1A2, SAG, and PDE6B), nervous system (NAV1), and immune response (GPR35, SH2B2, PIK3R3, and HRAS). Association analysis with a population of 1299 Hu sheep reveals that those missense mutations in the GPR35 (GPR35 g.952651 A>G; GPR35 g.952496 C>T) and NAV1 (NAV1 g.84216190 C>T; NAV1 g.84227412 G>A) genes are significantly associated (P < 0.05) with immune and growth traits in Hu sheep, respectively. This research offers unique insights into the selection characteristics of Hu sheep and facilitates further genetic improvement and molecular investigations.
Collapse
Affiliation(s)
- Liming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Huibin Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yukun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yuan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Kai Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Jiangbo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Dan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaobin Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Kunchao Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiuxiu Weng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China.
| |
Collapse
|
4
|
Kusza S, Badaoui B, Wanjala G. Insights into the genomic homogeneity of Moroccan indigenous sheep breeds though the lens of runs of homozygosity. Sci Rep 2024; 14:16515. [PMID: 39019985 PMCID: PMC11255268 DOI: 10.1038/s41598-024-67558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Numerous studies have indicated that Morocco's indigenous sheep breeds are genetically homogenous, posing a risk to their survival in the challenging harsh climate conditions where they predominantly inhabit. To understand the genetic behind genetic homogeneity through the lens of runs of homozygosity (ROH), we analyzed the whole genome sequences of five indigenous sheep breeds (Beni Guil, Ouled Djellal, D'man, Sardi, Timahdite and Admixed).The results from principal component, admixture, Fst, and neighbour joining tree analyses consistently showed a homogenous genetic structure. This structure was characterized by an average length of 1.83 Mb for runs of homozygosity (ROH) segments, with a limited number of long ROH segments (24-48 Mb and > 48 Mb). The most common ROH segments were those ranging from 1-6 Mb. The most significant regions of homozygosity (ROH Islands) were mostly observed in two chromosomes, namely Chr1 and Chr5. Specifically, ROH Islands were exclusively discovered in the Ouled Djellal breed on Chr1, whereas Chr5 exhibited ROH Islands in all breeds. The analysis of ROH Island and iHS technique was employed to detect signatures of selection on Chr1 and Chr5. The results indicate that Chr5 had a high level of homogeneity, with the same genes being discovered across all breeds. In contrast, Chr1 displays some genetic variances between breeds. Genes identified on Chr5 included SLC39A1, IL23A, CAST, IL5, IL13, and IL4 which are responsible for immune response while genes identified on Chr1 include SOD1, SLAMF9, RTP4, CLDN1, and PRKAA2. ROH segment profile and effective population sizes patterns suggests that the genetic uniformity of studied breeds is the outcome of events that transpired between 250 and 300 generations ago. This research not only contributes to the understanding of ROH distribution across breeds but helps design and implement native sheep breeding and conservation strategies in Morocco. Future research, incorporating a broader sample size and utilizing the pangenome for reference, is recommended to further elucidate these breeds' genomic landscapes and adaptive mechanisms.
Collapse
Affiliation(s)
- Szilvia Kusza
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Bouabid Badaoui
- Faculty of Sciences, Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Mohammed V University in Rabat, Rabat, Morocco
- African Sustainable Agriculture Research Institute (ASARI),, Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - George Wanjala
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, Böszörményi út 138., 4032, Debrecen, Hungary
- Institute of Animal Sciences and Wildlife Management, University of Szeged, Andrássy út 15., 6800, Hódmezővásárhely, Hungary
| |
Collapse
|
5
|
Fonseca PAS, Suárez-Vega A, Arranz JJ, Gutiérrez-Gil B. Integration of selective sweeps across the sheep genome: understanding the relationship between production and adaptation traits. Genet Sel Evol 2024; 56:40. [PMID: 38773423 PMCID: PMC11106937 DOI: 10.1186/s12711-024-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Livestock populations are under constant selective pressure for higher productivity levels for different selective purposes. This pressure results in the selection of animals with unique adaptive and production traits. The study of genomic regions associated with these unique characteristics has the potential to improve biological knowledge regarding the adaptive process and how it is connected to production levels and resilience, which is the ability of an animal to adapt to stress or an imbalance in homeostasis. Sheep is a species that has been subjected to several natural and artificial selective pressures during its history, resulting in a highly specialized species for production and adaptation to challenging environments. Here, the data from multiple studies that aim at mapping selective sweeps across the sheep genome associated with production and adaptation traits were integrated to identify confirmed selective sweeps (CSS). RESULTS In total, 37 studies were used to identify 518 CSS across the sheep genome, which were classified as production (147 prodCSS) and adaptation (219 adapCSS) CSS based on the frequency of each type of associated study. The genes within the CSS were associated with relevant biological processes for adaptation and production. For example, for adapCSS, the associated genes were related to the control of seasonality, circadian rhythm, and thermoregulation. On the other hand, genes associated with prodCSS were related to the control of feeding behaviour, reproduction, and cellular differentiation. In addition, genes harbouring both prodCSS and adapCSS showed an interesting association with lipid metabolism, suggesting a potential role of this process in the regulation of pleiotropic effects between these classes of traits. CONCLUSIONS The findings of this study contribute to a deeper understanding of the genetic link between productivity and adaptability in sheep breeds. This information may provide insights into the genetic mechanisms that underlie undesirable genetic correlations between these two groups of traits and pave the way for a better understanding of resilience as a positive ability to respond to environmental stressors, where the negative effects on production level are minimized.
Collapse
Affiliation(s)
- Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain.
| |
Collapse
|
6
|
Zhong T, Hou D, Zhao Q, Zhan S, Wang L, Li L, Zhang H, Zhao W, Yang S, Niu L. Comparative whole-genome resequencing to uncover selection signatures linked to litter size in Hu Sheep and five other breeds. BMC Genomics 2024; 25:480. [PMID: 38750582 PMCID: PMC11094944 DOI: 10.1186/s12864-024-10396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Hu sheep (HS), a breed of sheep carrying the FecB mutation gene, is known for its "year-round estrus and multiple births" and is an ideal model for studying the high fecundity mechanisms of livestock. Through analyzing and comparing the genomic selection features of Hu sheep and other sheep breeds, we identified a series of candidate genes that may play a role in Hu sheep's high fecundity mechanisms. In this study, we conducted whole-genome resequencing on six breeds and screened key mutations significantly correlated with high reproductive traits in sheep. Notably, the CC2D1B gene was selected by the fixation index (FST) and the cross-population composite likelihood ratio (XP-CLR) methods in HS and other five breeds. It was worth noting that the CC2D1B gene in HS was different from that in other sheep breeds, and seven missense mutations have been identified. Furthermore, the linkage disequilibrium (LD) analysis revealed a strong linkage disequilibrium in this specific gene region. Subsequently, by performing different grouping based on FecB genotypes in Hu sheep, genome-wide selective signal analysis screened several genes related to reproduction, such as BMPR1B and PPM1K. Besides, FST analysis identified functional genes related to reproductive traits, including RHEB, HSPA2, PPP1CC, HVCN1, and CCDC63. Additionally, a missense mutation was found in the CCDC63 gene and the haplotype was different between the high reproduction (HR) group and low reproduction (LR) group in HS. In summary, we discovered genetic differentiation among six distinct breeding sheep breeds at the whole genome level. Additionally, we identified a set of genes which were associated with reproductive performance in Hu sheep and visualized how these genes differed in different breeds. These findings laid a theoretical foundation for understanding genetic mechanisms behind high prolific traits in sheep.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dunying Hou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhao
- College of Animal Science, Xichang University, Xichang, 615013, China
| | - Shizhong Yang
- Academy of Agricultural Sciences Liangshan, Xichang, 615000, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
7
|
Ma KY, Song JJ, Li DP, Wu Y, Wang CH, Liu ZL, Li TT, Ma YJ. Genomic structure analysis and construction of DNA fingerprint for four sheep populations. Animal 2024; 18:101116. [PMID: 38484632 DOI: 10.1016/j.animal.2024.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/20/2024] Open
Abstract
The Yongdeng Qishan sheep (QS) is a sheep population found locally in China. To gain in-depth knowledge of its population characteristics, three control groups were chosen, comprising the Lanzhou fat-tailed sheep (LFT), TAN sheep (TAN), and Minxian black fur sheep (MBF), inhabiting the nearby environments. This study genotyped a total of 120 individuals from four sheep populations: QS, LFT, TAN, and MBF. Using Specific-Locus Amplified Fragment Sequencing, we conducted genetic diversity, population structure, and selective sweep analysis, and constructed the fingerprint of each population. In total, there were 782 535 single nucleotide polymorphism (SNP) variations identified, with most being situated within regions that are intergenic or intronic. The genetic diversity analysis revealed that the QS population exhibited lower genetic diversity compared to the other three populations. Consistent results were obtained from the principal component, phylogenetic tree, and population structure analysis, indicating significant genetic differences between QS and the other three populations. However, a certain degree of differentiation was observed within the QS population. The linkage disequilibrium (LD) patterns among the four populations showed clear distinctions, with the QS group demonstrating the most rapid LD decline. Kinship analysis supported the findings of population structure, dividing the 90 QS individuals into two subgroups consisting of 23 and 67 individuals. Selective sweep analysis identified a range of genes associated with reproduction, immunity, and adaptation to high-altitude hypoxia. These genes hold potential as candidate genes for marker-assisted selection breeding. Additionally, a total of 86 523 runs of homozygosity (ROHs) were detected, showing non-uniform distribution across chromosomes, with chromosome 1 having the highest coverage percentage and chromosome 26 the lowest. In the high-frequency ROH islands, 79 candidate genes were associated with biological processes such as reproduction and fat digestion and absorption. Furthermore, a DNA fingerprint was constructed for the four populations using 349 highly polymorphic SNPs. In summary, our research delves into the genetic diversity and population structure of QS population. The construction of DNA fingerprint profiles for each population can provide valuable references for the identification of sheep breeds both domestically and internationally.
Collapse
Affiliation(s)
- Ke-Yan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Juan-Juan Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Deng-Pan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chun-Hui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zi-Long Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Tao-Tao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - You-Ji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China.
| |
Collapse
|
8
|
Li T, Jin M, Wang H, Zhang W, Yuan Z, Wei C. Whole-Genome Scanning for Selection Signatures Reveals Candidate Genes Associated with Growth and Tail Length in Sheep. Animals (Basel) 2024; 14:687. [PMID: 38473071 DOI: 10.3390/ani14050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Compared to Chinese indigenous sheep, Western sheep have rapid growth rate, larger physique, and higher meat yield. These excellent Western sheep were introduced into China for crossbreeding to expedite the enhancement of production performance and mutton quality in local breeds. Here, we investigated population genetic structure and genome-wide selection signatures among the Chinese indigenous sheep and the introduced sheep based on whole-genome resequencing data. The PCA, N-J tree and ADMIXTURE results showed significant genetic difference between Chinese indigenous sheep and introduced sheep. The nucleotide diversity (π) and linkage disequilibrium (LD) decay results indicated that the genomic diversity of introduced breeds were lower. Then, Fst & π ratio, XP-EHH, and de-correlated composite of multiple signals (DCMS) methods were used to detect the selection signals. The results showed that we identified important candidate genes related to growth rate and body size in the introduced breeds. Selected genes with stronger selection signatures are associated with growth rate (CRADD), embryonic development (BVES, LIN28B, and WNT11), body size (HMGA2, MSRB3, and PTCH1), muscle development and fat metabolism (MSTN, PDE3A, LGALS12, GGPS1, and SAR1B), wool color (ASIP), and hair development (KRT71, KRT74, and IRF2BP2). Thus, these genes have the potential to serve as candidate genes for enhancing the growth traits of Chinese indigenous sheep. We also identified tail-length trait-related candidate genes (HOXB13, LIN28A, PAX3, and VEGFA) in Chinese long-tailed breeds. Among these genes, HOXB13 is the main candidate gene for sheep tail length phenotype. LIN28A, PAX3, and VEGFA are related to embryonic development and angiogenesis, so these genes may be candidate genes for sheep tail type traits. This study will serve as a foundation for further genetic improvement of Chinese indigenous sheep and as a reference for studies related to growth and development of sheep.
Collapse
Affiliation(s)
- Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Li H, Jin L, Wang Y, Hu S, Long K, Li M. Identification and analysis of circRNAs in the prefrontal cortices of wild boar and domestic pig. Anim Biotechnol 2023; 34:2596-2607. [PMID: 35960868 DOI: 10.1080/10495398.2022.2109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Domestication caused significant differences in morphology and behavior between wild and domestic pigs. However, the regulatory role of circRNA in this event is unclear. Here, we analyzed circRNA expression patterns in the prefrontal cortices of wild boar and domestic pigs to determine the potential role of circRNAs in domestication. We identified a total of 11,375 circRNAs and found that 349 and 354 circRNAs were up-regulated in wild boar and Rongchang pig, respectively. Functional enrichment analysis showed that host genes of significantly highly-expressed circRNAs in wild boar were significantly enriched in neural synapse-related categories and the categories of 'regulation of defense response (p = 0.028)' and 'neural retina development (p = 4.32 × 10-3)'. Host genes of significantly highly-expressed circRNAs in Rongchang pig were specifically involved in 'chordate embryonic development (p = 2.38 × 10-4)'. Additionally, we constructed circRNA-miRNA-mRNA regulatory axes in wild boar and Rongchang pig and found more regulatory axes in wild boar that potentially regulate synaptic activities. We identified multiple circRNAs that may be related to domesticated characteristics, such as ssc_circ_6179 (ssc_circ_6179-ssc-miR-9847-HRH3, related to aggression) and ssc_circ_3027 (ssc_circ_3027-ssc-miR-4334-5p-HCRTR1, related to attention). This study provides a resource for further investigation of the molecular basis of pig domestication.
Collapse
Affiliation(s)
- Hengkuan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuhao Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Wang J, Suo J, Yang R, Zhang CL, Li X, Han Z, Zhou W, Liu S, Gao Q. Genetic diversity, population structure, and selective signature of sheep in the northeastern Tarim Basin. Front Genet 2023; 14:1281601. [PMID: 38028584 PMCID: PMC10666172 DOI: 10.3389/fgene.2023.1281601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Local sheep in the northeastern Tarim Basin can adapt to dry and low-rainfall regional environments. In this study, three local sheep breeds in the northeastern Tarim Basin, LOP (LOP) sheep, Bayinbuluke (BYK) sheep, and Kunlun (KUN, also known as the Qiemo sheep) sheep, and three introduced sheep breeds, Suffolk (SUF) sheep, Dorset (APD) sheep, and Texel (TEX) sheep, were analyzed for genetic diversity, population structure, and selective signature using the Illumina OvineSNP50K BeadChip. We found that LOP, BYK, and KUN had lower observed heterozygosity and expected heterozygosity than TEX, SUF, and ADP, which were differentiated based on geographic distribution. We performed fixation index (FST) analysis on three local sheep breeds in the northeastern Tarim Basin (LOP, BYK, and KUN) and introduced sheep breeds (TEX, SUF, and ADP) to measure genetic differentiation. Nucleotide diversity (PI) analysis was performed on single-nucleotide polymorphism (SNP) data of LOP, BYK, and KUN. A total of 493 candidate genes were obtained by taking the intersection at a threshold of 5%. Among them, SMAD2, ESR2, and HAS2 were related to reproductive traits. PCDH15, TLE4, and TFAP2B were related to growth traits. SOD1, TSHR, and DNAJB5 were related to desert environmental adaptation. Analyzing the genetic patterns of local sheep in the northeastern Tarim Basin can protect the germplasm resources of local sheep and promote the development and utilization of sheep genetic resources.
Collapse
Affiliation(s)
- Jieru Wang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Jiajia Suo
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Ruizhi Yang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-Long Zhang
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Xiaopeng Li
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Zhipeng Han
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Wen Zhou
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Shudong Liu
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Qinghua Gao
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| |
Collapse
|
11
|
Lukic B, Curik I, Drzaic I, Galić V, Shihabi M, Vostry L, Cubric-Curik V. Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds. J Anim Sci Biotechnol 2023; 14:142. [PMID: 37932811 PMCID: PMC10626677 DOI: 10.1186/s40104-023-00936-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production (carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised for a particular type of production, but known for their robustness and resistance to certain environmental conditions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation and determine its production type. RESULTS We identified positive selection signatures in EAS using several methods based on reduced local variation, linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmental adaptation and economically important traits. Most candidate genes were related to meat/production and health/immune response traits, while some of the candidate genes discovered were important for domestication and evolutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment analysis. CONCLUSIONS Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance in the harsh and specific Mediterranean environment.
Collapse
Affiliation(s)
- Boris Lukic
- Faculty of Agrobiotechnical Sciences Osijek, J.J, Strossmayer University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia.
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia.
| | - Ivana Drzaic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, 31000, Osijek, Croatia
| | - Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Luboš Vostry
- Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praque, Czech Republic
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| |
Collapse
|
12
|
Zhu M, Yang Y, Yang H, Zhao Z, Zhang H, Blair HT, Zheng W, Wang M, Fang C, Yu Q, Zhou H, Qi H. Whole-genome resequencing of the native sheep provides insights into the microevolution and identifies genes associated with reproduction traits. BMC Genomics 2023; 24:392. [PMID: 37434152 DOI: 10.1186/s12864-023-09479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Sheep genomes undergo numerous genes losses, gains and mutation that generates genome variability among breeds of the same species after long time natural and artificial selection. However, the microevolution of native sheep in northwest China remains elusive. Our aim was to compare the genomes and relevant reproductive traits of four sheep breeds from different climatic environments, to unveil the selection challenges that this species cope with, and the microevolutionary differences in sheep genomes. Here, we resequenced the genomes of 4 representative sheep breeds in northwest China, including Kazakh sheep and Duolang sheep of native breeds, and Hu sheep and Suffolk sheep of exotic breeds with different reproductive characteristics. RESULTS We found that these four breeds had a similar expansion experience from ~ 10,000 to 1,000,000 years ago. In the past 10,000 years, the selection intensity of the four breeds was inconsistent, resulting in differences in reproductive traits. We explored the sheep variome and selection signatures by FST and θπ. The genomic regions containing genes associated with different reproductive traits that may be potential targets for breeding and selection were detected. Furthermore, non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds with different reproductive characteristics were found. We identified PAK1, CYP19A1 and PER1 as a likely causal gene for seasonal reproduction in native sheep through qPCR, Western blot and ELISA analyses. Also, the haplotype frequencies of 3 tested gene regions related to reproduction were significantly different among four sheep breeds. CONCLUSIONS Our results provide insights into the microevolution of native sheep and valuable genomic information for identifying genes associated with important reproductive traits in sheep.
Collapse
Affiliation(s)
- Mengting Zhu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yonglin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China.
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China.
| | - Hongmei Zhang
- First Affiliated Hospital, School of Medical College, Shihezi University, Shihezi, Xinjiang, China
| | - Hugh T Blair
- Institute Veterinary, Animal & Biomedical Sciences, Massey University, Auckland, Palmerston North, New Zealand
| | - Wei Zheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Mingyuan Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Chenhui Fang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Huaqian Zhou
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hangdong Qi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
13
|
Tian R, Asadollahpour Nanaie H, Wang X, Dalai B, Zhao M, Wang F, Li H, Yang D, Zhang H, Li Y, Wang T, Luan T, Wu J. Genomic adaptation to extreme climate conditions in beef cattle as a consequence of cross-breeding program. BMC Genomics 2023; 24:186. [PMID: 37024818 PMCID: PMC10080750 DOI: 10.1186/s12864-023-09235-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Understanding the evolutionary forces related to climate changes that have been shaped genetic variation within species has long been a fundamental pursuit in biology. In this study, we generated whole-genome sequence (WGS) data from 65 cross-bred and 45 Mongolian cattle. Together with 62 whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of cattle populations. In addition, we performed comparative population genomics analyses to explore the genetic basis underlying variation in the adaptation to cold climate and immune response in cross-bred cattle located in the cold region of China. To elucidate genomic signatures that underlie adaptation to cold climate, we performed three statistical measurements, fixation index (FST), log2 nucleotide diversity (θπ ratio) and cross population composite likelihood ratio (XP-CLR), and further investigated the results to identify genomic regions under selection for cold adaptation and immune response-related traits. RESULTS By generating WGS data, we investigated the population genetic structure and phylogenetic relationship of studied cattle populations. The results revealed clustering of cattle groups in agreement with their geographic distribution. We detected noticeable genetic diversity between indigenous cattle ecotypes and commercial populations. Analysis of population structure demonstrated evidence of shared genetic ancestry between studied cross-bred population and both Red-Angus and Mongolian breeds. Among all studied cattle populations, the highest and lowest levels of linkage disequilibrium (LD) per Kb were detected in Holstein and Rashoki populations (ranged from ~ 0.54 to 0.73, respectively). Our search for potential genomic regions under selection in cross-bred cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes. We identified some adaptive introgression genes with greater than expected contributions from Mongolian ancestry into Molgolian x Red Angus composites such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis. In addition, we detected some candidate genes probably associated with immune response-related traits. CONCLUSION The study identified candidate genes involved in responses to cold adaptation and immune response in cross-bred cattle, including new genes or gene pathways putatively involved in these adaptations. The identification of these genes may clarify the molecular basis underlying adaptation to extreme environmental climate and as such they might be used in cattle breeding programs to select more efficient breeds for cold climate regions.
Collapse
Affiliation(s)
- Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Hojjat Asadollahpour Nanaie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Baolige Dalai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Fenf Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Ding Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hao Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Tingyue Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Tu Luan
- Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Jianghong Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.
| |
Collapse
|
14
|
Bedhiaf-Romdhani S, Baazaoui I, Dodds KG, Brauning R, Anderson RM, Van Stijn TC, McCulloch AF, McEwan JC. Efficiency of genotyping by sequencing in inferring genomic relatedness and molecular insights into fat tail selection in Tunisian sheep. Anim Genet 2023; 54:389-397. [PMID: 36727208 DOI: 10.1111/age.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
In developing countries, the use of simple and cost-efficient molecular technology is crucial for genetic characterization of local animal resources and better development of conservation strategies. The genotyping by sequencing (GBS) technique, also called restriction enzyme- reduced representational sequencing, is an efficient, cost-effective method for simultaneous discovery and genotyping of many markers. In the present study, we applied a two-enzyme GBS protocol (PstI/MspI) to discover and genotype SNP markers among 197 Tunisian sheep samples. A total of 100 333 bi-allelic SNPs were discovered and genotyped with an SNP call rate of 0.69 and mean sample depth 3.33. The genomic relatedness between 183 samples grouped the samples perfectly to their populations and pointed out a high genetic relatedness of inbred subpopulation reflecting the current adopted reproductive strategies. The genome-wide association study contrasting fat vs. thin-tailed breeds detected 41 significant variants including a peak positioned on OAR20. We identified FOXC1, GMDS, VEGFA, OXCT1, VRTN and BMP2 as the most promising for sheep tail-type trait. The GBS data have been useful to assess the population structure and improve our understanding of the genomic architecture of distinctive characteristics shaped by selection pressure in local sheep breeds. This study successfully investigates a cost-efficient method to discover genotypes, assign populations and understand insights into sheep adaptation to arid area. GBS could be of potential utility in livestock species in developing/emerging countries.
Collapse
Affiliation(s)
- Sonia Bedhiaf-Romdhani
- Laboratoire des Productions Animales et Fourragères, INRA-Tunisie, Université de Carthage, Tunis, Tunisia
| | - Imen Baazaoui
- Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Ken G Dodds
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Rudiger Brauning
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Rayna M Anderson
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | - Alan F McCulloch
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - John Colin McEwan
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
15
|
Identification and characterization of unique and common lncRNAs and mRNAs in the pituitary, ovary, and uterus of Hu sheep with different prolificacy. Genomics 2022; 114:110511. [PMID: 36283658 DOI: 10.1016/j.ygeno.2022.110511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
LncRNAs are regarded as regulators in various animal reproductive physiological processes. However, the regulation of lncRNAs in the reproductive organ development of Hu sheep with different prolificacy remains unknown. Herein, numerous tissue-unique and -common differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs), and fecundity-unique DELs and DEGs were identified among different comparison groups at horizontal and vertical levels. Moreover, the tissue-unique and -common, and fecundity-unique female reproduction-associated DEGs and DELs were screened, and the interaction networks were constructed. Furthermore, MSTRG.43442.1 was mainly present in the cytoplasm of tested cells. The key genes ADAMTS1 and DCN were mainly localized in the granulosa cells, pituitary cells and/or endometrial epithelial cells of ovary, pituitary and/or uterus. Overall, this study identified large numbers of unique and common DELs and DEGs in the female reproductive organs of Hu sheep with different prolificacy and provided new insights into understanding the regulation of Hu sheep fecundity.
Collapse
|
16
|
Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci Rep 2022; 12:12264. [PMID: 35851076 PMCID: PMC9293982 DOI: 10.1038/s41598-022-15986-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The southern margin of the Taklimakan Desert is characterized by low rainfall, heavy sandstorms, sparse vegetation and harsh ecological environment. The indigenous sheep in this area are rich in resources, with the advantages of perennial estrus and good resistance to stress in most sheep. Exploring the molecular markers of livestock adaptability in this environment will provide the molecular basis for breeding research to cope with extreme future changes in the desert environment. In this study, we analyzed the population genetic structure and linkage imbalance of five sheep breeds with three different agricultural geographic characteristics using four complementary genomic selection signals: fixation index (FST), cross-population extended haplotype homozygosity (xp-EHH), Rsb (extended haplotype homozygosity between-populations) and iHS (integrated haplotype homozygosity score). We used Illumina Ovine SNP 50K Genotyping BeadChip Array, and gene annotation and enrichment analysis were performed on selected regions of the obtained genome. The ovary of Qira Black sheep (Follicular phase, Luteal phase, 30th day of pregnancy, 45th day of pregnancy) was collected, and the differentially expressed genes were screened by transcriptomic sequencing. Genome-wide selective sweep results and transcriptome data were combined for association analysis to obtain candidate genes associated with perennial estrus and stable reproduction. In order to verify the significance of the results, 15 resulting genes were randomly selected for fluorescence quantitative analysis. The results showed that Dolang sheep and Qira Black sheep evolved from Kazak sheep. Linkage disequilibrium analysis showed that the decay rate of sheep breeds in the Taklimakan Desert was higher than that in Yili grassland. The signals of FST, xp-EHH, Rsb and iHS detected 526, 332, 308 and 408 genes, respectively, under the threshold of 1% and 17 overlapping genes under the threshold of 5%. A total of 29 genes were detected in association analysis of whole-genome and transcriptome data. This study reveals the genetic mechanism of perennial estrus and environmental adaptability of indigenous sheep breeds in the Taklimakan Desert. It provides a theoretical basis for the conservation and exploitation of genetic resources of indigenous sheep breeds in extreme desert environment. This provides a new perspective for the quick adaptation of sheep and other mammals to extreme environments and future climate changes.
Collapse
|
17
|
Khalkhali-Evrigh R, Hedayat N, Ming L, Jirimutu. Identification of selection signatures in Iranian dromedary and Bactrian camels using whole genome sequencing data. Sci Rep 2022; 12:9653. [PMID: 35688969 PMCID: PMC9187634 DOI: 10.1038/s41598-022-14376-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
The Old World camels play an important role as one of the main food sources in large parts of Asia and Africa. Natural selection combined with artificial selection by human has affected parts of the domestic animal genome for adapting them to their habitats and meeting human needs. Here, we used whole genome sequencing data of 34 camels (including 14 dromedaries and 20 Bactrian camels) to identify the genomic signature of selection in the Iranian dromedary (ID) and Bactrian camels (IB). To detect the mentioned regions, we used two methods including population differentiation index (Fst) and cross-population extended haplotype homozygosity (XP-EHH) with 50 kb sliding window and 25 kb step size. Based on gene ontology analysis on the candidate genes identified for IB camels, we found GO terms associated with lung development, nervous system development, immune system and behavior. Also, we identified several genes related to body thermoregulation (ZNF516), meat quality (ANK1 and HSPA13), and high-altitude adaptation (OPA1) for IB camels. In the list of detected candidate genes under selection in ID camels, the genes related to energy metabolism (BDH1), reproduction (DLG1, IMMP2L and FRASI), long-term memory (GRIA1), kidney (SLC12A1), lung development (EMILIN2 and FBN1) and immunity (SOCS2, JAK1, NRROS and SENP1) were found. Our findings, along with further studies in this field, will strengthen our knowledge about the effect of selection on the camelid genome under different geographical, climatic and even cultural conditions.
Collapse
Affiliation(s)
- Reza Khalkhali-Evrigh
- Department of Animal Science, Faculty of Agriculture and Natural Recourses, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Nemat Hedayat
- Department of Animal Science, Faculty of Agriculture and Natural Recourses, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Liang Ming
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, China
| | - Jirimutu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
18
|
Liu Z, Tan X, Wang J, Jin Q, Meng X, Cai Z, Cui X, Wang K. Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits. Anim Biosci 2022; 35:1340-1350. [PMID: 35507856 PMCID: PMC9449392 DOI: 10.5713/ab.21.0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/21/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Luxi Black Head sheep (LBH) is the first crossbreed specialized for meat production and was developed by crossbreeding Black Head Dorper sheep (DP) and Small Tailed Han sheep (STH) in the farming areas of northern China. Research on the genomic variations and selection signatures of LBH caused by continuous artificial selection is of great significance for identifying the genetic mechanisms of important traits of sheep and for the continuous breeding of LBH. Methods We explored the genetic relationships of LBH, DP, and several Mongolian sheep breeds by constructing phylogenetic tree, principal component analysis and linkage disequilibrium analysis. In addition, we analysed 29 whole genomes of sheep. The genome-wide selection signatures have been scanned with four methods: heterozygosity (HP), fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and the nucleotide diversity (θπ) ratio. Results The genetic relationships analysis showed that LBH appeared to be an independent cluster closer to DP. The candidate signatures of positive selection in sheep genome revealed candidate genes for developmental process (HoxA gene cluster, BCL2L11, TSHR), immunity (CXCL6, CXCL1, SKAP2, PTK6, MST1R), growth (PDGFD, FGF18, SRF, SOCS2), and reproduction (BCAS3, TRIM24, ASTL, FNDC3A). Moreover, two signalling pathways closely related to reproduction, the thyroid hormone signalling pathway and the oxytocin signalling pathway, were detected. Conclusion The selective sweep analysis of LBH genome revealed candidate genes and signalling pathways associated with developmental process, immunity, growth, and reproduction. Our findings provide a valuable resource for sheep breeding and insight into the mechanisms of artificial selection.
Collapse
|
19
|
Narayan E, Sawyer G, Fox D, Smith R, Tilbrook A. Interplay Between Stress and Reproduction: Novel Epigenetic Markers in Response to Shearing Patterns in Australian Merino Sheep (Ovis aries). Front Vet Sci 2022; 9:830450. [PMID: 35464367 PMCID: PMC9021797 DOI: 10.3389/fvets.2022.830450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, we determined the effect(s) of early shearing on Australian Merino ewes (Ovis aries) and their lambs. To test this research question, we used a suite of field and laboratory methods including GPS collars, wool cortisol, and epigenetic change between ewes and lambs identified using Illumina NovaSeq RRBS. Once shorn ewes (n = 24) were kept on their full fleece throughout the entire gestation period, whereas twice (early) shorn ewes (n = 24) had their wool shorn pre-joining. Top-knot wool sample was taken from ewes during pre-joining, day 50 (mid-gestation), and day 90 (late gestation) for laboratory analysis. Ewes were pregnancy scanned at mid-gestation to determine whether they were early or late parturition (this confirmation is provided by the pregnancy scanner based on fetus size). Top-knot wool sample was also taken from the lambs at weaning for hormone and wool quality testing. Ear tissue was taken from ewes at day 50 (mid-gestation) and from lambs at lamb marking for DNA analysis. Results showed that twice or early shorn ewes grazed 10% higher and maintained stronger body condition than once shorn ewes. Wool cortisol levels were also significantly lower in the early shorn ewes between mid- and late gestation. Lambs bred from twice shorn ewes had on average better visual wool quality parameters in terms of micron, spin finesses, and curvature. For the DNA methylation results, when comparing a group of once sheared with twice sheared ewes, we have discovered one locus (Chr20:50404014) that was significantly differentially methylated [False Discovery Rate (FDR) = 0.005]. This locus is upstream of a protein-coding gene (ENSOARG00000002778.1), which shows similarities to the forkhead box C1 (FOXC1) mRNA using BLAST searches. To further our understanding of the potential interaction between pregnancy status and shearing frequency of the ewes, we performed further differential methylation analysis using a combination of shearing treatment and pregnancy scanning status. The comparisons (1) late pregnancy vs. early pregnancy for ewes with one shearing treatment and (2) late pregnancy vs. early pregnancy for sheep with two shearing treatments were carried out to identify associations between loci and pregnancy duration for sheep with either one or two shearing events. We discovered that 36 gene loci were significantly modulated either between different shearing treatments or late vs. early pregnancy status of ewes. This result suggests that maternal pregnancy and nutritional status during gestation influence DNA methylation. We further investigated DNA methylation in lambs and identified 16 annotated gene loci that showed epigenetic modulation as a result of being born from an early or late stage pregnancy. From the genomics data, we pointed out that ewes go through epigenetic modifications during gestation, and there is a degree of intra-individual variation in the reproductive performance of ewes, which could be due to combination of intrinsic (genetic and physiological) and extrinsic (management and climatic) factors. Collectively, this research provides novel dataset combining physiological, molecular epigenetics, and digital tracking indices that advances our understanding of how Merino ewes respond to shearing frequency, and this information could guide further research on Merino sheep breeding and welfare.
Collapse
Affiliation(s)
- Edward Narayan
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, St.Lucia, QLD, Australia
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St.Lucia, QLD, Australia
- *Correspondence: Edward Narayan
| | - Gregory Sawyer
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Dylan Fox
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, St.Lucia, QLD, Australia
| | - Ryan Smith
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Alan Tilbrook
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St.Lucia, QLD, Australia
- School of Veterinary Science, Faculty of Science, The University of Queensland, St.Lucia, QLD, Australia
| |
Collapse
|
20
|
Cesarani A, Gaspa G, Correddu F, Dimauro C, Macciotta NPP. Unravelling the effect of environment on the genome of Sarda breed ewes using Runs of Homozygosity. J Anim Breed Genet 2022; 139:292-306. [PMID: 34984736 DOI: 10.1111/jbg.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
Natural adaptation and artificial selection have shaped the genome of modern livestock breeds. Among SNP-based metrics that are used to detect signatures of selection at genome-wide level, runs of homozygosity (ROH) are getting increasing popularity. In this paper, ROH distribution and features of a sample of 823 Sarda breed ewes farmed at different levels of altitude are analysed to investigate the effect of the environment on the patterns of homozygosity. A total of 46,829 (33,087 unique) ROH were detected. OAR2 exhibited the largest average number of ROH per animal. The most frequent ROH (OAR27, 38.9-44.2 Mb) was shared by 327. ROH length was statistically affected (p < 0.001) by both the altitude and temperature of the place where the flock was located. The highest probability of a SNP falling in a ROH was observed for hill ewes, whereas the smallest one for mountain. A total of 457 SNP exceeded the 99th percentile of the ROH count per SNP distribution and were considered significant. These markers mapped in eight chromosomes and they clustered into 17 ROH islands, where 80 candidate genes were mapped. Results of this study highlighted differences in the ROH distribution and features among sheep farmed in flocks located at different levels of altitude, confirming the role of environmental adaptability in shaping the genome of this breed.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Fabio Correddu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | | |
Collapse
|
21
|
Igoshin AV, Deniskova TE, Yurchenko AA, Yudin NS, Dotsev AV, Selionova MI, Zinovieva NA, Larkin DM. Copy number variants in genomes of local sheep breeds from Russia. Anim Genet 2021; 53:119-132. [PMID: 34904242 DOI: 10.1111/age.13163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 01/21/2023]
Abstract
Copy number variants (CNVs) are genomic structural variations that contribute to many adaptive and economically important traits in livestock. In this study, we detected CNVs in 354 animals from 16 Russian indigenous sheep breeds and analysed their possible functional roles. Our analysis of the entire sample set resulted in 4527 CNVs forming 1450 CNV regions (CNVRs). When constructing CNVRs for individual breeds, a total of 2715 regions ranging from 88 in Groznensk to 337 in Osetin breeds were identified. To make interbreed CNVR frequency comparison possible, we also identified core CNVRs using CNVs with overlapping chromosomal locations found in different breeds. This resulted in 137 interbreed CNVRs with frequency >15% in at least one breed. Functional enrichment analysis of genes affected by CNVRs in individual breeds revealed 12 breeds with significant enrichments in olfactory perception, PRAME family proteins, and immune response. Function of genes affected by interbreed and breed-specific CNVRs revealed candidates related to domestication, adaptation to high altitudes and cold climates, reproduction, parasite resistance, milk and meat qualities, wool traits, fat storage, and fat metabolism. Our work is the first attempt to uncover and characterise the CNV makeup of Russian indigenous sheep breeds. Further experimental and functional validation of CNVRs would help in developing new and improving existing sheep breeds.
Collapse
Affiliation(s)
- A V Igoshin
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - T E Deniskova
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - A A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - N S Yudin
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - A V Dotsev
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - M I Selionova
- Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Moscow, 127550, Russia
| | - N A Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - D M Larkin
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Royal Veterinary College, University of London, London, NW1 0TU, UK
| |
Collapse
|
22
|
Chen ZH, Xu YX, Xie XL, Wang DF, Aguilar-Gómez D, Liu GJ, Li X, Esmailizadeh A, Rezaei V, Kantanen J, Ammosov I, Nosrati M, Periasamy K, Coltman DW, Lenstra JA, Nielsen R, Li MH. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biol 2021; 4:1307. [PMID: 34795381 PMCID: PMC8602413 DOI: 10.1038/s42003-021-02817-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.
Collapse
Affiliation(s)
- Ze-Hui Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China ,grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Xi Xu
- grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xing-Long Xie
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Dong-Feng Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Diana Aguilar-Gómez
- grid.47840.3f0000 0001 2181 7878Center for Computational Biology, University of California at Berkeley, Berkeley, CA 94720 USA
| | | | - Xin Li
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ali Esmailizadeh
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahideh Rezaei
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, The Sakha Republic (Yakutia), Yakutsk, Russia
| | - Maryam Nosrati
- grid.412462.70000 0000 8810 3346Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Kathiravan Periasamy
- grid.420221.70000 0004 0403 8399Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - David W. Coltman
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9 Canada
| | - Johannes A. Lenstra
- grid.5477.10000000120346234Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA. .,Department of Statistics, UC Berkeley, Berkeley, CA, 94707, USA. .,Globe Institute, University of Copenhagen, 1350, København K, Denmark.
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Rostamzadeh Mahdabi E, Esmailizadeh A, Ayatollahi Mehrgardi A, Asadi Fozi M. A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genet Sel Evol 2021; 53:72. [PMID: 34503452 PMCID: PMC8428137 DOI: 10.1186/s12711-021-00664-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Various regions of the chicken genome have been under natural and artificial selection for thousands of years. The substantial diversity that exits among chickens from different geographic regions provides an excellent opportunity to investigate the genomic regions under selection which, in turn, will increase our knowledge about the mechanisms that underlie chicken diversity and adaptation. Several statistics have been developed to detect genomic regions that are under selection. In this study, we applied approaches based on differences in allele or haplotype frequencies (FST and hapFLK, respectively) between populations, differences in long stretches of consecutive homozygous sequences (ROH), and differences in allele frequencies within populations (composite likelihood ratio (CLR)) to identify inter- and intra-populations traces of selection in two Iranian indigenous chicken ecotypes, the Lari fighting chicken and the Khazak or creeper (short-leg) chicken. Results Using whole-genome resequencing data of 32 individuals from the two chicken ecotypes, approximately 11.9 million single nucleotide polymorphisms (SNPs) were detected and used in genomic analyses after quality processing. Examination of the distribution of ROH in the two populations indicated short to long ROH, ranging from 0.3 to 5.4 Mb. We found 90 genes that were detected by at least two of the four applied methods. Gene annotation of the detected putative regions under selection revealed candidate genes associated with growth (DCN, MEOX2 and CACNB1), reproduction (ESR1 and CALCR), disease resistance (S1PR1, ALPK1 and MHC-B), behavior pattern (AGMO, GNAO1 and PSEN1), and morphological traits (IHH and NHEJ1). Conclusions Our findings show that these two phenotypically different indigenous chicken populations have been under selection for reproduction, immune, behavioral, and morphology traits. The results illustrate that selection can play an important role in shaping signatures of differentiation across the genomic landscape of two chicken populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00664-9.
Collapse
Affiliation(s)
- Elaheh Rostamzadeh Mahdabi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran.
| |
Collapse
|
24
|
Bathke J, Lühken G. OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow. BMC Bioinformatics 2021; 22:402. [PMID: 34388963 PMCID: PMC8361789 DOI: 10.1186/s12859-021-04317-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Background The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. Results A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. Conclusions The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.
Collapse
Affiliation(s)
- Jochen Bathke
- Institute of Animal Breeding and Genetics, Justus Liebig University Gießen, Ludwigstraße 21, 35390, Gießen, Germany.
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University Gießen, Ludwigstraße 21, 35390, Gießen, Germany
| |
Collapse
|
25
|
Li X, Wu Q, Zhang X, Li C, Zhang D, Li G, Zhang Y, Zhao Y, Shi Z, Wang W, Li F. Whole-Genome Resequencing to Study Brucellosis Susceptibility in Sheep. Front Genet 2021; 12:653927. [PMID: 34306007 PMCID: PMC8297390 DOI: 10.3389/fgene.2021.653927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 02/05/2023] Open
Abstract
Brucellosis is a zoonotic disease and a major public health problem. However, the genetic mechanism of brucellosis in sheep remains unclear. In this study, serum samples were collected from 6,358 sheep from the F2 population (Dorper sheep ♂ × Hu sheep ♀), and antibody levels were continuously measured at 14 days and 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 months after administration of brucellosis vaccine. Finally, 19 brucellosis-resistant group (BRG) sheep and 22 brucellosis-susceptible group sheep (BSG) were screened for whole-genome sequencing. Using the fixation index, Fisher’s exact test, and chi-square test, a total of 205 candidate SNP sites were identified. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggested that 138 candidate genes were significantly enriched in adherens junction (CTNNA3, PARD3, and PTPRM), cell adhesion molecules (NLGN1, CNTNAP2, NCAM1, and PTPRM), salivary secretion (LOC101102109, PRKG1, and ADCY2), and hippo signaling pathway (CTNNA3, YAP1, and PARD3). These findings provide valuable molecular markers for brucellosis resistance breeding in sheep and novel insights into the genetic mechanism of brucellosis resistance.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qingmin Wu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Deyin Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Guoze Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhaoguo Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China.,The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
26
|
Sweet-Jones J, Lenis VP, Yurchenko AA, Yudin NS, Swain M, Larkin DM. Genotyping and Whole-Genome Resequencing of Welsh Sheep Breeds Reveal Candidate Genes and Variants for Adaptation to Local Environment and Socioeconomic Traits. Front Genet 2021; 12:612492. [PMID: 34220925 PMCID: PMC8253514 DOI: 10.3389/fgene.2021.612492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/10/2021] [Indexed: 12/25/2022] Open
Abstract
Background Advances in genetic tools applied to livestock breeding has prompted research into the previously neglected breeds adapted to harsh local environments. One such group is the Welsh mountain sheep breeds, which can be farmed at altitudes of 300 m above sea level but are considered to have a low productive value because of their poor wool quality and small carcass size. This is contrary to the lowland breeds which are more suited to wool and meat production qualities, but do not fare well on upland pasture. Herein, medium-density genotyping data from 317 individuals representing 15 Welsh sheep breeds were used alongside the whole-genome resequencing data of 14 breeds from the same set to scan for the signatures of selection and candidate genetic variants using haplotype- and SNP-based approaches. Results Haplotype-based selection scan performed on the genotyping data pointed to a strong selection in the regions of GBA3, PPARGC1A, APOB, and PPP1R16B genes in the upland breeds, and RNF24, PANK2, and MUC15 in the lowland breeds. SNP-based selection scan performed on the resequencing data pointed to the missense mutations under putative selection relating to a local adaptation in the upland breeds with functions such as angiogenesis (VASH1), anti-oxidation (RWDD1), cell stress (HSPA5), membrane transport (ABCA13 and SLC22A7), and insulin signaling (PTPN1 and GIGFY1). By contrast, genes containing candidate missense mutations in the lowland breeds are related to cell cycle (CDK5RAP2), cell adhesion (CDHR3), and coat color (MC1R). Conclusion We found new variants in genes with potentially functional consequences to the adaptation of local sheep to their environments in Wales. Knowledge of these variations is important for improving the adaptative qualities of UK and world sheep breeds through a marker-assisted selection.
Collapse
Affiliation(s)
- James Sweet-Jones
- Royal Veterinary College, University of London, London, United Kingdom
| | - Vasileios Panagiotis Lenis
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom.,School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Andrey A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Nikolay S Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Martin Swain
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Denis M Larkin
- Royal Veterinary College, University of London, London, United Kingdom.,The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| |
Collapse
|
27
|
Genome-wide transcriptome profiling uncovers differential miRNAs and lncRNAs in ovaries of Hu sheep at different developmental stages. Sci Rep 2021; 11:5865. [PMID: 33712687 PMCID: PMC7971002 DOI: 10.1038/s41598-021-85245-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ovary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.
Collapse
|
28
|
Barrera-Redondo J, Piñero D, Eguiarte LE. Genomic, Transcriptomic and Epigenomic Tools to Study the Domestication of Plants and Animals: A Field Guide for Beginners. Front Genet 2020; 11:742. [PMID: 32760427 PMCID: PMC7373799 DOI: 10.3389/fgene.2020.00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023] Open
Abstract
In the last decade, genomics and the related fields of transcriptomics and epigenomics have revolutionized the study of the domestication process in plants and animals, leading to new discoveries and new unresolved questions. Given that some domesticated taxa have been more studied than others, the extent of genomic data can range from vast to nonexistent, depending on the domesticated taxon of interest. This review is meant as a rough guide for students and academics that want to start a domestication research project using modern genomic tools, as well as for researchers already conducting domestication studies that are interested in following a genomic approach and looking for alternate strategies (cheaper or more efficient) and future directions. We summarize the theoretical and technical background needed to carry out domestication genomics, starting from the acquisition of a reference genome and genome assembly, to the sampling design for population genomics, paleogenomics, transcriptomics, epigenomics and experimental validation of domestication-related genes. We also describe some examples of the aforementioned approaches and the relevant discoveries they made to understand the domestication of the studied taxa.
Collapse
Affiliation(s)
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
29
|
|
30
|
Thomas F, Giraudeau M, Dheilly NM, Gouzerh F, Boutry J, Beckmann C, Biro PA, Hamede R, Abadie J, Labrut S, Bieuville M, Misse D, Bramwell G, Schultz A, Le Loc'h G, Vincze O, Roche B, Renaud F, Russell T, Ujvari B. Rare and unique adaptations to cancer in domesticated species: An untapped resource? Evol Appl 2020. [DOI: 10.1111/eva.12920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Frédéric Thomas
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Mathieu Giraudeau
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook NY USA
| | - Flora Gouzerh
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Christa Beckmann
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
- School of Science Western Sydney UniversityParramatta NSW Australia
| | - Peter A. Biro
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Rodrigo Hamede
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| | | | | | - Margaux Bieuville
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Dorothée Misse
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Georgina Bramwell
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Aaron Schultz
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Guillaume Le Loc'h
- Clinique des NAC et de la Faune Sauvage, UMR IHAP École Nationale Vétérinaire de Toulouse Toulouse France
| | - Orsolya Vincze
- Hungarian Department of Biology and Ecology Evolutionary Ecology Group Babeş‐Bolyai University Cluj‐Napoca Romania
- Department of Tisza Research MTA Centre for Ecological Research‐DRI Debrecen Hungary
| | - Benjamin Roche
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- Unité mixte Internationale de Modélisation Mathématique et Informatique des Systèmes Complexes UMI IRD/Sorbonne UniversitéUMMISCO Bondy France
| | - François Renaud
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Tracey Russell
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Beata Ujvari
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| |
Collapse
|